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Abstract

We present coresets, a technique for approximately solving clustering problems
on a small subset of the data, for the DP-Means clustering problem. DP-Means is
a variant of K-Means where the number of clusters is not fixed but inferred from
the data. We first show the existence of coresets of size O(ddk∗ log n/εd) where
k∗ is the optimal number of centers and then propose a practical coreset construc-
tion algorithm that can be used to solve large instances of DP-Means clustering.
We empirically demonstrate that coresets significantly outperform naive uniform
subsampling and observe substantial speedups in runtime while achieving a low
approximation error compared to solving the full instance.

1 Introduction

Scalable training of Bayesian nonparametric models is a notoriously difficult problem. One ap-
proach is to apply the technique of small variance asymptotics to the Gaussian Dirichlet Process
mixture model [1]. This leads to a discrete optimization problem similar to K-Means clustering
where the number of clusters is not fixed but inferred from the data. DP-Means clustering allows a
solution to have an arbitrary number of clusters but imposes a penalty proportional to the number of
clusters leading to a tradeoff between number of clusters used and quantization error achieved. As
is the case with K-Means clustering, it is challenging to solve the DP-Means clustering problem for
datasets where the number of samples is prohibitively large. The “naive” approach to this problem
is to solve the clustering problem on a random subset of the data with the hope that the solution on
this subset is close to the solution on the full dataset.
The concept of coresets originating from computational geometry offers a better solution. Coresets
are weighted subsets of the data such that the quality of any clustering can be approximated on the
coreset instead of the full dataset. This allows for fast approximate inference for large datasets by
solving the clustering problem on the small coreset. Coreset constructions have been developed
for a variety of unsupervised learning problems including K-Median/K-Means [2, 3, 4, 5, 6, 7, 8],
LSA/PCA [8], K-Lines [9] and K-Segments [10].
Our contribution is the development of coresets for the DP-Means clustering problem. We first show
the existence of coresets for DP-Means and then propose a practical coreset construction algorithm.
In experiments, we finally verify its superior performance compared to naive subsampling and its
speedup compared to solving DP-Means on the full dataset.

2 Coresets for the DP-Means clustering problem

2.1 DP-Means clustering problem

In DP-Means clustering an arbitrary number of cluster centers can be used; however, for each cluster
center a penalty of λ is added to the objective function.
For λ > 0, a weighted set P of n points in Rd and a non-empty set of cluster centers Q ⊂ Rd, the
DP-Means objective function, also called the DP-Means cost function, is defined as

costDP (P, Q) =
∑
p∈P

wp min
q∈Q

dist(p, q)2 + |Q|λ
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The DP-Means clustering problem is to find a finite, non-empty set of cluster centers Q ⊂ Rd
minimizing the DP-Means objective function.

2.2 Coreset definition

Similar to existing definitions for K-Means (e.g. [2]), we propose the following coreset definition
for DP-Means:
Definition 2.1. Let ε > 0 and P be a point set in Rd. The weighted set C is an (ε, k̄)-coreset for the
DP-Means clustering of P if for any query, i.e. non-empty set Q, of at most k̄ centers in Rd

|costDP (P, Q)− costDP (C, Q)| ≤ ε costDP (P, Q)
If this property holds with k̄ =∞, the weighted set C is called an ε-coreset.

2.3 Theoretical existence result using exponential grids

Our first result is the existence of ε-coresets for the DP-Means clustering problem that are sublinear
in n if the optimal number of centers k∗ is sublinear in n.
Theorem 2.2. Let ε > 0 and let P be a set of n points in Rd. Then there exists an ε-coreset for the
DP-Means clustering of P with size O

(
ddk∗ logn

εd

)
where k∗ is the optimal number of centers.

Proof sketch. This result is obtained by applying the exponential grid approach of [2] to the
DP-Means cost function. Assume that the optimal solution to the DP-Means clustering problem is
known. One could then build an exponential grid around each of the cluster centers and project all
data points in a grid cell to an arbitrary representative. It can then be shown that the number of grid
cells is O

(
ddk∗ logn

εd

)
and that the sum of the cost differences induced by the projection is bounded

by ε costDP (P, Q) implying the required result.

2.4 Practical coresets using importance sampling

Our second contribution is a practical coreset construction for the DP-Means clustering problem that
can be used to solve large problem instances. There are two differences to the theoretical setting in
the last section: Firstly, we use a coreset construction technique based on importance sampling [7]
that allows one to generate coresets of a specified size. This technique has been successfully applied
in [11], both theoretically and empirically. Secondly, the existence result builds upon knowing the
optimal solution which, in practice, is not the case. A common way of addressing this issue is
finding a (rough) approximation of the optimal solution.
For a DP-Means problem instance defined by a set of points P in Rd and a hyperparameter λ > 0,
we propose the following coreset construction:
Step 1 To find a (rough) approximation of the optimal solution we propose the algorithm DP-
Means++ (Algorithm 1) which is inspired by the seeding step of K-Means++ [12]. The difference is
that the number of centers sampled using D2-sampling is not fixed but inferred from the data using
a stopping condition. Intuitively, this stopping condition manages the tradeoff between quantization
error and penalization term which is the essential challenge of DP-Means clustering. Furthermore,
Algorithm 1 not only returns a set A consisting of k′ cluster centers but one obtains an upper bound
k̄ = k′ (16(log2 k

′ + 2) + 1) on the optimal number of cluster centers k∗.
Step 2 We sample a (ε, k̄)-coreset using the importance sampling scheme proposed in Algorithm
2. As the DP-Means cost function is a sum of (independent) cost contributions of all points, any
importance sampling scheme produces an unbiased estimator. A key step to obtaining a coreset is
bounding the variance of the sampling scheme [6]. This is achieved by sampling a point p ∈ P
with probability proportional to its sensitivity s(p) which is an upper bound to the maximum ratio
between the individual cost contribution of p and the average cost contributions of all points [6]. We
have derived the necessary bounds on the sensitivity and the required coreset size for the DP-Means
clustering problem.
(Step 3) To approximately solve the full problem, any DP-Means solver can finally be applied to
the (ε, k̄)-coreset under the assumption that the solver respects the known upper bound k̄, i.e. it is
ensured that it only evaluates the DP-Means cost function for clusterings with less than k̄ cluster
centers. Both a brute-force approach based on solving K-Means for different values of k and the
DP-Means algorithm [1] satisfy this requirement.
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Algorithm 1 DP-Means++

Require: Set of data points P , parameter λ
Uniformly sample a ∈ P and set A = {a}
while

∑
p∈P dist(p,A)2 > 16λ|A|(log2 |A|+ 2) do

Sample point a ∈ P with probability m(a) = dist(a,C)2∑
p′∈P dist(p′,C)2 and add it to A

return approximate solution A of cardinality k′

Algorithm 2 Importance sampling scheme

Require: Set of data points P , approximate solution A of cardinality k′
α← 16(log2 k

′ + 2) + 2
for a ∈ A do Pa ← points p ∈ P whose closest center in A is a

for a ∈ A and p ∈ Pa do s(p)← 2α dist(p,A)2

costDP (P,A)/|P| +
4α

∑
p′∈Pa

dist(p′,A)2

|Pa| costDP (P,A)/|P| + 4|P|
|Pa| + 1

for p ∈ P do q(p)← s(p)∑
p′∈P s(p

′)

m← O
(
dk′3 log k′

ε2

)
C ← sample m weighted points from P where each point p has weight 1

m·q(p) and is sampled
with probability q(p)
return coreset C

The main theoretical contribution of this section is that our method constructs valid (ε, k̄)-coresets
(Theorem 2.3). This implies that, given an optimal solver for the DP-Means problem, an arbitrarily
small approximation error can be obtained by solving on the coreset (Corollary 2.4).
Theorem 2.3. Let ε > 0, λ > 0 and let P be a set of n data points in Rd. Let C be the weighted set
returned by Algorithm 2 when applied to the results of Algorithm 1. Then with constant probability
the weighted set C is an (ε, k̂)-coreset with k̂ = k′ (16(log2 k

′ + 2) + 1) where k′ is the number of
centers returned by Algorithm 1.

Proof sketch. The proof builds upon Theorem 4.1 and Theorem 4.4 in [7]. Firstly, we bound the
sensitivities s(p) for the DP-Means cost function using the (rough) approximation of the optimal so-
lution obtained in DP-Means++. This allows us to derive the sampling probabilities q(p). Secondly,
we show that the total sensitivity is upper bounded by O(k′) and that the dimension of the function
space induced by the DP-Means cost function is upper bounded by d(k̄+ 1) where k̄ is the maximal
number of cluster centers.
Corollary 2.4. Let ε > 0, λ > 0 and let P be a set of n data points in Rd. Let C be the
weighted set returned by Algorithm 2 when applied to the results of Algorithm 1. For any opti-
mal solver Q mapping a set of data points to a set of cluster centers, we have costDP (P, Q(C)) ≤
1+ε
1−ε costDP (P, Q(P))

The number of pointsm to be sampled in the second step depends on the size k′ of the DP-Means++
solution. In Theorem 2.5 we bound the coreset size using the optimal number of cluster centers k∗.
While there is an exponential dependency on d, the coreset size is sublinear in the number of data
points n and only exhibits quadratic dependence on 1/ε. In practice, we are further able to observe
k′ allowing for data-dependent coreset sizes as in Algorithm 2.
Theorem 2.5. Let ε > 0, λ > 0 and let P be a set of n data points in Rd. Let C be the weighted set
returned by Algorithm 2 when applied to the results of Algorithm 1. Then with constant probability
the weighted set C has size at most Õ

(
d3d

2+4k∗3(log n)3d/2+3/ε2
)

where k∗ is the optimal num-

ber of centers of the DP-Means clustering problem and the Õ(·) notation neglects any log k∗ and
log log n terms.

Proof sketch. The proof relies on bounding k′ based on k∗. We first show that the quantization
error of the optimal K-Means clustering decays exponentially as the number of clusters is increased.
This is achieved using an exponential grid argument similar to [2] albeit at the cost of introducing
an exponential dependency on the dimension d. Then, using properties of the quantization error of
the optimal K-Means solution for k = k∗ and k = k′ as well as results on D2-sampling [13], we
show that with constant probability k′ is of O(dd·dk∗[log n]d/2+1).
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Figure 1: Experimental results for different datasets. The top row shows estimated variance for
random query evaluations. The bottom row displays the relative cost of the solution obtained.

3 Experimental results

In the first set of experiments we compare the variance of the DP-Means cost estimate when approx-
imated using coresets and uniform subsamples to see whether coresets exhibit a variance reducing
property. We construct a random set of clusters Q by sampling uniformly from the original point
set and then consider the relative error ν = (costDP (C, Q) − costDP (P, Q))/ costDP (P, Q) for
the weighted subset C. By repeating this 460 times we are able obtain an unbiased estimator ν̂2 of
E
[
ν2
]
, both for coresets and uniform subsampling. The top row of Figures 1 shows the estimated

variance for several datasets and subsample sizes. As expected, the variance for both coresets and
the uniform subsampling decreases with increasing subsample sizes and, more importantly, coresets
exhibit substantially lower variance than uniform subsampling.

Table 1: Runtime and performance comparison for KDD with subsample size s = 5000

Sampling time Solving time Total time Speedup Cost (109) Rel. cost

Uniform 0.0 s 9.9 s 9.9 s 43.8x 304.3 123.6%
Coreset 0.3 s 10.9 s 11.2 s 38.8x 251.9 102.3%
Full - 434.3 s 434.3 s 1.0x 246.2 100.0%

In a second set of experiments we obtain a solution Q by solving DP-Means on coresets, uniform
subsamples and the full dataset4. In the bottom row of Figure 1 we display the average DP-Means
cost relative to the cost of the full solution. The average cost decreases with increasing subsample
size and the coresets significantly outperform uniform subsampling. The results for the the KDD
datasets and subsample size 5000 (see Table 1) illustrate the practical relevance of these results.
Instead of using the full data, coresets with size 3.43% of the full data allow us to achieve a speedup
of 38.8 times with only 2.3% additional error. Similarly naive uniform subsampling leads to an
additional error of 23.6% with a runtime comparable to that of coresets. In fact, the runtime of the
sampling step for coresets, i.e. DP-Means++, is negligible taking only 0.3 seconds or 2.5% of the
total runtime of 11.2 seconds5.

1USGS [14]: location of 59209 earthquakes between 1972 and 2010 mapped to 3D space using WGS 84
2CSN [15]: >7GB of cellphone accelerometer data processed into 80000 observations and 17 features
3KDD [16]: 145751 samples with 74 features measuring the match between a protein and a native sequence
4We use K-Means++ to solve K-Means for different values of k.
5All calculations were run on an Intel Xeon machine with 24 2.9GHz processors and 256GB RAM.
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