
RADAGRAD: Random Projections for Adaptive
Stochastic Optimization

Gabriel Krummenacher∗ Brian McWilliams∗
Department of Computer Science

ETH Zürich, Switzerland
{gabriel.krummenacher|mcbrian}@inf.ethz.ch

Abstract
We present RADAGRAD a simple and computationally efficient approximation to
full-matrix ADAGRAD based on dimensionality reduction using the subsampled
randomized Hadamard transform. RADAGRAD is able to capture correlations in
the gradients and achieves a similar regret – in theory and empirically – to full-
matrix ADAGRAD but at a computational cost comparable to the diagonal variant.

1 Introduction

ADAGRAD [5] is a stochastic sub-gradient optimization method which adaptively sets the learning
rate for each feature by means of a time-varying proximal regularizer. It has gained extensive popu-
larity in particular for the large-scale optimization problems inherent in learning the parameters for
deep neural networks.

The full matrix variant of ADAGRAD (which we refer to as ADAGRAD-F) uses the root of the outer
products of the gradients as the proximal term. For computational reasons, the most commonly
studied and utilised version of ADAGRAD considers only a diagonal matrix proximal term (which
we refer to as ADAGRAD-D).

In this work we propose RADAGRAD: A randomized approximation to ADAGRAD-F where the
full proximal matrix is approximated using a fast Johnson-Lindenstrauss projection, specifically
the Subsampled Randomized Hadamard Transform (SRHT). We show that RADAGRAD achieves
performance close to full ADAGRAD at a fraction of the computational cost.

Problem setting. The problem we tackle is online stochastic optimization where the goal is, at
each step, to predict a point βt ∈ Rp which achieves low regret with respect to a fixed optimal
predictor, βopt, for a sequence of (convex) functions Ft(β). After T rounds, the regret can be
defined in the following way

R(T) =

T∑
t=1

Ft(βt)− inf
β

T∑
t=1

Ft(β) =

T∑
t=1

Ft(βt)−
T∑
t=1

Ft(β
opt). (1)

We will consider functions Ft of the form Ft(β) := ft(β) + ϕ(β) where ft and ϕ are convex loss
and regularization functions respectively. Throughout, the vector gt ∈ ∂ft(βt) refers to a particular
subgradient of the loss function. Standard first order methods update βt at each step by moving
in the opposite direction of gt according to a step-size parameter, η. The ADAGRAD family1 of
algorithms [5] instead use an adaptive learning rate which can be different for each feature. This is
controlled using a time-varying proximal term which we briefly review. Defining Gt =

∑t
i=1 gig

>
i

and
Ht = δIp + (Gt−1 + gtg

>
t)1/2,

∗Authors contributed equally.
1For brevity we only consider ADAGRAD for regularized dual averaging here.

1

the ADAGRAD-F proximal term is given by ψt(β) = 1
2 〈β,Htβ〉. The update at time t+ 1 is given

by the following optimization problem

βt+1 = argmin
β

{
η 〈ḡt,β〉+ ηϕ(β) +

1

t
ψt(β)

}
, (2)

with ḡt = 1
t

∑t
i=1 gi, the average gradient vector at time t.

Clearly when p is large, constructing G and finding its root and inverse at each iteration is imprac-
tical. In practice, rather than the full outer product matrix, ADAGRAD-D uses a proximal function
consisting of the diagonal of Gt, ψt(β) = 1

2

〈
β,
(
δIp + diag(Gt)

1/2
)
β
〉
.

Whilst the diagonal proximal term is computationally cheaper, it is unable to capture dependencies
between coordinates in the gradient terms – a typical assumption is that these terms are independent.
As an interpolation between the computational simplicity of the diagonal proximal term and the
rich representation afforded by the full-matrix term, [5] proposed block diagonal proximal terms,
although this effectively still assumes independence between blocks of coordinates. Aside from its
good empirical performance, ADAGRAD-D has been shown to achieve optimal regret in a minimax
sense under certain assumptions about data sparsity [6].

In the following we review the fast Johnson-Lindenstrauss projection which will form the basis for
our randomized approximation scheme.

Fast Johnson-Lindenstrauss projections. Johnson-Lindenstrauss (J-L) projections are low-
dimensional embeddings Π : Rp → Rτ which preserve – up to a small distortion – pairwise `2
distances between vectors according to the J-L lemma (see e.g. [2]). Typically, Π ∈ Rτ×p is con-
structed to have nearly-orthogonal rows with entries drawn at random from a sub-gaussian distribu-
tion [1]. We concentrate on the class of structured random projections, among which the Subsam-
pled Randomized Hadamard Transform (SRHT) has received particular recent attention [3,10]. The
SRHT consists of a preconditioning step after which τ columns of the new matrix are subsampled
uniformly at random as Π =

√
p/τSΘD [3] with the definitions:

• S ∈ Rτ×p is a subsampling matrix.
• D ∈ Rp×p is a diagonal matrix whose entries are drawn independently from {−1, 1}.
• Θ ∈ Rp×p is a normalized Walsh-Hadamard matrix2 which is defined recursively as

Θp =

[
Θp/2 Θp/2

Θp/2 −Θp/2

]
, Θ2 =

[
+1 +1
+1 −1

]
.

We set Θ = 1√
pΘp so it has orthonormal columns.

Analogously to the fast Fourier transform (FFT), applying the SRHT to a p−dimensional vector can
be achieved in O (p log τ) time. Recently the SRHT has gained popularity as a way to speed up [8]
and robustify [9] large-scale linear regression.

2 A randomized approximation to Ht

We propose RADAGRAD: A variant of ADAGRAD-F which uses an approximation to the outer prod-
uct matrix based on the SRHT. Defining G̃t =

∑t
i=1(Πgi)(Πgi)

>, we consider the randomized
approximation to Ht,

H̃t ∈ Rτ×τ = δIτ + (G̃t−1 + (Πgt)(Πgt)
>)1/2,

where Π ∈ Rτ×p is a random projection which reduces the dimensionality of gt to τ � p so that
constructing G̃t and computing its root and inverse is inexpensive.

Analogously to ADAGRAD-F, the RADAGRAD proximal term then is ψ̃t(β) = 1
2

〈
Πβ, H̃tΠβ

〉
.

The RADAGRAD update at time t+ 1 is given by the following optimization problem

βt+1 = argmin
β

{
η 〈ḡt,β〉+ ηϕ(β) +

1

t
ψ̃t(β)

}
, (3)

2For the Hadamard transform, p must be a power of two but other transforms exist (e.g. DCT, DFT) with
similar theoretical guarantees and no restriction on p.

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Epoch
0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y
on

te
st

se
t

AdaGrad-F
RadaGrad (

√
d)

RadaGrad (3
√
d)

AdaGrad-D

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Epoch
10−1

100

101

R
el

at
iv

e
ap

pr
ox

im
at

io
n

er
ro

r

AdaGrad-D
RadaGrad (3

√
d)

RadaGrad (
√
d)

(b)

0 10 20 30 40 50

Principal component
10−4

10−3

10−2

10−1

100

N
or

m
al

is
ed

ei
ge

nv
al

ue
s

AdaGrad-F
RadaGrad (

√
d)

RadaGrad (3
√
d)

AdaGrad-D

(c)
Figure 1: Comparison of: (a) test error, (b) relative approximation error of the trace of the proximal
term and (c) the largest eigenvalues (normalised by their sum) of the proximal term.

Solving (3) will typically involve taking the inverse of Π>H̃tΠ. Due to the structure of Π, this
reduces to simply inverting the τ × τ matrix H̃t and applying an “inverse” SRHT transformation
(analogous to the inverse FFT). Due to the J-L property, H̃t is still able to retain information about
correlations between all coordinates in the gradient vectors. Importantly, we still obtain a solution
in the original space, Rp since RADAGRAD still obtains the original gradient vectors gt at each step
and the random projection is only necessary to approximate the proximal term. We will clarify this
in the following section with a simple example.

2.1 RADAGRAD with squared-`2 regularisation
As an illustrative example, we derive the explicit update equation for the simple but useful case of
squared `2 regularization. For ϕ(β) = λ‖β‖22, the optimisation problem in Equation (3) can be
solved analytically:

βt+1 = −
(

2λIp +
1

tη
Π>H̃tΠ

)−1
ḡt. (4)

Using the Woodbury matrix identity, the inverse in Equation (4) can be computed efficiently:

βt+1 = − 1

2λ

(
ḡt −

1

tη

1

2λ
Π>

(
H̃−1t +

p

2τλtη
Iτ

)−1
(Πḡt)

)
(5)

since Π 1
2λΠ> = p

2τλIτ . Eq. (5) requires the random projection of the vector of average gradients,
Πḡt. If we denote ˜̄gt−1 = Πḡt−1, this can be computed easily as Πḡt = g̃t−1 + Πgt−g̃t−1

t .
Therefore, at each step we only require a single random projection of the gradient vector and a
single up-projection of a τ -dimensional vector. This procedure is summarized in Algorithm 1.

Clearly, some more care is required to derive efficient update equations for different regularization
functions which we will make explicit in the full version of this work.

Computational complexity. Each SRHT costs O (p log p). Constructing G̃t costs O
(
τ2
)
. The

main cost at each iteration is computing the root of G̃t and the inverse of H̃t. Each of these op-
erations costs O

(
τ3
)
. In comparison, the per-iteration cost of ADAGRAD-F is O

(
p3
)

whereas
ADAGRAD-D costs O (p) per iteration. Therefore, with careful choice of τ we arrive at an algo-
rithm with minimal overhead compared with ADAGRAD-D.

2.2 Regret bound of RADAGRAD

Unsurprisingly, by application of the J-L property of the SRHT [10], RADAGRAD can be shown to
entertain a regret bound similar to ADAGRAD-F. We sketch this in the following theorem.
Theorem 1. Under the definition in Eq. (1), RADAGRAD achieves the following regret with high
probability

R(T) ≤ δ

η
(1 + ρ)‖βopt‖22 +

1

η
(1 + ρ)3/2‖βopt‖22 · tr(G1/2

T) + η
√

(1 + ρ) · tr(G1/2
T).

The distortion factor ρ depends on the projection dimension, the rank of G̃T and the desired proba-
bility of error (according to Lemma 3.4 of [10]).

3

3 Identifying defective train wheels
Algorithm 1 RADAGRAD

Input: η > 0, δ ≥ 0, τ

1: for t = 1 . . . T do
2: Receive gt ∈ ∂ft(βt).
3: Project: g̃t = Πgt

4: G̃t = G̃t−1 + g̃tg̃
>
t , S̃t = G̃

1
2
t

5: ˜̄gt = t−1
t

¯̃gt−1 + 1
t g̃t

6: H̃−1t = (δIp + S̃t)
−1

7: j̃t = (H̃−1 + 1
tη

p
2τλIτ)−1 ˜̄gt

8: Up-project: jt = Π>j̃t
9: βt+1 = − 1

2λ (ḡ − 1
tη

1
2λ jt)

10: end for
Output: βT

The task is to classify wheels of freight trains on the Swiss
rail network as defective or non-defective. The data col-
lected is similar to [7] except the problem is treated as fully
supervised. The data comprises of vertical force measure-
ments of n = 2, 293 wheels. For each measurement we ex-
tracted p = 144 features by computing empirical moments
of coefficients in a 10-level multi-scale wavelet transform.

We choose ft(β) to be the hinge loss. As in the example
in §2.1, ϕt(β) is the squared `2 regularizer. The problem
is low-dimensional so results for ADAGRAD-F can be ob-
tained. The regularization strength, λ and the step size η
are identical for all three methods. We show results for
two different projection dimensions. We choose τ = p

1
2

so construction and storage of H̃t is equivalent in cost to
ADAGRAD-D, and τ = p

1
3 so the cost of computing G̃

1/2
t and H̃−1t is equivalent to ADAGRAD-D.

Fig. 1a compares the mean prediction accuracy per iteration over 50 trials. ADAGRAD-F achieves
better accuracy than ADAGRAD-D as well as reduced variance. The accuracy of RADAGRAD
quickly approaches ADAGRAD-F. As expected, decreasing τ , decreases the accuracy of RADA-
GRAD. Interestingly, RADAGRAD outperforms ADAGRAD-D despite using as few as 6 dimensions
(compared with 144) to represent the initial gradient. The reason for this is illuminated in Fig. 1b.
The relative difference between tr(Ht) and tr(H̃t) is smaller than the error from using only a diag-
onal matrix. Since tr(Ht) controls the regret of ADAGRAD (Theorem 7 of [5]), the improvement of
RADAGRAD over ADAGRAD-D can be explained by the better approximation to this term.

Fig. 1c shows the largest eigenvalues (normalized by their sum) of the proximal matrix for each
method computed after one epoch of training. The spectrum of Ht decays rapidly which is matched
by the randomized approximation. This illustrates the dependencies between the coordinates in the
gradients and suggests Ht can be well approximated by a low-dimensional matrix which considers
these dependencies. On the other hand the spectrum of ADAGRAD-D decays much slower which
explains its larger trace relative to tr(Ht).

Currently, the small size of the problem and our un-optimized Python implementation causes the run-
time of RADAGRAD to be dominated by constant overhead. Therefore, although both configurations
of RADAGRAD are significantly faster than ADAGRAD-F, ADAGRAD-D is still faster per iteration.
In practice, RADAGRAD should scale better in high-dimensional problems with many correlated
features.

4 Discussion and further work
We have presented RADAGRAD which approximates the full proximal term of ADAGRAD using fast,
structured random projections. RADAGRAD achieves similar performance to ADAGRAD-F at a frac-
tion of the computational cost with a marked improvement in prediction accuracy and reduction in
variance over diagonal ADAGRAD-D. This is an important result since until now the computational
expense of ADAGRAD-F has rendered it impractical for widespread use. ADAGRAD-D, on the other
hand, has been widely adopted in many real-world applications – notably the large scale optimiza-
tion tasks inherent in training deep neural networks (see e.g. [4]). These preliminary results suggest
that RADAGRAD is able to bridge the gap between the computational benefit of ADAGRAD-D and
the improved theoretical properties of ADAGRAD-F. In our experiments the projection dimension
was chosen to draw a direct comparison to the computational cost of ADAGRAD-D. We intend to
explore the effect of varying τ on the performance of RADAGRAD.

Recently other adaptive learning rate methods for stochastic optimization have been proposed, for
example ADADELTA [11], which often displays better empirical performance than ADAGRAD-D.
We aim to perform a full empirical study which compares RADAGRAD with ADADELTA as well as
related limited memory approximations to second-order methods such as L-BFGS.

Acknowledgements. We are grateful to David Balduzzi & Christina Heinze for valuable discus-
sions and suggestions and Stefan Koller at SBB for help with the data.

4

References
[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal

of Computer and System Sciences, 2003.

[2] Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate nearest neigh-
bors. SIAM Journal on Computing, 39(1):302–322, 2009.

[3] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the Subsampled Randomized
Hadamard Transform. 2012. arXiv:1204.0062v4 [cs.DS].

[4] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems, pages 1223–1231, 2012.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[6] John C. Duchi, Michael I. Jordan, and H. Brendan McMahan. Estimation, optimization, and parallelism
when data is sparse. In Advances in Neural Information Processing Systems, 2013.

[7] Gabriel Krummenacher, Cheng S Ong, and Joachim Buhmann. Ellipsoidal multiple instance learning. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 73–81, 2013.

[8] Michael W Mahoney. Randomized algorithms for matrices and data. April 2011. arXiv:1104.5557v3
[cs.DS].

[9] Brian McWilliams, Gabriel Krummenacher, Mario Lucic, and Joachim M Buhmann. Fast and robust least
squares estimation in corrupted linear models. In Advances in Neural Information Processing Systems
(NIPS), volume 27.

[10] Joel A Tropp. Improved analysis of the subsampled randomized Hadamard transform. November 2010.
arXiv:1011.1595v4 [math.NA].

[11] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

5

	Introduction
	A randomized approximation to Ht
	RadaGrad with squared-2 regularisation
	Regret bound of RadaGrad

	Identifying defective train wheels
	Discussion and further work

