
Scaling up Lloyd’s algorithm: stochastic and parallel
block-wise optimization perspectives

Cheng Tang
Department of Computer Science

George Washington University
Washington, DC 20052
tangch@gwu.edu

Claire Monteleoni
Department of Computer Science

George Washington University
Washington, DC 20052
cmontel@gwu.edu

Abstract

We found, contrary to common belief, previously developed online and mini-batch
Lloyd’s variants are not truly stochastic versions of the batch algorithm and we
characterize when they are stochastically descending in k-means objective. Sub-
sequently, we cast Lloyd’s and its scaled variants as block coordinate minimization
algorithms on a k-means loss function with enlarged solution space, and examined
whether they converge to the same stopping points, given the same initialization.
Our work suggests that current scaled Lloyd’s variants exhibit complicated con-
vergence properties even when the problem of initialization is ignored and that
they should be used with great caution in terms of the choice of different parame-
ters.

1 Introduction

Lloyd’s [6] or the k-means algorithm for k-clustering problems has been popular for decades, de-
spite our limited understanding of many aspects of its empirical performance. Previous analyses
of Lloyd’s algorithm and its variants usually focus on three angles: 1. Combinatorial optimization
2. Alternating coordinate descent between cluster assignment and centroid update (as a “hard” EM
algorithm). 3. Second-order optimization (Newton’s algorithm). Combinatorial methods provide
great insight into Lloyd’s algorithm, especially in establishing bad examples [13]. Combined with
the alternating coordinate descent perspective, a combinatorial argument shows a polynomial con-
vergence under a smoothed model [2]. However, both approaches have limited power in quantifying
its convergence rate (still an open problem [5]) or scaling it up. Casting Lloyd’s algorithm as a
Newton’s descent method has led to the online k-means algorithm through the standard stochastic
optimization scheme [3], and provided partial understanding of its trajectory on solution space [4].
However, Newton’s algorithm does not fully explain the behavior of Lloyd’s algorithm since the
k-means objective is non-smooth (and non-differentiable) on certain parts of the solution space.

With the goal of understanding Lloyd’s algorithm by exploiting the rich results from continuous
optimization, we wonder if there is a finer framework that captures the algorithm exactly. The answer
is positive. We provide a new framework for analyzing Lloyd’s algorithm and its scaled variants by
utilizing the recent advances in parallel, stochastic, and block optimization methods [11, 1, 12, 14].
Under this framework, we show substantial differences between Lloyd’s algorithm and its previously
developed online [3] and mini-batch [9] extensions.

1.1 Preliminaries

We first describe the standard setting of k-means clustering: let X denote a dataset with size N
s.t. ∀x ∈ X , x ∈ Rd. Let ci ∈ Rd, i ∈ [k], denotes a cluster centroid, and C denotes the
entire set of k-centroids, i.e., C = {ci, i ∈ [k]}. The centroid-based k-clustering objective is

1

φX(C) :=
∑
x∈X d

2(x,C), where d(x,C) := d(x,C(x)) with C(x) := arg minc∈C d(x, c). For
k-means objective, d is the Euclidean distance ‖‖. SinceC induces a clustering ofX by the mapping
x→ C(x), we use Ci to denote the i-th cluster withN i := |Ci|. Subscripts index either an iteration
or a (block) coordinate of a vector. For example, Ci denotes the i-th cluster and Cit denotes the i-th
cluster at the t-th iteration. When we have a (block) vector v = (v1, . . . , vd)

T , we use [v]i to denote
the i-th (block) coordinate of v.

To formulate the k-means clustering problem as a continuous optimization problem, we formalize
the solution space W of k-means objective as Rdk: each solution w ∈ W is a concatenated vector
of centroids ci, i = 1 . . . k, s.t. w = (c1, . . . , ck)T ∈ Rdk. If we enforce C to be an ordered
set, then there is a one-to-one correspondence between {C}, the set of all possible k-centroids,
and W . From now on we use C and w (ci and [w]i) interchangeably as needed. Corresponding
to each data point x ∈ X , we let Πx(w) denote the projection of w to Rd s.t. Πx(w) = C(x).
The standard centroid-based batch k-means objective minC

∑
x∈X

∥∥x− C(x)
∥∥2

can be formulated

in our language as minw φX(w), with φX(w) :=
∑
x∈X

∥∥x−Πx(w)
∥∥2

. φX(w) is notoriously
non-smooth and non-convex, and NP-hard to optimize exactly even in R2 [7]. Let H(X) = {w ∈
Rdk : ∃p, q, i s.t. [w]p, [w]q ∈ w, xi ∈ X s.t. [w]p+[w]q

2 = xi}, a simple extension of Proposition
6 of [4] shows for w ∈ H(X), φX(w) is non-differentiable, so what Lloyd’s does on the region
H(X) of solution space cannot be interpreted as a gradient-based algorithm (e.g., gradient descent
or Newton’s algorithm).

2 Analysis

2.1 Are scaled Lloyd’s variants stochastically descending on ΦX?

Viewing Lloyd’s algorithm as a Newton’s algorithm, [3] developed the widely used online k-means
algorithm as its stochastic extension. It was argued that by sampling one data point at a time one
can obtain a stochastic “gradient” of φX(w). However, per our previous discussion, this argument
is problematic due to the non-existence of gradients on H(X), which means the batch Lloyd’s
algorithm itself is not a gradient-based algorithm. Our next result shows that even ignoring the non-
existence of gradient in W , [3, 9] are not stochastic Lloyd’s algorithms in the canonical sense [10].
The key issue here is that one cannot obtain an unbiased estimator (or a scaled version) of the
Lloyd’s update on the solution space at every step.

Conditioning on the same t−1 iterations, Lloyd’s, online k-means, and mini-batch k-means perform
the following updates

wt = wt−1 + ∆lloyd, or w
′

t = wt−1 + Λonline∆online, or w
′′

t = wt−1 + Λmini∆mini

where Λonline and Λmini are stochastic matrices of learning rates (Λonline → 0 a.s.
and Λmini → 0 a.s.) that scale down the update of each centroid, where Λonline =

diag([Λonline]1, . . . , [Λonline]k) and each block is in Rd (similarly for the mini-batch case). By
the use of learning rates, these algorithms converge a.s., however, this does not guarantee good
performance. We know Lloyd’s update decreases φX(w), then analogous to the canonical analy-
sis of stochastic gradient descent, we examine whether E{Λonline∆online|Ft−1} = ηt∆lloyd for
some decreasing scalar ηt and similarly for the mini-batch case. Proposition 1 shows this is not the
case. To pursue the analysis, we first showed that online and mini-batch k-means algorithms can
be unified as Algorithm 1, where at the t-th iteration it has the update Λt(m)∆t(m),m ≥ 1, such
that Λt(1)∆t(1) = Λonline∆online for m = 1 and Λt(m)∆t(m) = Λmini∆mini for m > 1. And

[Λt(m)]i =
nit∑k
j=1 n

j
t

, where njt is the number of sampled points from clusterCjt . Then we examined

E{∆t(m)|Ft−1} with the following conclusion.

Proposition 1. [E{∆t(m)|Ft−1}]i = P{nit > 0|Ft−1}(
∑
x∈Ci

t−1
x

Nit−1
− cit−1), where for the subsam-

ple obtained from uniform sampling with replacement, P ({nit > 0|Ft−1}) = 1− (1− Nit−1

N)m, and

for uniform sampling without replacement, P ({nit > 0|Ft−1}) = 1− (N−N
i
t−1

m)
(Nm)

.

2

Since [∆lloyd]i =

∑
x∈Cit

x

Nit
− cit, E{∆t(m)} 6= η∆lloyd for any scalar η in general, except for two

special cases: 1. If we sample with replacement with m → ∞, then E{∆t(m)|Ft−1} → ∆lloyd,
which is certainly pointless in scaling up the Lloyd’s algorithm. 2. If all clusters Cit have the same

size, thenE{∆t(m)|Ft−1} =
∑k
i=1 ηf(

∑
x∈Ci

t−1
x

Nit−1
−cit−1) = η∆lloyd, with 0 < η < 1. Similarly,

E{Λt(m)∆t(m)|Ft−1} = E{
∑k
i=1 1{nit>0}

nit∑k
j=1 n

j
t

f(

∑
x∈Ci

t−1
x

Nit−1
−cit−1)|Ft−1}. Again, we could

not hope for E{1{nit>0}
nit∑k
j=1 n

j
t

|Ft−1} = η for all i ∈ [k], so in general E{Λt(m)∆t(m)|Ft−1} 6=
η∆lloyd. However, online k-means should perform close to a stochastic Lloyd’s algorithm un-

der certain conditions: E{Λ(1)t∆(1)t|Ft−1} =
∑k
i=1E{

1
NN̂it
|Ft−1}f(

∑
x∈Cit−1

[x − cit−1]) with

N̂t =
∑t
τ=1 1{Ciτ updated}, so N̂it

t → E{1{Ci updated}} = P ({Ci updated}) ≈ N̄it
N , with N̄ i

t :=∑t
τ=1N

i
t

t , then E{NN̂ i
t} ≈ tN̄ i

t . Although E{ 1
NN̂it
} > 1

E{NN̂it}
, we have E{ 1

NN̂it
} ≈ 1

E{NN̂it}

when t is large. Thus, E{Λt(1)∆t(1)|Ft−1} ≈ 1
t

∑k
i=1E{

1
N̄it
}f(
∑
x∈Cit−1

[x − cit−1]), where∑k
i=1E{

1
N̄it
}f(
∑
x∈Cit−1

[x− cit−1]) ≈ ∆batch if N̄ i
t ≈ N i

t ,∀i ∈ [k], i.e., when the size of each k
clusters do not vary much across all iterations. Therefore, by our analysis, E{Λonline∆online} ≈
1
t∆batch if the cluster assignments do not vary drastically in all iterations, which depends on the
initialization condition [4]. Under such conditions, online k-means is close to a stochastic algorithm,
where the additional 1

t factor effectively emulates the standard Θ(1
t) learning rate in stochastic gra-

dient methods [8].

Then the question becomes how should we understand this online algorithm as well as its mini-
batch extension, such as the one implemented by [9]? Fortunately, a generalization (and correction)
of Proposition 8 of [4] lead us to the following two results.

Proposition 2. Let wt be any solution in W , and if we use batch Lloyd’s algorithm to perform an
update from wt to wt+1, then for any Λ = diag([Λ]1, . . . , [Λ]k), where each block [Λ]i = λi~1, with
λi ∈ (0, 1), any solution w = wt + Λ(wt+1 − wt) has the property that ΦX(w) < ΦX(wt)

Proposition 3. Let wt and wt+1 be two consecutive steps of Algorithm 1 with mini-batch size m
and Option 1 in sampling. Let Q be the Gram matrix of the dataset X and [αt]i is the indicator
vector of the cluster inducted by [wt]i. Let [w∗t]i denote the center of mass of the cluster induced by
[wt]i.

If
∑

i∈[k] s.t. nit>0

E{ 1

nit
1{nit>0}}([αt]iQ[αt]i −N i

t‖[w∗t]i‖2)−N i
t‖[w∗t]i − [wt]i‖2 < 0, (1)

then E{ΦX(wt+1)|Ft} < ΦX(wt).

If the conditions in Proposition 3 are indeed satisfied, then Algorithm 1 is stochastically decreasing
in ΦX , which is essentially all we need for a stochastic (not necessarily gradient) descent algorithm.
Quantity in Eq. (1) is intriguing since it is related to the configuration of X , clustering at the t-
iteration, number of clusters k, and mini-batch size m.

2.2 Do scaled Lloyd’s variants converge to the same points as Lloyd’s algorithm?

In the last section, we examined how scaled Lloyd’s variants do not perform a stochastic Lloyd’s
update in the solution space. We also examined how they behave in the function value ΦX . In this
section, we want to gain further understanding of how they behave in the solution space, by turning
to a different perspective, i.e., we study them as block coordinate minimization algorithms.

2.2.1 Lloyd’s and variants on a relaxed k-means objective with enlarged search space

Given a solution space S with s = ([s]1, . . . , [s]D) ∈ S and a function f over S, if we fix all but
one block [s]i, then we denote by fi(α) := f([s]1, . . . , [s]i−1, α, [s]i+1, . . . , [s]D). To understand
the convergence property of Lloyd’s algorithm and its scaled variants, we first represent k-means

3

objective as minimizing a relaxed k-means loss function

min
w,Π̂

Φ̂X(w, Π̂), with Φ̂X(w, Π̂) :=
∑
x∈X

∥∥∥x− Π̂x(w)
∥∥∥2

=
∑
x∈X

∥∥∥x− Π̂xw
∥∥∥2

(2)

where Π̂x : W → Rd, is a relaxed version of Πx that can project w to any block [wi] (as opposed to
C(x)). Then Π̂x is just an arbitrary linear transformation and can be represented as ATx ⊗ Id, where
Ax ∈ {0, 1}k is an indicator vector and Id is the identity matrix in Rd×d. Let Ŵ denote the enlarged
solution space, with solutions for Φ̂X(w, Π̂) of the form s := ([w]1, . . . , [w]k, Ax1

, . . . , AxN) (to
avoid redundancy, denote by Ai := Axi). By the well known “EM-like” property of Lloyd’s al-
gorithm, we know it alternately minimizes the two blocks (A1, . . . , AN) and ([w]1, . . . , [w]k), and
it stops whenever a block-wise minimum is reached. What if we alternately optimizing by ran-
domly minimizing a subset of coordinates [A]′js from A followed by minimizing the block w as in
Algorithm 2? Would we eventually reach the same set of block-wise minima as Lloyd’s algorithm?
Proposition 2 and 4 provide us with some insights regarding this question.
Proposition 4. For anyX , letB andB2 denote the set of all stopping points reachable (by different
initializations) by Lloyd’s algorithm and Algorithm 2 (f = ΦX), respectively. Then B = B2.

According to this result shows that introducing randomness does not lead to more local optima in the
solution space for Algorithm 2 as compared to Lloyd’s algorithm. However, our next result shows
that Algorithm 2 can escape a local optimum of Lloyd’s algorithm (as determined by initialization)
and converge to another one.
Proposition 5. For k ≥ 2, N ≥ 4, ∃ a triple (X, s, k) s.t. letting s∗ be a stopping point reached by
Lloyd’s algorithm from s, and s2 be a stopping point reached by Algorithm 2 from s (f = ΦX) with
arbitrary mini-batch size 1 ≤ m < N , we have p({s∗ 6= s2}) > 0.

The reason why we study the convergence property of Algorithm 2 is to show how delay (asychro-
nization) in updating the block A will alternate the convergence path in solution space. In fact,
Algorithm 1 is equivalent to Algorithm 3, a stochastic version of Algorithm 3. This result explains
our observation from experiments where Algorithm 1 always seem to converge to a different (worse)
plateau than does Lloyd’s algorithm. Our ongoing work is to use this framework to examine how
different configuration of (X,w), as well as choice of k and m affects the final convergence.

Finally, we want to point out the potential of developing a probabilistic Lloyd’s algorithm (choose
assignment in Ai according to p ∈ ∆k) that obtains global convergence. Specifically, convergence
of cyclic block coordinate minimization algorithms (and their rate) for a wide range of objectives
(including non-smooth and non-convex objectives) was recently studied by [14], and we believe
this line of work will shed light on how to develop a better variant of Lloyd’s algorithm. We show
below that if we let Ai to evaluate in [0, 1]k, then Φ̂X is multi-convex, whose convergence is studied
by [14].
Proposition 6. If we let Ai to have range in [0, 1]k, for all i ∈ [k], then Φ̂X is a multi-convex
function.

References
[1] Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. In Proceed-

ings of the 51th IEEE Conference on Decision and Control, CDC 2012, December 10-13,
2012, Maui, HI, USA, pages 5451–5452, 2012.

[2] David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method.
J. ACM, 58(5):19, 2011.

[3] Léon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. In
Advances in Neural Information Processing Systems 7, [NIPS Conference, Denver, Colorado,
USA, 1994], pages 585–592, 1994.

[4] Sebastien Bubeck, Marina Meila, and Ulrike von Luxburg. How the initialization affects the
stability of the k-means algorithm, July 2009.

[5] Sanjoy Dasgupta. How fast is k-means? In Computational Learning Theory and Kernel Ma-
chines, 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop,
COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003, Proceedings, page 735, 2003.

4

[6] S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, Mar 1982.

[7] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is np-hard. In Proceedings of the 3rd International Workshop on Algorithms and Computation,
WALCOM ’09, pages 274–285, Berlin, Heidelberg, 2009. Springer-Verlag.

[8] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. In Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

[9] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages
1177–1178, 2010.

[10] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex
optimization. In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec,
Canada, June 18-21, 2009, 2009.

[11] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate as-
cent. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States., pages 378–385, 2013.

[12] Martin Takác, Avleen Singh Bijral, Peter Richtárik, and Nati Srebro. Mini-batch primal and
dual methods for svms. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1022–1030, 2013.

[13] Andrea Vattani. k-means requires exponentially many iterations even in the plane. Discrete &
Computational Geometry, 45(4):596–616, 2011.

[14] Yangyang Xu and Wotao Yin. A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and completion. SIAM J.
Imaging Sciences, 6(3):1758–1789, 2013.

5

3 Appendix A

Algorithm 1: Online and Mini-batch k-means
Input: m, C0, ηt, dataset X of size N
Output: C1, . . . , CT
(Set count N̂ i

0 = 0 and set count N(i) = 0 ∀i = [k]);
for t = 1, 2, 3 . . . T do

Option 1: Sample S of size m u.a.r. with replacement from X;
Option 2: Sample S of size m u.a.r. without replacement from X;
Set ∆t = 0 and nit = 0,∀i ∈ [k];
for sj ∈ S do

Assign its closest centroid cI(sj)t−1 := Ct−1(sj) ∈ Ct−1;

Set nI(sj)t = n
I(sj)
t + 1

for cit−1 ∈ Ct−1 do
If nit > 0, [∆t]i = 1

nit

∑
sj∈S∩Cit−1

sj − cit−1;

(Set N̂ i
t = N̂ i

t−1 + nit and N(i) = N(i) + 1);

For all i ∈ [k], cit = cit−1 + ηit[∆t]i

Algorithm 2: Alternate block randomized coordinate minimization

Input: S,s0 = (w0, A0) = ([w0]1, . . . , [w0]k, [A0]1, . . . [A0]N)T ∈ S, m ∈ [N], f : S → R
for t = 1, 2, 3 . . . do

Sample I ⊂ [N] of size m u.a.r.;
Set [At]i = arg minα fk+i(α),∀ i ∈ I;
Then set [wt]i,∀i ∈ I s.t. [wt]i = arg minw fi(w)

Algorithm 3: A stochastic alternate block randomized CD variant

Input: S,s0 = (w0, A0) = ([w0]1, . . . , [w0]k, [A0]1, . . . [A0]N)T ∈ S, m ∈ [N], f : S → R
for t = 1, 2, 3 . . . do

Sample I ⊂ [N] of size m u.a.r.;
Set [At]i = arg minα fk+i(α),∀ i ∈ I;
Then set [wt]i,∀i ∈ I s.t. E{[wt]i|Ft−1} = arg minw fi(w)

4 Appendix B

Proof of non-differentiability of φX(w) over H(X). why is “proof” not showing?

Proof of Proposition 1. At the t-th iteration, the update ∆t in Algorithm 1 can be written in blocks
as:

[∆t]i = 1{nit>0}(

∑
s∈S∩Cit−1

s

nit
− cit−1) (3)

Taking expectation w.r.t. the sampling scheme in Option 1 or 2,

E{[∆t]i|Ft−1} = E{1{nit>0}(

∑
s∈S∩Cit−1

s

nit
− cit−1)|Ft−1} (4)

= p({nit > 0}|Ft−1)E{

∑
s∈S∩Cit−1

s

nit
|nit > 0} − cit−1|Ft−1} (5)

6

Regardless of the sampling scheme (either Option 1 or 2), E
{∑

s∈S∩Ci
t−1

s

nit
|nit > 0

}
=

∑
x∈Ci

t−1
x

Nit
.

So [E{∆t(m)|Ft−1}]i = E{[∆t]i|Ft−1} = P{nit > 0|Ft−1}(
∑
x∈Ci

t−1
x

Nit−1
− cit−1) holds. For

Option 1, the number of samples nit follows a binomial distribution, so p({nit > 0}|Ft−1) =

1 − p({ no points from cluster Cit−1 is sampled}) = 1 − (1 − Nit−1

N)m. For Option 2, the num-
ber of samples nit follows a hypergeometric distribution, hence p({nit > 0}|Ft−1) = 1 − p({nit =

0}) = 1− (N
i
t−1
0)(N−N

i
t−1

m)
(Nm)

= 1− (N−N
i
t−1

m)
(Nm)

.

Proof of Proposition 2. Since w = wt + Λ(wt+1 −wt) = (I −Λ)wt + Λwt+1. Denote by [w]i :=
ci, [wt]i := cit, [wt+1]i := cit+1, respectively. We have

ci = [w]i = (1− λi)[wt]i + λi[wt+1]i = (1− λi)cit + λic
i
t+1 (6)

Let the cluster with centroid ci, cit, c
i
t+1 be denoted by Ci, Cit , C

i
t+1, respectively,

ΦX(w) =

k∑
i=1

∑
x∈Ci

‖x− ci‖2 ≤
k∑
i=1

∑
x∈Cit

‖x− ci‖2 (7)

≤
k∑
i=1

∑
x∈Cit

(1− λi)‖x− cit‖2 + λi‖x− cit+1‖2 (8)

where the first inequality is due to not assigning points to their closest centroid, and the second
inequality is due to convexity of the Euclidean norm. Since cit+1 is chosen as the center of mass for
cluster Cit by the Lloyd’s update rule, we have∑

x∈Cit

‖x− cit+1‖2 ≤
∑
x∈Cit

‖x− cit‖2,∀i ∈ [k]. (9)

By Ineq.(8) and (9), we have ΦX(w) ≤
∑k
i=1

∑
x∈Cit

‖x− cit‖2 = ΦX(wt)

Proof of Proposition 3. Since {Cit+1,∀i ∈ [k]} is the optimal clustering assignment for wt+1, we
have

k∑
i=1

∑
x∈Cit+1

ΦCit+1
([wt+1]i) ≤

k∑
i=1

∑
x∈Cit

ΦCit ([wt+1]i).

Now, by a famous property of k-means objective (see Lemma 2.1 of [?], for example).

ΦCit ([wt+1]i) = ΦCit ([w
∗
t]i) +N i

t‖[w∗t]i − [wt+1]i‖2,

and
ΦCit ([wt]i) = ΦCit ([w

∗
t]i) +N i

t‖[w∗t]i − [wt]i‖2

Hence,
k∑
i=1

∑
x∈Cit

ΦCit ([wt+1]i)− ΦCit ([wt]i) =

k∑
i=1

N i
t{‖[w∗t]i − [wt+1]i‖2 − ‖[w∗t]i − [wt]i‖2}

Taking conditional expectation w.r.t. to filtration Ft on both sides, we have

k∑
i=1

∑
x∈Cit

E{ΦCit [wt+1]i)|Ft}−ΦX(wt) =

k∑
i=1

N i
t{E{‖[w∗t]i− [wt+1]i‖2|Ft}−‖[w∗t]i− [wt]i‖2}

Now, by Lemma 1, ∀ i s.t. nit+1 > 0

E{‖[wt+1]i − [w∗t]i‖2|Ft} = E{ 1

nit+1

1{nit+1>0}}
1

N i
t

{[αt]iQ[αt]i −N i
t‖[w∗t]i‖2}.

7

And, ∀ i s.t. nit+1 = 0,
ΦCit [wt+1]i = ΦCit [wt]i

Hence,
k∑
i=1

∑
x∈Cit

E{ΦCit [wt+1]i)|Ft} − ΦX(wt) (10)

=
∑

i∈[k] s.t. nit+1>0

N i
t{E{‖[w∗t]i − [wt+1]i‖2|Ft} − ‖[w∗t]i − [wt]i‖2} (11)

=
∑

i∈[k] s.t. nit+1>0

{E{ 1

nit+1

1{nit+1>0}}([αt]iQ[αt]i −N i
t‖[w∗t]i‖2)−N i

t‖[w∗t]i − [wt]i‖2} (12)

Thus, if Eqn (12) is smaller than 0, we have
k∑
i=1

∑
x∈Cit+1

ΦCit+1
([wt+1]i) ≤

k∑
i=1

∑
x∈Cit

ΦCit ([wt+1]i) (13)

= ΦX(wt) +
∑

i∈[k] s.t. nit>0

{E{ 1

nit
1{nit>0}}([αt]iQ[αt]i −N i

t‖[w∗t]i‖2)−N i
t‖[w∗t]i − [wt]i‖2} (14)

< ΦX(wt) (15)

Lemma 1. Let all notations denote the same quantities as in Proposition 3. At the t-th iteration of
Algorithm 1 with mini-batch size m and Option 1, we have ∀ i s.t. nit+1 > 0

E{‖[wt+1]i − [w∗t]i‖2|Ft} = E{ 1

nit+1

1{nit+1>0}}
1

N i
t

{[αt]iQ[αt]i −N i
t‖[w∗t]i‖2}

Proof. For any Cit s.t. nit+1 > 0,

[wt+1]i − [w∗t]i =
1

nit+1

∑
sj∈S∩Cit

{sj − Es∈Cit [s]} (16)

So taking expectation conditioning on nit+1 with nit+1 > 0,

E{‖[wt+1]i − [w∗t]i‖2|nit+1} (17)

= E{(1

nit+1

∑
sj∈S∩Cit

{sj − Es∈Cit [s]})
T (

1

nit+1

∑
sl∈S∩Cit

{sl − Es∈Cit [s]})|n
i
t+1} (18)

=
1

(nit+1)2

nit+1∑
j=1

nit+1∑
l=1

E{(sj − Esj)T (sl − Esl)|nit+1} (19)

Since the expectation in the last equality is with respect to the i.i.d. random sampling, E{(sj −
Esj)(sl − Esl)T |nit+1} are identical for all j, l.
For l = j,

E{(sj − Esj)T (sj − Esj)|nit+1} (20)

=
1

N i
t

∑
s∈Cit

(s− [w∗t]i)
T (s− [w∗t]i) =

1

N i
t

([αt]
TQ[αt]i −N i

t‖[w∗t]i‖2) (21)

For l 6= j, since the sampled points are i.i.d., E{(sj − Esj)T (sl − Esl)|nit+1} = 0.

Thus,
E{‖[wt+1]i − [w∗t]i‖2|nit+1 > 0} = E{E{‖[wt+1]i − [w∗t]i‖2|nit+1}|nit+1 > 0} (22)

= E{ 1

nit+1

1{nit+1>0}}
1

N i
t

{[αt]iQ[αt]i −N i
t‖[w∗t]i‖2} (23)

8

Proof of Proposition 4. Let s = ([w]1, . . . [w]k, [A]1, . . . , [A]N) ∈ B. Since s is a stopping point
for Lloyd’s algorithm. Modifying any subset of A results in increase in ΦX ; similarly, modifying
w results in increase in ΦX . So, s must be a stopping point for Algorithm 2, i.e., s ∈ B1. For
the other direction, let s1 = (([w]1, . . . [w]k, [A]1, . . . , [A]N) ∈ B1. Suppose s1 6= B, then we
can either modify w or A to obtain a new solution with a decrease in ΦX . If w can be modified,
then ∃J ∈ [k] s.t. modifying any [w]i, i ∈ J results in a new solution with a decrease in ΦX .
Since I ∈ [N] is sampled u.a.r., p({∃i ∈ I s.t. xi ∈ Cj , j ∈ J}) > 0. Hence, s1 is not a
stopping point for Algorithm 2. Similarly, if A can be modified, then ∃I∗ ∈ [N] s.t., modifying
any [A]j , j ∈ I∗ results in a new solution with a decrease in ΦX . Since I ∈ [N] is sampled u.a.r.,
p({∃i ∈ I, s.t.i ∈ I∗}) > 0. In this case, s1 6= B1 either. Hence, a contradiction.

Proof of Proposition 5. We prove this by constructing an example of such case (X, s, k) on R
(hence, it could happen in any dimension). Consider 4 points p1, p2, p3, p4 on a line, with their
relative distance ‖p1 − p3‖ = ‖p3 − p4‖ >> ‖p1 − p2‖. Let k = 2, then the optimal clustering
would be to group p1 and p2 together, and the rest together. Let s = (w,A) = (p1, p4, 1, 1, 1, 2).
Then running Lloyd’s algorithm, it modifiesA to to s

′
= (p1, p4, 1, 1, 2, 2) and then converges to the

optimal solution s∗ = (p1+p2
2 , p3+p4

2 , 1, 1, 2, 2). Running Algorithm 2, let I ⊂ {1, 2, 3, 4} be the
subset of 1 ≤ m < 4 indices chosen, then p(3 6∈ I) > 0. If the event {3 6∈ I} happens, Algorithm 2
modifies s to get s2 = (p1+p2

2 , p4, 1, 1, 1, 2). Then the next step, if {3 ∈ I} occurred (which has
positive probability), then since the symmetry is broken, the assignment A = (1, 1, 1, 2) becomes a
local minimum, and then when updating the centroids w, s2 = (p1+p2+p3

3 , p4, 1, 1, 1, 2), which is a
stopping point different than s∗

9

	Introduction
	Preliminaries

	Analysis
	Are scaled Lloyd's variants stochastically descending on X?
	Do scaled Lloyd's variants converge to the same points as Lloyd's algorithm?
	Lloyd's and variants on a relaxed k-means objective with enlarged search space

	Appendix A
	Appendix B

