CqBoost : A Column Generation Method for
Minimizing the C-Bound

Francois Laviolette, Mario Marchand, Jean-Francis Roy
Département d’informatique et de génie logiciel, Université Laval
Québec (QC), Canada

firstname.lastname@ift.ulaval.ca

Abstract

The C-bound, introduced in Lacasse et al. [1], gives a tight upper bound of a ma-
jority vote classifier. Laviolette et al. [2] designed a learning algorithm named
MinCq that outputs a dense distribution on a set of base classifiers by minimiz-
ing the C-bound, together with a PAC-Bayesian generalization guarantee. In this
work, we use optimization techniques to design a column generation algorithm
that optimizes the C-bound and outputs particularly sparse solutions.

1 Introduction

Many state-of-the-art binary classification learning algorithms, such as Bagging [3], Boosting [4],
and Random Forests [5], output prediction functions that can be seen as a majority vote of “simple”
classifiers. Majority votes are also central in the Bayesian approach (see Gelman et al. [6] for an
introductory text). Moreover, classifiers produced by kernel methods, such as the Support Vector
Machine [7], can also be viewed as majority votes. Indeed, to classify an example x, the SVM

classifier computes sgn (Z ,‘iill a; yi k(x;, :17)) Hence, as for standard binary majority votes, if the

total weight of each «; y; k(x;, x) that votes positive is larger than the total weight for the negative
choice, the classifier will output a +1 label (and a —1 label in the opposite case).

Most bounds on majority votes take into account the margin of the majority vote on an example
(z,y), that is the difference between the total vote weight that has been given to the winning class
minus the weight given to the alternative class. As an example, PAC-Bayesian bounds on majority
vote classifiers are related to a stochastic classifier, called the Gibbs classifier, which is, up to a linear
transformation, equivalent to the first statistical moment of the margin when each (x,y) is drawn
independently from the same distribution [2]. Unfortunately, in most ensemble methods, the voters
are weak and no majority vote can achieve a large margin. Lacasse et al. [1] proposed a tighter
relation between the risk of the majority vote that takes into account both the first and the second
moments of the margin: the C-bound. This sheds a new light on the behavior of majority votes : it is
not only how good are the voters but also how they are correlated in their voting. Namely, this has
inspired a new learning algorithm, named MinCq [2], whose performance is state-of-the-art.

MinCq turns out to be a quadratic program (QP) that minimizes the C-bound in a way that produces
dense weight distributions. In many applications of machine learning, sparse solutions are preferred
as the learned classification rules are easier to explain, and the resulting classifier is computationally
faster. In this work, we tackle this issue by using optimization techniques to design CqBoost, a
learning algorithm that produces much sparser solutions.

This paper is organized as follows. Section 2 briefly reviews the C-bound and the MinCq learning
algorithm. Section 3 presents a Lagrange dual for MinCq. Section 4 presents the resulting column
generation algorithm together with empirical results. Finally, we conclude in Section 5.

2 The C-bound and MinCq

Let X be the input space and let Y = {—1,+1} be the output space. The learning sample S =
{(2,y:)}™, consists of m examples drawn i.i.d. from a fixed but unknown distribution D over
X x Y. Let H be a set of real-valued voters from & to). Given a prior distribution P over H and
given a sample S, the objective of the PAC-Bayesian approach is to find the posterior distribution @)
on H which minimizes the true risk of the ()-weighted majority vote Bg(-) given by

Rp(Bg) = (WJ];]NDI (Bo(w) #y), where Bg(z) = sgn |:h]~EQ h(a:)]

and where I (a) = 1 if predicate a is true and 0 otherwise.

It is well-know that minimizing Rp(Bg) is NP-hard. To get around this problem, one solution is
to make use of the C-bound which is a tight upper-bound on Rp(Bg). This bound is based on the
notion of margin of Bg(-) defined as follows.

Definition 1. Given a set H of voters and a distribution Q) on H, the margin Mqg(z,y) on example
(z,y) is defined by

Mo(z,y) 2y B h(z).

Given a distribution D on X x Y, we then consider the first and second statistical moments of Mg,
given, respectively, by j11(ME) = Eg yop Mq(x,y) and puo(ME) = B y)p M (2, y).

According to the definition of the margin, Bg(-) correctly classifies an example (z,y) when its
margin is strictly positive, hence Rp(Bq) = Pr(,~p (Mg(x,y) < 0). This equality allows to
prove the following theorem.

Theorem 1 (The C-bound of Laviolette et al. [2]). For every distribution) on a set of real-valued
functions H, and for every distribution P on X X Y, if u1 (Mg) > 0, then we have :

(1 (M)

fiotBa) = 177, 0ug)

Proof. The Cantelli-Chebyshev inequality states that any random variable Z and any a > 0, we
have that Pr (Z <E[Z] —a) < Va\:‘aiéfaz We obtain the result by applying this inequality with

Z = Mgq(z,y) and with @ = p11(Mp), and by using the definition of the variance. O

Note that the minimization of the empirical counterpart of the C-bound is a natural solution for
learning a distribution () that leads to a Q-weighted majority vote Bg(-) with a low error. This
strategy is justified by a PAC-Bayesian generalization bound over the C-bound, and has given the
MinCq algorithm. Let H be the classification matrix of m rows and n columns, where Hy; =
h;(xy). Each column represents a classifier of #, and each line represents an example. Let y be the
(column) vector containing the labels. MinCq solves the following quadratic program. !

1
Solve: argmin —q H' Hq
q m
) (1
subject to : —y'Hq = w, and q = O,
m

where p is an hyperparameter controlling the value of the first moment of the margin, q is a vector
of n variables representing the weights associated to the voters, and O is a vector containing zeros.

'The version of MinCq in Laviolette et al. [2] is slightly more restrictive by requiring the set # to be auto-
complemented (meaning that each voter for each h, H must also contains its complement —h) together with
another restriction on (), in order to obtain a tighter PAC-Bayesian bound. We report here a relaxed version to
ease the forthcoming analysis. This version also has a PAC-Bayesian generalization guarantee with the price
of an additional Kullback-Leibler term in the bound.

3 A Meaningful Lagrange Dual

In this section, we use optimization techniques to transform the optimization problem of Equa-
tion (1) to a dual optimization problem that will be used in Section 4 to develop a column generation
algorithm. See Boyd et al. [8] for more information about the techniques that are used here.

As in [9, 10], we first introduce a new vector of variables -« representing the margin on each
example. By adding these variables in the primal optimization problem, we obtain a meaningful
dual formulation. The new primal problem then becomes

1
Solve : argmin —'yT'y
m
a~ 1)
subjectto: ~ = diag(y)Hq, —1'4=p, and q > O.
m

Note that the objective function of Equation (2) is equivalent to the objective function of Equa-
tion (1), as diag(y) "diag(y) = I Then, by adding a weighted sum of the constraints to the
objective function, we obtain the Lagrangian of the optimization problem of Equation (2):

N . 1
A, v, B3,€) 2 %’YT’)’ +a' (y—diag(y)Hq) + 8 (mlTv — u) -¢'q,

where a, 5 and € are Lagrange multipliers, and the multipliers in £ are nonnegative as they are
related to inequality constraints. Now, the Lagrangian dual function is obtained by finding the
vectors q and « minimizing the Lagrangian. The stationarity condition indicates that this solution
is attained when the partial derivatives of the Lagrangian with respect to vectors q and -y are null.
Therefore, we need
m
H diag(y)a = —¢ and V=-go- gl.

Substituting these constraints in the Lagrangian, by realizing that £ is a vector of slack variables,
and with tedious (but straightforward) calculations, we obtain the following dual problem :

T B

m
Solve: argmax — —a' a—=1Ta—"— —3u
o, 4 2 4 3)

subjectto: H'diag(y)a < 0.

This dual formulation highlights a new hyperparameter /3, which controls the trade-off between
the quadratic and linear parts of the objective function. Moreover, we recover the same constraint
H "diag(y) o < 0 as in LPBoost [11], CG-Boost of [12], and CGBoost of [10]. This constraint
can be seen as a “score” given to each voter h, and corresponds to the weighted sum of correctly
classified examples minus the weighed sum of incorrectly classified examples. This measure is often
called the edge of a classifier [10]. In all three aforementioned column generation (CG) techniques,
the algorithm uses this constraint to guide the choice of the next base voter to be added in the
majority vote. In the next section, we develop a CG algorithm for MinCq using this insight.

4 A Column Generation Algorithm

The column generation approach [13] has been used to create tractable boosting algorithms using
linear programming [11], quadratic programming [12, 9], and in a more general setting allowing
any convex objective function and regularization term [10]. The general idea of column generation
is to restrict the original optimization problem by considering only a subset of the base classifiers,
which are columns of the classification matrix associated to the problem. The restricted optimization
problem is called the restricted master problem. In an appropriate dual formulation of the original
problem, the ignored columns of the primal problem represent ignored constraints in the dual prob-
lem. Solving the restricted master problem therefore corresponds to solving a relaxation of the dual
problem. CG techniques iteratively select (or generate) a new column to be added the the problem,
and solve the restricted master problem. The algorithm stops when no more columns violate the
dual constraint (up to an additive user-specified constant €), as optimality is attained. The value of ¢
can be tuned to add a stopping criterion effect.

Algorithm 1 CqBoost

— Lett = 0, let q be a vector of n zeros, and let c be a vector of m elements equal to %

— Let H be an empty matrix of m rows.

loop
— Select the column most violating the constraint of Eq. (3) : j <+ argmax; Yo oy Hij
— Break if column j does not violate dual constraint : if 221 o;y;H;; < 0+ then break.

— Add column 5 to matrix H.
— Update q and o with primal and dual solutions of QP of Equation (2).

return q

In Algorithm 1, we consider that the classification matrix H is computed a priori. When the num-
ber n of classifiers is large (or even infinite), we want to avoid computing this matrix. Many solutions
exist, namely by using a stratified CG process [12]. When H is not computed a priori, the result of
a CG algorithm will be an approximation of the optimal solution but it can scale to higher n.

Table 1 compares MinCq and CqBoost on several UCI binary classification datasets [14]. Each
dataset is randomly split into a training set S and a testing set 7. For both algorithms, we use RBF
kernel functions h;(-) = y; k(x;, -) as base classifiers, where the width o is set to the mean squared
distance between pairs of training examples. The hyperparameter p of MinCq is selected by cross-
validation among 10 values between 10~ and 1072, and the same value is then used for CqBoost
when solving the QP of Equation (2). The stopping criterion additive constant e of CqBoost has been
set to 1076, For most datasets, MinCq slightly outperforms CqBoost. However, CqBoost provides
majority votes of base classifiers that are much sparser compared to MinCq.

Dataset MinCq CgBoost

Name |S| |T| Rp(Bg) Non-zero Weights " Rr(Bg) Non-zero Weights
australian 345 345 0.1449 279 0.0008 0.1420 11
balance 313 312 0.0577 221 0.0001 0.0513 3
breast 350 349 0.0372 266 0.0001 0.0401 2
bupa 173 172 0.2907 127 0.0002 0.2907 8
car 864 864 0.2836 644 0.0008 0.2870 9
cme 737 736 0.2921 513 0.0002 0.3003 8
credit 345 345 0.1362 269 0.0005 0.1333 7
cylinder 270 270 0.3074 209 0.0002 0.3037 4
ecoli 168 168 0.0893 111 0.0022 0.0952 12
flags 97 97 0.3505 75 0.0001 0.3918 4
glass 107 107 0.2617 78 0.0002 0.2804 10
heart 135 135 0.1630 110 0.0060 0.1630 12
hepatitis 78 77 0.2078 54 0.0100 0.1688 33
horse 184 184 0.1848 151 0.0013 0.1793 9
ionosphere 176 175 0.1257 159 0.0001 0.1714 3
letter_.AB 778 777 0.0180 572 0.0008 0.0257 6
mnist_08 1208 1208 0.0480 1166 0.0002 0.0662 2
monks 216 216 0.3426 164 0.0003 0.3657 5
optdigits 1912 1911 0.1423 1725 0.0003 0.1978 4
pageblock 2737 2736 0.0559 2002 0.0003 0.0625 6
pendigits 3747 3747 0.0806 3037 0.0003 0.1044 4
pima 384 384 0.2630 275 0.0100 0.2500 24
segment 1155 1155 0.0684 1027 0.0002 0.1091 6
spambase 2301 2300 0.0804 1636 0.0002 0.1109 3
tictactoe 479 479 0.3507 305 0.0002 0.3424 5
titanic 1101 1100 0.2245 750 0.0001 0.2345 5
vote 218 217 0.0599 159 0.0003 0.0737 3
wine 89 89 0.0225 80 0.0001 0.1124 2
yeast 742 742 0.3005 475 0.0003 0.2898 11
200 51 50 0.0400 37 0.0003 0.0000 8

Table 1: Performance and sparsity comparison of MinCq and CqBoost.

5 Conclusion and Outlooks

In this paper, we designed a column generation ensemble method based on MinCq [2] that provides
much sparser (and easier to interpret) ensembles. In future work, we will extend this new CG
technique to obtain an algorithm that scales to larger sets of examples and base voters.

References

[1] Alexandre Lacasse, Francois Laviolette, Mario Marchand, Pascal Germain, and Nicolas
Usunier. PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs
classifier. In NIPS, pages 769-776, 2006.

[2] Frangois Laviolette, Mario Marchand, and Jean-Francis Roy. From PAC-Bayes bounds to
quadratic programs for majority votes. In ICML, pages 649-656, 2011.

[3] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[4] Robert E. Schapire and Yoram Singer. Improved boosting using confidence-rated predictions.
Machine Learning, 37(3):297-336, 1999.

[5] Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

[6] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis. Chapman &
Hall/CRC, 2004.

[7] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273—
297, 1995.

[8] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
New York, NY, USA, mar 2004.

[9] Chunhua Shen and Hanxi Li. Boosting through optimization of margin distributions. 21:1-9,
2010.

[10] Chunhua Shen, Hanxi Li, and Anton van den Hengel. Fully corrective boosting with arbitrary
loss and regularization. Neural networks : the official journal of the International Neural
Network Society, 48:44-58, dec 2013.

[11] Ayhan Demiriz, Kristin P Bennett, and John Shawe-Taylor. Linear programming boosting via
column generation. Machine Learning, 46(1-3):225-254, 2002.

[12] Jinbo Bi, Tong Zhang, and Kristin P. Bennett. Column-generation boosting methods for mix-
ture of kernels. Proceedings of the 2004 ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD ’04, page 521, 2004.

[13] S.G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill series in industrial
engineering and management science. McGraw-Hill, 1996.

[14] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases. De-
partment of Information and Computer Science, Irvine, CA: University of California,
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

	Introduction
	The C-bound and MinCq
	A Meaningful Lagrange Dual
	A Column Generation Algorithm
	Conclusion and Outlooks

