
Tighter Low-rank Approximation via Sampling the Leveraged
Element∗

Srinadh Bhojanapalli
The University of Texas at Austin
bsrinadh@utexas.edu

Prateek Jain
Microsoft Research, India

prajain@microsoft.com

Sujay Sanghavi
The University of Texas at Austin
sanghavi@mail.utexas.edu

Abstract

In this work, we propose a new randomized algorithm for computing a low-rank
approximation to a given matrix. Taking an approach different from existing lit-
erature, our method first involves a specific biased sampling, with an element be-
ing chosen based on the leverage scores of its row and column, and then involves
weighted alternating minimization over the factored form of the intended low-rank
matrix, to minimize error only on these samples. Our method can leverage input
sparsity, yet produce approximations in spectral (as opposed to the Frobenius)
norm; this combines the best aspects of otherwise disparate current results, but
with a dependence on the condition number κ = σ1/σr. In particular we require
O(nnz(M) + nκ2r5

ε2) computations to generate a rank-r approximation to M in
spectral norm. In contrast, the best existing method requires O(nnz(M) + nr2

ε4)
time to compute an approximation in Frobenius norm. Besides the tightness in
spectral norm, we have a better dependence on the error ε. Our method is natu-
rally and highly parallelizable.
This approach also leads to a new method to directly compute a low-rank approx-
imation (in efficient factored form) to the product of two given matrices; it com-
putes a small random set of entries of the product, and then executes weighted
alternating minimization (as before) on these.

1 Introduction

Finding a low-rank approximation to a matrix is fundamental to a wide array of machine learning
techniques. The large sizes of modern data matrices has driven much recent work into efficient
(typically randomized) methods to find low-rank approximations that do not exactly minimize the
residual, but run much faster / parallel, with fewer passes over the data. Existing approaches involve
either intelligent sampling of a few rows / columns of the matrix, projections onto lower-dimensional
spaces, or sampling of entries followed by a top-r SVD of the resulting matrix (with unsampled
entries set to 0).

We pursue a different approach: we first sample entries in a specific biased random way, and then
minimize the error on these samples over a search space that is the factored form of the low-rank
matrix we are trying to find. We note that this is different from approximating a 0-filled matrix; it
is instead reminiscent of matrix completion in the sense that it only looks at errors on the sampled
entries [2]. Another crucial ingredient is how the sampling is done: we use a combination of `1
sampling, and of a distribution where the probability of an element is proportional to the sum of the
leverage scores of its row and its column.

∗Full version is available at arXiv:1410.3886

1

Reference Frobenius norm Spectral norm Computation time
BJS14 (Our Algorithm) (1 + ε)‖∆‖F ‖∆‖+ ε‖∆‖F O(nnz(M) + nr5κ2 log(n)

ε2)

CW13[3] (1 + ε)‖∆‖F (1 + ε)‖∆‖F O(nnz(M) + nr2

ε4 + r3

ε5)

BG13 [1] (1 + ε)‖∆‖F c‖∆‖+ ε‖∆‖F O(n2(r+log(n)
ε2) + n r

2 log(n)2

ε4)

NDT09[4] (1 + ε)‖∆‖F c‖∆‖+ ε
√
n‖∆‖ O(n2 log(r log(n)

ε) + nr2 log(n)2

ε4)

WLRT08[6] (1 + ε)‖∆‖F ‖∆‖+ ε
√
n‖∆‖ O(n2 log(rε) + nr4

ε4)

Sar06[5] (1 + ε)‖∆‖F (1 + ε)‖∆‖F O(nnz(M) rε + n r
2

ε2)

Table 1: Comparison of error rates and computation time of some low rank approximation algo-
rithms. ∆ = M −Mr.

Both the sampling and the subsequent alternating minimization are naturally fast, parallelizable, and
able to utilize sparsity in the input matrix. Existing literature has either focused on running in input
sparsity time but approximation in (the weaker) Frobenius norm, or running in O(n2) time with
approximation in spectral norm (see Table 1). Our method provides the best of both worlds: it runs
in input sparsity time, with just two passes over the data matrix, and yields an approximation in
spectral norm. It does however have a dependence on the ratio of the first to the rth singular value
of the matrix.

Our alternative approach also yields new methods for the problem of directly finding the low-rank
approximation of the product of two given matrices.

Notation: Capital letter M typically denotes a matrix. M i denotes the i-th row of M , Mj denotes
the j-th column of M , and Mij denotes the (i, j)-th element of M . Unless specified otherwise,
M ∈ Rn×d and Mr is the best rank-r approximation of M . Also, Mr = U∗Σ∗(V ∗)T denotes the
SVD of Mr. κ = σ∗1/σ

∗
r denotes the condition number of Mr, where σ∗i is the i-th singular value of

M . ‖u‖ denotes the L2 norm of vector u. Let ‖M‖, ‖M‖F denote the Spectral and Frobenius norm
of M respectively. Also, ‖M‖1,1 =

∑
ij |Mij |. dist(X,Y) = ‖XT

⊥Y ‖ denotes the principal angle
based distance between subspaces spanned by X and Y orthonormal matrices.

Given a set Ω ⊆ [n] × [d], PΩ(M) is given by: PΩ(M)(i, j) = Mij if (i, j) ∈ Ω and 0 otherwise.
RΩ(M) = w. ∗ PΩ(M) denotes the Hadamard product of w and PΩ(M). That is, RΩ(M)(i, j) =

wijMij if (i, j) ∈ Ω and 0 otherwise. Similarly let R1/2
Ω (M)(i, j) =

√
wijMij if (i, j) ∈ Ω and 0

otherwise.

2 Low-rank Approximation of Matrices

In this section we will present our main contribution: a new randomized algorithm for computing
low-rank approximation of any given matrix. Our algorithm first samples a few elements from the
given matrix M ∈ Rn×d, and then rank-r approximation is computed using only those samples.
Algorithm 1 provides a detailed pseudo-code of our algorithm.

The first step is sampling according to the distribution given in eq. (2). Computationally, our
sampling procedure can be done in two passes and O(m log n+nnz(M)) time. In our second step,
we minimize the following non-convex problem by weighted alternating minimization 2.

min
U∈Rn×r,V ∈Rd×r

∑

(i,j)∈Ω

wij
(
Mij − (UV T)ij

)2
, (1)

where wij = 1/q̂ij when q̂ij > 0, 0 else.

We now provide our main result for low-rank approximation and show that Algorithm 1 can provide
a tight approximation to Mr while using a small number of samples m = E[|Ω|].
Theorem 2.1. Let M ∈ Rn×d be any given matrix (n ≥ d) and let Mr be the best rank-r ap-
proximation to M . Set the number of samples m = C

γ
nr3

ε2 κ
2 log(n) log2(‖M‖ζ), where C > 0 is

any global constant, κ = σ1/σr where σi is the i-th singular value of M . Also, set the number of
iterations of WAltMin procedure to be T = log(‖M‖ζ). Then, with probability greater than 1 − γ

2

Algorithm 1 LELA: Leveraged Element Low-rank Approximation
input matrix: M ∈ Rn×d, rank: r, number of samples: m, number of iterations: T

1: Sample Ω ⊆ [n] × [d] where each element is sampled independently with probability: q̂ij =
min{qij , 1}

qij = m ·
(‖M i‖2 + ‖Mj‖2

2(n+ d)‖M‖2F
+
|Mij |

2‖M‖1,1

)
. (2)

2: Obtain PΩ(M) using one pass over M
3: M̂r = WAltMin(PΩ(M),Ω, r, q̂, T)

output M̂r

Sub-routine 2 WAltMin: Weighted Alternating Minimization
input PΩ(M), Ω, r, q̂, T

1: wij = 1/q̂ij when q̂ij > 0, 0 else, ∀i, j
2: Divide Ω in 2T + 1 equal uniformly random subsets, i.e., Ω = {Ω0, . . . ,Ω2T }
3: RΩ0

(M)← w. ∗ PΩ0
(M)

4: U (0)Σ(0)(V (0))T = SV D(RΩ0(M), r) //Best rank-r approximation of RΩ0(M)

5: Trim U (0) and let Û (0) be the output (see Section 2)
6: for t = 0 to T − 1 do
7: V̂ (t+1) = argminV ‖R1/2

Ω2t+1
(M − Û (t)V T)‖2F , for V ∈ Rd×r.

8: Û (t+1) = argminU ‖R1/2
Ω2t+2

(M − U(V̂ (t+1))T)‖2F , for U ∈ Rn×r.
9: end for

output Completed matrix M̂r = Û (T)(V̂ (T))T .

for any constant γ > 0, the output M̂r of Algorithm 1 with the above specified parameters m,T ,
satisfies:

‖M − M̂r‖ ≤ ‖M −Mr‖+ ε ‖M −Mr‖F + ζ.

That is, if T = log(‖M‖
ε‖M−Mr‖F), we have: ‖M − M̂r‖ ≤ ‖M −Mr‖+ 2ε ‖M −Mr‖F .

2.1 Direct Low-rank Approximation of Matrix Product

In this section we present a new algorithm for the following problem: suppose we are given two ma-
trices, and desire a low-rank approximation of their product AB; in particular, we are not interested
in the actual full matrix product itself (as this may be unwieldy to store and use, and thus wasteful
to produce in its entirety). One example setting where this arises is when one wants to calculate the
joint counts between two very large sets of entities; for example, web companies routinely come
across settings where they need to understand (for example) how many users both searched for a
particular query and clicked on a particular advertisement. The number of possible queries and ads
is huge, and finding this co-occurrence matrix from user logs involves multiplying two matrices –
query-by-user and user-by-ad respectively – each of which is itself large.

Algorithm: Suppose we are given an n1 × d matrix A and another d × n2 matrix B, and we wish
to calculate a rank-r approximation of the product A ·B. Our algorithm proceeds in two stages:

1. Choose a biased random set Ω ⊂ [n1] × [n2] of elements as follows: choose an intended
number m (according to Theorem 2.2 below) of sampled elements, and then independently
include each (i, j) ∈ [n1]× [n2] in Ω with probability given by q̂ij = min{1, qij} where

qij := m ·
(‖Ai‖2
n2‖A‖2F

+
‖Bj‖2
n1‖B‖2F

)
, (3)

Then, find PΩ(A ·B), i.e. only the elements of the product AB that are in this set Ω.
2. Run the alternating minimization procedure WAltMin(PΩ(A · B),Ω, r, q̂, T), where T is

the number of iterations (again chosen according to Theorem 2.2 below). This produces
the low-rank approximation in factored form.

3

The computation complexity of the algorithm is O(|Ω| · (d + r2)) = O(m(d + r2)) = O(nr
3κ2

ε2 ·
(d+ r2)) (suppressing terms dependent on norms of A and B), where n = max{n1, n2}.
Theorem 2.2. Consider matrices A ∈ Rn1×d and B ∈ Rd×n2 and let m = C

γ ·
(‖A‖2F +‖B‖2F)2

‖AB‖2F
·

nr3

(ε)2κ
2 log(n) log2(‖A‖F +‖B‖F

ζ), where κ = σ∗1/σ
∗
r , σ∗i is the i-th singular value of A · B and

T = log(‖A‖F +‖B‖F
ζ). Let Ω be sampled using probability distribution (3). Then, the output

ÂBr = WAltMin(PΩ(A ·B),Ω, r, q̂, T) of Sub-routine 2 satisfies (w.p. ≥ 1− γ): ‖A ·B −
ÂBr‖ ≤ ‖A ·B − (A ·B)r‖+ ε‖A ·B − (A ·B)r‖F + ζ.

3 Simulations

4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

Samples(m)/n log(n)

||M
r
−

M̂
r
||

LELA, ||M − Mr|| = 0.01

Randomprojection, ||M − Mr|| = 0.01

LELA, ||M − Mr|| = 0.05

Randomprojection, ||M − Mr|| = 0.05

LELA, ||M − Mr|| = 0.1

Randomprojection, ||M − Mr|| = 0.1

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

Samples(m)/n log(n)
||M

r
−

M̂
r
||

LELA, ||M − Mr|| = 0.01

Randomprojection, ||M − Mr|| = 0.01

LELA, ||M − Mr|| = 0.05

Randomprojection, ||M − Mr|| = 0.05

LELA, ||M − Mr|| = 0.1

Randomprojection, ||M − Mr|| = 0.1

(a) (b)

Figure 1: Figure plots how the error ||Mr − M̂r|| decreases with increasing number of sam-
ples m for different values of noise ||M − Mr||, for incoherent and coherent matrices respec-
tively. Algorithm LELA 1 is run with m samples and Gaussian projections algorithms is run with
corresponding dimension of the projection l = m/n. Computationally LELA algorithms takes
O(nnz(M) + m log(n)) time for computing samples and Gaussian projections algorithm takes
O(nm) time. (a):For same number of samples both algorithms have almost the same error for in-
coherent matrices. (b): For coherent matrices clearly the error of LELA algorithm (solid lines) is
much smaller than that of random projections (dotted lines).

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

Samples(m)/(n log(n))

||(
Y
Y

T
) r

−
̂

(Y
Y

T
) r
||

LELAdirect, ||Y − Yr|| = 0.01

Stagewise, ||Y − Yr|| = 0.01

LELAdirect, ||Y − Yr|| = 0.05

Stagewise, ||Y − Yr|| = 0.05

LELAdirect, ||Y − Yr|| = 0.1

Stagewise, ||Y − Yr|| = 0.1

4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Samples(m)/n log(n)

||(
A
B
) r

−
̂

(A
B
) r
||

LELAdirect, ||AB − (AB)r|| = 0.01

Stagewise, ||AB − (AB)r|| = 0.01

LELAdirect, ||AB − (AB)r|| = 0.05

Stagewise, ||AB − (AB)r|| = 0.05

LELAdirect, ||AB − (AB)r|| = 0.1

Stagewise, ||AB − (AB)r|| = 0.1

(a) (b)

Figure 2: (a):Figure plots the error ||(Y Y T)r − ̂(Y Y T)r|| for LELA direct 2.1 and Stagewise
algorithm for incoherent matrices. Stagewise algorithm is first computing rank-r approximation Ŷr
of Y using algorithm 1 and setting the low rank approximation ̂(Y Y T)r = ŶrŶ

T
r . Clearly directly

computing low rank approximation of Y Y T has smaller error. (b):Error ||(AB)r − (̂AB)r|| for
LELA direct 2.1 and Stagewise algorithm.

In this section we present some simulation results on synthetic data to show the error performance
of the algorithm 1. We consider random matrices of size 1000 by 1000 and rank-5. Mr is a rank 5
matrix with all singular values 1. We consider two cases one in which Mr is incoherent and other in
which Mr is coherent. The input to algorithms is the matrix M = Mr + Z, where Z is a Gaussian
noise matrix with ||Z|| = 0.01, 0.05 and 0.1.

4

References
[1] C. Boutsidis and A. Gittens. Improved matrix algorithms via the subsampled randomized hadamard trans-

form. SIAM Journal on Matrix Analysis and Applications, 34(3):1301–1340, 2013.

[2] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion. In Proceedings of The
31st International Conference on Machine Learning, pages 674–682, 2014.

[3] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. In
Proceedings of the 45th annual ACM symposium on Symposium on theory of computing, pages 81–90.
ACM, 2013.

[4] N. H. Nguyen, T. T. Do, and T. D. Tran. A fast and efficient algorithm for low-rank approximation of a
matrix. In Proceedings of the 41st annual ACM symposium on Theory of computing, pages 215–224. ACM,
2009.

[5] T. Sarlos. Improved approximation algorithms for large matrices via random projections. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 143–152. IEEE, 2006.

[6] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the approximation of
matrices. Applied and Computational Harmonic Analysis, 25(3):335–366, 2008.

5

	Introduction
	Low-rank Approximation of Matrices
	Direct Low-rank Approximation of Matrix Product

	Simulations

