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Abstract

We propose a novel reduced variance method—semi-stochastic coordinate descent (S2CD)—for the
problem of minimizing a strongly convex function represented as the average of a large number
of smooth convex functions: f(x) = 1

n

∑
i fi(x). Our method first performs a deterministic step

(computation of the gradient of f at the starting point), followed by a large number of stochastic
steps. The process is repeated a few times, with the last stochastic iterate becoming the new starting
point where the deterministic step is taken. The novelty of our method is in how the stochastic steps
are performed. In each such step, we pick a random function fi and a random coordinate j—both
using nonuniform distributions—and update a single coordinate of the decision vector only, based
on the computation of the jth partial derivative of fi at two different points. Each random step of
the method constitutes an unbiased estimate of the gradient of f and moreover, the squared norm of
the steps goes to zero in expectation, meaning that the method enjoys a reduced variance property.
The complexity of the method is the sum of two terms: O(n log(1/ε)) evaluations of gradients ∇fi
and O(κ̂ log(1/ε)) evaluations of partial derivatives∇jfi, where κ̂ is a novel condition number.

1 Introduction

In this paper we study the problem of unconstrained minimization of a strongly convex function represented as the
average of a large number of smooth convex functions:

min
x∈Rd

f(x) ≡ 1

n

n∑
i=1

fi(x). (1)

Many computational problems in various disciplines are of this form. In machine learning, fi(x) represents the
loss/risk of classifier x ∈ Rd on data sample i, f represents the empirical risk (=average loss), and the goal is to find
classifier minimizing f . Often, an L2-regularizer of the form µ

2 ‖x‖
2, for µ > 0, is added to the loss, making it strongly

convex and hence easier to minimize.

Assumptions. We assume that fi : Rd → R is a differentiable convex function with Lipschitz continuous partial
derivatives. Formally, we assume that for each i ∈ [n] := {1, 2, . . . , n} and j ∈ [d] := {1, 2, . . . , d} there exists
Lij ≥ 0 such that for all x ∈ Rd and h ∈ R,

fi(x+ hej) ≤ fi(x) + 〈∇fi(x), hej〉+
Lij
2
h2, (2)

where ej is the jth standard basis vector in Rd,∇f(x) ∈ Rd the gradient of f at point x and 〈·, ·〉 is the standard inner
product. This assumption was recently used in the analysis the accelerated coordinate descent method APPROX [3].
We further assume that f is µ-strongly convex. That is, we assume that there exists µ > 0 such that for all x, y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2. (3)
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Context. Batch methods such as gradient descent (GD) enjoy a fast (linear) convergence rate: to achieve ε-accuracy,
GD needs O(κ log(1/ε)) iterations, where κ is a condition number. The drawback of GD is that in each iteration one
needs to compute the gradient of f , which requires a pass through the entire dataset. This is prohibitive to do many
times if n is very large.

Stochastic gradient descent (SGD) in each iteration computes the gradient of a single randomly chosen function fi
only—this constitutes an unbiased (but noisy) estimate of the gradient of f—and makes a step in that direction [13, 7,
19]. The rate of convergence of SGD is slower, O(1/ε), but the cost of each iteration is independent of n. Variants
with nonuniform selection probabilities were considered in [20], a mini-batch variant (for SVMs with hinge loss) was
analyzed in [17].

Recently, there has been progress in designing algorithms that achieve the fast O(log(1/ε)) rate without the need to
scan the entire dataset in each iteration. The first class of methods to have achieved this are stochastic/randomized
coordinate descent methods.

When applied to (1), coordinate descent methods (CD) [8, 12] can, like SGD, be seen as an attempt to keep the
benefits of GD (fast linear convergence) while reducing the complexity of each iteration. In CD we only compute a
single partial derivative∇jf(x) at each iteration and update a single coordinate of vector x only. The partial derivative
is also an unbiased estimate of the gradient – however, unlike the SGD estimate, its variance is low. Indeed, as one
approaches the optimum, partial derivatives decrease to zero. While CD methods are able to obtain linear convergence,
they typically need O((d/µ) log(1/ε)) iterations when applied to (1) directly 1. CD method typically significantly
outperform GD, especially on sparse problems with a very large number variables/coordinates [8, 12].

An alternative to applying CD to (1) is to apply it to the dual problem; this is possible under certain additional
structural assumptions on the functions fi. This is the strategy employed by stochastic dual coordinate ascent (SDCA)
[16], whose rate is O((n + κ) log(1/ε)). The condition number κ here is different (and larger) than the condition
number appearing in the rate of GD. Despite this, this is vast improvement on the rates achieved by both GD and SGD.
Accelerated [15] and mini-batch [17] variants of SDCA have also been proposed.

Recently, there has been progress in designing primal methods which match the fast rate of SDCA. Stochastic average
gradient (SAG) [14], and more recently SAGA [1], move in a direction composed of old stochastic gradients. The
semi-stochastic gradient descent (S2GD) [6] and stochastic variance reduced gradient (SVRG) [5, 18] methods employ
a different strategy: one first computes the gradient of f , followed by O(κ) steps where only stochastic gradients are
computed. These are used to estimate the change of the gradient, and it is this direction which combines the old
gradient and the new stochastic gradient information which used in the update.

Goal. In this work we develop a new method—semi-stochastic coordinate descent (S2CD)—for solving (1), enjoying
a fast rate similar to SDCA/SAG/S2GD/SVRG/SAGA. S2CD can be seen as a hybrid between S2GD and CD. In
particular, the complexity of our method is the sum of two terms: n log(1/ε) evaluations of ∇fi and O(κ̂ log(1/ε))
evaluations of∇jfi, where κ̂ is a new condition number. While κ̂ ≥ κ appearing in the aforementioned methods, this
is multiplied by the cost of the evaluation of a partial derivative ∇jfi, which can be smaller than the evaluation cost
of ∇fi. Hence, our result can be both better or worse than previous results, depending on whether the increase of the
condition number can or can not be compensated by the lower cost of the stochastic steps based on the evaluation of
partial derivatives.

2 S2CD Algorithm

In this section we describe the Semi-Stochastic Coordinate Descent method (Algorithm 1). The method has an outer
loop (an “epoch”), indexed by counter k, and an inner loop, indexed by t. At the beginning of epoch k, we compute
and store the gradient of f at xk. Subsequently, S2CD enters the inner loop in which a sequence of vectors yk,t for
t = 0, 1 . . . , tk is computed in a stochastic way, starting from yk,0 = xk. The number tk of stochastic steps in the
inner loop is random, following a geometric law:

P(tk = T ) = (1− µh)m−T /β, T ∈ {1, . . . ,m}, β :=
∑m
t=1(1− µh)m−t.

1The complexity can be improved to O( dβ
τµ

log(1/ε)) in the case when τ coordinates are updated in each iteration, where
β ∈ [1, τ ] is a problem-dependent constant [9]. This has been further studied for nonsmooth problems via smoothing [4], for
arbitrary nonuniform distributions governing the selection of coordinates [11] and in the distributed setting [10, 2]. Also, efficient
accelerated variants with O(1/

√
ε) rate were developed [3, 2].
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Algorithm 1 Semi-Stochastic Coordinate Descent (S2CD)
parameters: m (max # of stochastic steps per epoch); h > 0 (stepsize parameter); x0 ∈ Rd (starting point)
for k = 0, 1, 2, . . . do

Compute and store∇f(xk) = 1
n

∑
i∇fi(xk)

Initialize the inner loop: yk,0 ← xk
Choose random length of the inner loop: let tk = T ∈ {1, 2, . . . ,m} with probability (1− µh)

m−T
/β

for t = 0 to tk − 1 do
Pick coordinate j ∈ {1, 2, . . . , d},with probability pj
Pick function index i from the set {i : Lij > 0} with probability qij
Update the jth coordinate: yk,t+1 ← yk,t − hp−1

j

(
∇jf(xk) + 1

nqij
(∇jfi(yk,t)−∇jfi(xk))

)
ej

end for
Reset the starting point: xk+1 ← yk,tk

end for

In each step of the inner loop, we seek to compute yk,t+1, given yk,t. In order to do so, we sample coordinate j with
probability pj and subsequently2 sample i with probability qij , where the probabilities are given by

ωi := |{j : Lij 6= 0}|, vj :=

n∑
i=1

ωiLij , pj := vj/

d∑
j=1

vj , qij :=
ωiLij
vj

, pij := pjqij . (4)

Note that Lij = 0 means that function fi does not depend on the jth coordinate of x. Hence, ωi is the number of
coordinates function fi depends on – a measure of sparsity of the data3. It can be shown that f has a 1-Lipschitz gra-
dient with respect to the weighted Euclidean norm with weights {vj} ([3, Theorem 1]). Hence, we sample coordinate
j proportionally to this weight vj . Note that pij is the joint probability of choosing the pair (i, j).

Having sampled coordinate j and function index i, we compute two partial derivatives: ∇jfi(xk) and∇jfi(yk,t) (we
compressed the notation here by writing ∇jfi(x) instead of 〈∇fi(x), ej〉), and combine these with the pre-computed
value∇jf(xk) to form an update of the form

yk,t+1 ← yk,t − hp−1
j Gej ,

where G depends on i, j, xk and yk,t. Note that only a single coordinate of yk,t is updated. It can be easily observed
that Ei[G | j] = ∇jf(yk,t). Hence, G is an unbiased estimate of the jth partial derivative of f at yk,t. Moreover,

Eij [hp
−1
j Gej ] = Ej [Ei[hp

−1
j Gej | j]] = hEj [p

−1
j ejEi[G | j]] = hEj [p

−1
j ej∇jf(yk,t)] = h∇f(yk,t),

and hence the update step is an unbiased estimate of∇f(yk,t) (scaled by h).

Special cases. In the case when n = 1, S2CD reduces to a stochastic CD algorithm with importance sampling4 as
studied in [8, 12], but written with many redundant computations. Indeed, the method in this case does not require the
xk iterates, and instead takes on the form: y0,t+1 ← y0,t − hp−1

j ∇jf(y0,t)ej , where pj = L1j/
∑
j L1j .

It is possible to extend the S2CD algorithm and results to the case when coordinates are replaced by (nonoverlapping)
blocks of coordinates, as in [12]—we did not do it here for the sake simplicity. In such a setting, we would obtain
semi-stochastic block coordinate descent. In the special case with all variables forming a single block, the algorithm
reduces to the S2GD method described in [6], but with nonuniform probabilities for the choice of i—proportional to
the Lipschitz constants of the gradient of the functions fi (this is also studied in [18]). As in [18], the complexity result
then depends on the average of the Lipschitz constants (see next section).

2In S2CD, as presented, coordinates j is selected first, and then function i is selected, according to a distribution conditioned on
the choice of j. However, one could equivalently sample (i, j) with joint probability pij . We opted for the sequential sampling for
clarity of presentation purposes.

3The quantity ω := maxi ωi (degree of partial separability of f ) was used in the analysis of a large class of randomized parallel
coordinate descent methods in [9]. The more informative quantities {ωi} appear in the analysis of parallel/distributed/mini-batch
coordinate descent methods [10, 3, 2].

4A parallel CD method in which every subset of coordinates can be assigned a different probability of being chosen/updated
was analyzed in [11].
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Note that the algorithm, as presented, assumes the knowledge of µ. We have done this for simplicity of exposition: the
method works also if µ is replaced by some lower bound in the method, which can be set to 0 (see [6]). The change
to the complexity results will be only minor and all our conclusions hold. Likewise, it is possible to give a O(1/ε)
complexity result in the non-strongly convex case f .

3 Complexity Result

In this section, we state and describe our complexity result. An important step in our analysis is to show that the
(unbiased) estimator p−1

j Gej of ∇f(yk,t) has low variance. To this end, we show that

Eij [‖p−1
j Gej‖2] ≤ 4L̂ (f(yk,t)− f(x∗)) + 4L̂ (f(xk)− f(x∗)) ,

where
L̂ := 1

n

∑d
j=1 vj

(4)
= 1

n

∑d
j=1

∑n
i=1 ωiLij . (5)

Note that as yk,t → x∗ and xk → x∗, the bound decreases to zero. This is the main feature of modern fast stochastic
gradient methods: the gradient estimate has diminishing variance. Note that the standard SGD method does not have
this property: indeed, there is no reason for Ei‖∇fi(x)‖2 to be small even if x = x∗. Once the above inequality is
established, the analysis follows similar steps as in [6, 5] and we obtain the following result (cf [6, Thm 4]):
Theorem 1 (Complexity of S2CD). If 0 < h < 1/(2L̂), then for all k ≥ 0 we have:

E[f(xk+1)− f(x∗)] ≤

(
(1− µh)m

(1− (1− µh)m)(1− 2L̂h)
+

2L̂h

1− 2L̂h

)
E[f(xk)− f(x∗)].

By analyzing the above result (one can follow the steps in [6, Theorem 6]), we get the following useful corollary:
Corollary 2. Fix the number of epochs k ≥ 1, error tolerance ε ∈ (0, 1) and let ∆ := ε1/k and κ̂ := L̂/µ. If we run
Algorithm 1 with stepsize h and m set as

h =
∆

(4 + 2∆)L̂
, m ≥

(
4

∆
+ 2

)
log

(
2

∆
+ 2

)
κ̂, (6)

then E[f(xk)− f(x∗)] ≤ ε(f(x0)− f(x∗)). In particular, for k = dlog(1/ε)e we have 1
∆ ≤ exp(1), and we can pick

k = dlog(1/ε)e, h =
∆

(4 + 2∆)L̂
≈ 1

(4 exp(1) + 2)L̂
≈ 1

12.87L̂
, m ≥ 26κ̂. (7)

If we run S2CD with the parameters set as in (7), then in each epoch the gradient of f is evaluated once (this is
equivalent to n evaluations of ∇fi), and the partial derivative of some function fi is evaluated 2m ≈ 52κ̂ = O(κ̂)
times. If we let Cgrad be the average cost of evaluating the gradient∇fi and Cpd be the average cost of evaluating the
partial derivative∇jfi, then the total work of S2CD can be written as

(nCgrad +mCpd)k
(7)
= O ((nCgrad + κ̂Cpd) log(1/ε)) , (8)

The complexity results of methods such as S2GD/SVRG [6, 5, 18] and SAG/SAGA [14, 1]—in a similar but not
identical setup to ours (these papers assume fi to be Li-smooth)—can be written in a similar form:

O ((nCgrad + κCgrad) log(1/ε)) , (9)

where κ = L/µ and either L = Lmax := maxi Li ([14, 5, 6, 1]), or L = Lavg := 1
n

∑
i Li ([18]). The difference

between our result (8) and existing results (9) is in the term κ̂Cpd – previous results have κCgrad in that place. This
difference constitutes a trade-off: while κ̂ ≥ κ (we comment on this below), we clearly have Cpd ≤ Cgrad. The
comparison of the quantities κCgrad and κ̂Cpd is not straightforward and is problem dependent.

Let us now comment how do the condition numbers κ̂ and κavg = Lavg/µ compare. It can be show that (see [12])
Li ≤

∑d
j=1 Lij and, moreover, this inequality can be tight. Since ωi ≥ 1 for all i, we have

κ̂ =
L̂

µ

(5)
=

1

µn

d∑
j=1

n∑
i=1

ωiLij ≥
1

µn

n∑
i=1

d∑
j=1

Lij ≥
1

µn

n∑
i=1

Li =
Lavg
µ

= κavg.

Finally, κ̂ can be smaller or larger than κmax := Lmax/µ.
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