
Asynchronous Parallel Block-Coordinate
Frank-Wolfe

Yu-Xiang Wang, Veeranjaneyulu Sadhanala, Wei Dai,
Willie Neiswanger, Suvrit Sra, and Eric Xing

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213
{yuxiangw,vsadhana,wdai,willie,epxing}@cs.cmu.edu

Abstract

We develop mini-batched parallel Frank-Wolfe (conditional gradient) methods for
smooth convex optimization subject to block-separable constraints. Our work in-
cludes the basic (batch) Frank-Wolfe algorithm as well as the recently proposed
Block-Coordinate Frank-Wolfe (BCFW) method [18] as special cases. Our algo-
rithm permits asynchronous updates within the minibatch, and is robust to strag-
glers and faulty worker threads. Our analysis reveals how the potential speedups
over BCFW depend on the minibatch size and how one can provably obtain large
problem dependent speedups. We present several experiments to indicate em-
pirical behavior of our methods, obtaining significant speedups over competing
state-of-the-art (and synchronous) methods on structural SVMs.

1 Introduction
The classical Frank-Wolfe algorithm [27] has recently witnessed a surge of interest in machine learn-
ing [6, 13, 14, 2]. Its wide applicability and practical appeal have spurred several extensions, includ-
ing to regularized optimization [29, 5, 11], to linearly convergent algorithms [17, 10], to stochas-
tic/online versions [23, 12], and to a powerful randomized block-coordinate version [18].

Motivated by [18], we consider FW methods for the following convex optimization problem

min
x

f(x) s.t. x = [x(1), ..., x(n)] ∈M1 × · · · ×Mn :=M (1)

where eachMi ⊂ Rmi (1 ≤ i ≤ n) is a compact convex set. Such Cartesian product constraints
arise in several problems, notably the structured SVM dual [18], routing problems [19], dual of the
group fused-lasso [1, 4], nearest point projection onto convex sets [15], among others.

A typical approach to solving (1) is to use a block-coordinate descent method, which involves solv-
ing a projection subproblem in every iteration [21, 24, 3]. This can sometimes be very expensive,
e.g., submodular minimization [9], or even computationally intractable [7].

Frank-Wolfe (FW) methods often shine in such scenarios because in contrast to (quadratic) projec-
tion based techniques at each iteration they only require optimizing a linear objective of the form

min
x

〈x,∇f(·)〉 s.t. x ∈M. (2)

This simpler structure can bestow great computational advantages; moreover, it enables another
practical advantage of FW methods: sparsity or low-rank of intermediate iterates [6, 14].

ForM =
∏
iMi, problem (2) decomposes into n independent subproblems

min
s(i)∈Mi

〈s(i),∇f(x(i))〉, 1 ≤ i ≤ n, (3)

where x(i) denotes the restriction (projection) of x to Mi. Clearly, these n subproblems can be
solved in parallel. However, updating all the coordinates at each iteration (whether in serial or
parallel) may correspond to going through the entire input data, which handicaps the applicability

1

of FW to true big-data problems. This drawback was partially ameliorated by the recent randomized
Block-Coordinate Frank-Wolfe (BCFW) method of [18]. They propose randomly selecting a block
Mi of coordinates at each iteration and performing FW updates with it. However, it is a strictly
sequential procedure that cannot easily take advantage of modern multicore CPU architecture or of
high-performance clusters to address problems at an even larger scale.

In light of the above, our paper makes the following key contributions:

• A parallel block-coordinate Frank-Wolfe algorithm that allows asynchronous computation
within each minibatch. The algorithm is robust to stragglers and faulty workers.

• An analysis of the primal and primal-dual convergence of our asynchronous parallel BCFW
algorithm and its variants for any minibatch size.

• It presents insightful deterministic conditions under which minibatching provably improves
the convergence rate for a class of problems (sometimes by orders of magnitude).

• Experiments that demonstrate on a real system how our algorithm solves a structural SVM
problem several times faster than the state-of-the-art.

Thus, our results contribute to making FW algorithms more attractive for big-data applications.

Related works. The general prospect of the research is closely related to the recent effort in par-
allelizing sequential algorithms while adapting to the strengths and limitations of the modern com-
puter systems, including that for stochastic gradient methods [25, 22], coordinate descent [24, 20]
and so on. Building upon these predecessors, this work is novel in the problem scope (Frank-Wolfe),
the asynchronous system design and parts of our theoretical analysis. We invite the readers to the
detailed comparisons in the full paper.

Notation. The vector x ∈ Rm denotes the parameter vector, possibly split into n coordinate blocks,
each x(i) ∈ Rmi . x[i] ∈ Rm denotes the projection of x onto the ith block. We denote the size of a
minibatch by τ , and the number of parallel workers (threads) by T .

2 Algorithm
In this section, we develop and analyze an asynchronous parallel block-coordinate Frank-Wolfe
algorithm, hereafter AP-BCFW, to solve (1). Our algorithm is designed for a shared-memory mul-
ticore architecture. The computational work is divided amongst worker threads, each of which has
access to a pool of coordinates that it may work on, as well as to the shared gradient. This setup
matches the system assumptions in [22, 24, 20], and most modern multicore machines permit such
an arrangement.

At a high-level, AP-BCFW (Algorithm 1) may be viewed as randomized mini-batch version of
BCFW, so that at each iteration it processes a randomly chosen set of 1 ≤ τ ≤ n coordinate blocks;
the case τ = 1 corresponds to BCFW while τ = n corresponds to standard (batch) FW. However, to
handle the mini-batching, AP-BCFW divides the workload of τ coordinates across T worker threads
that operate asynchronously. This helps avoid having to wait for the slowest workers, and allows fast
workers (threads) to process more than one block. Ideally, if we choose τ to be larger (say, twice or
more) than T , the computational workload will be well-balanced and the runtime of each iteration
depends more on the average worker than on the worst one.
2.1 Convergence results
Our convergence results rely on the notion of set curvature

C
(S)
f := sup

x∈M,s(S)∈M(S),

γ∈[0,1], y=x+γ(s[S]−x[S])

2

γ2
(
f(y)− f(x)− 〈y(S) − x(S),∇(S)f(x)〉

)
. (4)

This is a natural interpolation of the standard curvature in the affine-invariant proof of batch FW
[14] and the coordinate curvature used in BCFW [18]. This is also closedly related to the coordi-
nate Lipschitz constant in the analysis of coordinate descent methods.
Lemma 1 (Curvature relations). Suppose S ⊆ [n] with cardinality |S| = τ and i ∈ S. Also let
Cτf := ESC(S)

f . Then, (i) C
(i)
f ≤ C

(S)
f ≤ Cf ; (ii) 1

nC
⊗
f = C1

f ≤ Cτf ≤ Cnf = Cf .

This curvature assumption allows us to inherit the typical traits of FW methods including:

2

Algorithm 1 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe

Input: An initial feasible x(0), mini-batch size τ , number of workers T .
for k = 1,2,... (k is the epoch.) do

1. Randomly pick S ⊂ [n] such that |S| = τ and set the index set S̃ = S.
2. [IN PARALLEL] While S̃ 6= ∅, idle workers choose a j ∈ S̃ randomly, solves (3)
“approximately” for s(j), optionally determine the line-search stepsizes γj and set S̃ = S̃−{j}.
3. Update x(k+1) = x(k) + γ

∑
i∈S(s[i] − x

(k)
[i]) with γ = 2nτ

τ2k+2n

4. (Optionally) Compute x(k+1)
line-search = x(k) +

∑
i∈S γi(s[i] − x

(k)
[i]).

Update x(k+1) to x(k+1)
line-search if line-search improves the objective value.

end for
Output: limit point x̄.

Affine invariance. No pre-conditioning is needed to get the best convergence.
Approximate oracle. The linear oracle allows an additive or multiplicative error.
Primal-Dual convergence. O(nC/τ2K) convergence guarantee of the duality gap, with consistent

estimate of the duality gap “for free” in every iteration. (See the arxiv version for details.)

Due to space constraint, we describe only the theorem for primal convergence.
Theorem 1 (Primal Convergence). For each k ≥ 0, the iterations in Algorithm 1 and its line search
variant obey

E[f(x(k))]− f(x∗) ≤ 2nC

τ2k + 2n
,

where the constant C = nCτf (1 + δ) + f(x(0))− f(x∗).

Relation with FW and BCFW. The above convergence guarantees can be thought of as an interpo-
lation between BCFW and batch FW. If we take τ = 1, this gives exactly the convergence guarantee
for BCFW [18, Theorem 2] and if we take τ = n, we can drop f(x(0)) − f(x∗) from C and it
reduces to the classic batch guarantee as in [14].

Speedup. The careful reader may have noticed that the undesirable n2 dependence, which could be
prohibitive for large n. The saving grace in BCFW is that when τ = 1, Cτf is as small as O(n−2)
(see [18, Lemmas A1 and A2]). What really matters is how much speedup one can achieve over
BCFW, and this speedup critically relies on how Cτf depends on τ . Basically, if Cτf = o(τ2), we
gain in convergence speed. In the ideal case Cτf = O(τ), the speed-up will be linear in τ .

2.2 The effect of parallelism
To further understand when mini-batching is meaningful and quantify its speedup, we analyze and
present a set of insightful conditions that govern the relationship between Cτf and τ .

Theorem 2. If problem (1) obeys B-expected boundedness and µ-expected incoherence. Then,

Cτf ≤ 4(τB + τ(τ − 1)µ) for any τ = 1, ..., n. (5)

We leave the exact definitions ofB and µ in the full paper [26]. Intuitively, they measure respectively
the expected coordinate-wise curvature and the expected pairwise interaction. The theorem implies
that when µ is small, i.e., when each coordinate is close to independent on average, then we can
expect a large speed-up with AP-BCFW. This is analogous to the analysis in parallel coordinate
descent [24, 20]. In fact, one can view our condition as an affine-invariant version of the Expected
Separable Overapproximation (ESO) condition [24].

SDD matrices and Graph Fused Lasso. If the n× n matrix formed by putting Bi on the diagonal
and µij on the off-diagonal is symmetric diagonally dominant (SDD), then Cτf is proportional to τ .
For instance, the dual of the Group Fused Lasso problem studied in Wytock et al. [28]. Also, graph
Laplacians are symmetric diagonal dominant.

Structural SVM. In the worst case, a simple generalization of Lacoste-Julien et al. [18, Lemmas
A.1, A.2] shows that τ > 1 offers no gain at all. If we consider a specific problem and the average

3

case, using larger τ does make the algorithm converge faster (and this is the case according to our
experiments).

Parallel block coordinate descent. We compare the rate of convergence in Theorem 1 with parallel
BCD [24, 20] under the assumption of µ = O(B/τ) — an equally favorable case to all methods.
To facilitate comparison, we also convert the constants in all methods to block coordinate gradient
Lipschitz constant Li and R := maxx ‖x− x∗‖.

AP-BCFW (Ours) P-BCD [24, Theorem 19] AP-BCD [20, Theorem 3]

Rate Op

(
nEi(Li)R

2

τk

)
Op

(
nEi(Li)R

2

τk

)
Op

(
nmaxi LiR

2

τk

)
The comparison illustrates that these methods have the same O(1/k) rate and almost the same
dependence on n and τ despite the fact that we use a much simpler linear oracle. We note that
with Nesterov acceleration, we can actually get O(1/k2) rate for coordinate decent [8], while the
matching minimax lower bound of FW is disappointingly O(1/k). Yet, when projection is much
harder to compute than (3) (e.g., nuclear norm balls), or when the structures in intermediate steps
matter, our method becomes a valuable plug-in solution for solving such problems in large-scale.

3 Experiments
In this section, we demonstrate the performance gains due to the two key features of our algorithm:
parallelism and asynchronous nature.

Performance gain due to minibatch size τ : We simulated AP-BCFW on a part of OCR dataset[16]
(n = 6251, d = 4082), which is a sequence labeling task where the subproblem can be solved
using the Viterbi algorithm. In each iteration, we solve τ subproblems, thus simulating the par-
allel setting with τ workers and each worker solving one subproblem. Figure 1a shows that the
speedup(compared to BCFW) is almost ideal until a reasonably large value for τ . The speedup gets
worse if τ is too large as there are too many stale updates. We implemented AP-BCFW in a multi-
core shared-memory system and applied to the full OCR dataset(n = 6877). Figure 1b shows the
speedup in terms of wall-clock time that is attained by the algorithm over BCFW when T workers
are available.

Performance gain with asynchronous nature:We compare AP-BCFW with a synchronous version
of the algorithm (SP-BCFW) where in each iteration, the server assigns τ/T subproblems to each
worker, then waits for and accumulates the solutions. We simulate workers of varying speeds in our
shared-memory setup by assigning each worker wi a return probability pi ∈ (0, 1] with which they
return a solution.

We simulate a scenario where there is just one slow machine (straggler) with a return probability
p ∈ (0, 1] while the other workers run at full speed (p = 1). Figure 1c shows that the average
time per effective datapass(over 20 passes and 5 runs) of AP-BCFW stays almost unchanged with
slowdown factor 1/p of the straggler, whereas it increases linearly for SP-BCFW. This is to be
expected as AP-BCFW relies on the average processing power available at the workers, while SP-
BCFW is only as fast as the slowest worker. AP-BCFW performs in a similarly superior manner
when the workers have varied speeds, see arXiv version.

0 20 40 60 80 100
0

20

40

60

80

100

τ

sp
ee

du
p

ov
er

 τ
=

1

Speedup on OCR dataset

primal threshold=f*+0.02

primal threshold=f*+0.04

primal threshold=f*+0.06
y=x

(a) Structural SVM on OCR

0 5 100

2

4

6

8

10

12

14

T

sp
ee

du
p

Speedup vs T

primal threshold = f* + 0.005
primal threshold = f* + 0.01
y=x

(b) Wall clock-time speed up

5 10 15 20
−1

0

1

2

3

4

5

6

1/p (Slow down factor)

tim
e

pe
r

ef
f.

da
ta

pa
ss

async
sync

(c) AP-BCFW vs SP-BCFW

Figure 1: Speedup in a simulation, a real cluster, and performance with stragglers.

All shared-memory experiments were implemented in C++ and conducted on a 16-core machine
with Intel(R) Xeon(R) CPU E5-2450 0 @ 2.10GHz processors and 128G RAM.

4

References
[1] C. M. Alaı́z, Á. Barbero, and J. R. Dorronsoro. Group fused lasso. In Artificial Neural Networks and

Machine Learning–ICANN 2013, pages 66–73. Springer, 2013.
[2] F. Bach. Conditional gradients everywhere. 2013.
[3] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM Journal

on Optimization, 23(4):2037–2060, 2013.
[4] K. Bleakley and J.-P. Vert. The group fused lasso for multiple change-point detection. arXiv, 2011.
[5] K. Bredies, D. A. Lorenz, and P. Maass. A generalized conditional gradient method and its connection to

an iterative shrinkage method. Computational Optimization and Applications, 42(2):173–193, 2009.
[6] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Transac-

tions on Algorithms (TALG), 6(4):63, 2010.
[7] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett. Exponentiated gradient algorithms for

conditional random fields and max-margin markov networks. The Journal of Machine Learning Research,
9:1775–1822, 2008.

[8] O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. arXiv preprint
arXiv:1312.5799, 2013.

[9] S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the minimum-norm
base. Pacific Journal of Optimization, 7(1):3–17, 2011.

[10] D. Garber and E. Hazan. A linearly convergent conditional gradient algorithm with applications to online
and stochastic optimization. arXiv preprint arXiv:1301.4666, 2013.

[11] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for norm-regularized
smooth convex optimization. arXiv preprint arXiv:1302.2325, 2013.

[12] E. Hazan and S. Kale. Projection-free online learning. In ICML, 2012.
[13] M. Jaggi. Sparse convex optimization methods for machine learning. PhD thesis, Diss., Eidgenössische

Technische Hochschule ETH Zürich, Nr. 20013, 2011, 2011.
[14] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the

30th International Conference on Machine Learning (ICML-13), pages 427–435, 2013.
[15] S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization. In Ad-

vances in Neural Information Processing Systems, pages 1313–1321, 2013.
[16] D. Koller, B. Taskar, and C. Guestrin. Max-margin Markov networks. 2003.
[17] S. Lacoste-Julien and M. Jaggi. An affine invariant linear convergence analysis for Frank-Wolfe algo-

rithms. arXiv preprint arXiv:1312.7864, 2013.
[18] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe optimization

for structural SVMs. arXiv preprint arXiv:1207.4747, 2012.
[19] L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla. An efficient approach to solving the road network

equilibrium traffic assignment problem. Transportation Research, 9(5):309–318, 1975.
[20] J. Liu, S. J. Wright, C. Ré, and V. Bittorf. An asynchronous parallel stochastic coordinate descent algo-

rithm. arXiv preprint arXiv:1311.1873, 2013.
[21] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM

Journal on Optimization, 22(2):341–362, 2012.
[22] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing stochastic

gradient descent. arXiv preprint arXiv:1106.5730, 2011.
[23] H. Ouyang and A. G. Gray. Fast stochastic Frank-Wolfe algorithms for nonlinear SVMs. In SDM, 2010.
[24] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization. arXiv preprint

arXiv:1212.0873, 2012.
[25] J. N. Tsitsiklis, D. P. Bertsekas, M. Athans, et al. Distributed asynchronous deterministic and stochastic

gradient optimization algorithms. IEEE transactions on automatic control, 31(9):803–812, 1986.
[26] Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, and E. P. Xing. Asynchronous parallel block-

coordinate frank-wolfe. arXiv preprint arXiv:1409.6086, 2014.
[27] P. Wolfe. Convergence theory in nonlinear programming. Integer and nonlinear programming, 1970.
[28] M. Wytock, S. Sra, and J. Z. Kolter. Fast newton methods for the group fused lasso. In Uncertainties in

Artificial Intelligence, 2014.
[29] X. Zhang, Y.-L. Yu, and D. Schuurmans. Polar operators for structured sparse estimation. In Advances in

Neural Information Processing Systems, pages 82–90, 2013.

5

	Introduction
	Algorithm
	Convergence results
	The effect of parallelism

	Experiments

