
Non-Uniform Stochastic Average Gradient Method
for Training Conditional Random Fields

Mark Schmidt
University of British Columbia

Ann Clifton
Simon Fraser University

Anoop Sarkar
Simon Fraser University

Abstract

This paper explores using a stochastic average gradient (SAG) algorithm for train-
ing conditional random fields (CRFs). The SAG algorithm is the first general
stochastic gradient algorithm to have a linear convergence rate. However, despite
its success on simple classification problems, when applied to CRFs the algorithm
requires too much memory because it requires storing a previous gradient with
respect to every training example. In this work we show that SAG algorithms
can be tractably applied to large-scale CRFs by tracking the marginals over ver-
tices and edges in the graphical model. We also incorporate a simple non-uniform
adaptive sampling scheme that learns how often we should sample each training
point. Our experimental results reveal that this method significantly outperforms
existing methods.

1 Conditional Random Fields

Conditional random fields (CRFs) [9] are a ubiquitous tool in natural language processing. They are
used for part-of-speech tagging [12], semantic role labeling [1], topic modeling [27], information
extraction [16], shallow parsing [19], named-entity recognition [18], and a variety of applications in
other fields such as computer vision [15]. Despite the widespread use of CRFs and major advances
in fitting them, the time needed for numerical optimization in CRF models remains a bottleneck in
many application.

Lafferty et al. [9] proposed training CRFs with an iterative scaling algorithm (2), but this proved
to be inferior to generic optimization strategies like the limited-memory quasi-Newton algorithm
L-BFGS [24, 19]. The bottleneck in quasi-Newton methods is that we must do inference on all
training examples on every iteration. Due to the high cost of inference on even a single training
example example, it is now common to train CRFs using stochastic gradient methods, which work
online and only process one example at a time [23, 5]. However, stochastic gradient methods have
sub-linear convergence rates. Collins et al. [2] proposed an online exponentiated gradient algorithm
with a linear convergence rate in the dual problem, but the practical performance of this method
degrades without strong regularization, see [2, Figures 5-6 and Table 3] and [8, Figure 1]. Hybrid
stochastic/quasi-Newton methods have also been explored [6], but these methods eventually process
every example on every iteration. In this work, we consider training CRFs with the stochastic
average gradient (SAG) algorithm of Le Roux et al. [11], a general stochastic gradient method
that achieves a linear convergence rate for finite training sets and has shown impressive empirical
performance for binary classification. Beyond the faster convergence rate, the SAG method also has
effective heuristics for issues that have traditionally frustrated users of stochastic gradient methods:
setting the step-size and deciding when to stop. Our results indicate that the SAG algorithm with
a simple adaptive step-size and non-uniform sampling strategy can outperform previous training
methods by an order of magnitude.

1

2 Stochastic Average Gradient for Conditional Random Fields

CRFs predict a structured objective y ∈ Y (such as a sequence of labels) given an input x ∈ X (such
as a sequence of words or characters), based on a vector of features F (x, y) and parameters w using

p(y|x,w) = exp(wTF (x, y))

Z
, (1)

where Z is the normalizing constant. Given n pairs {xi, yi} comprising our training set, the standard
approach to training CRFs is to minimize the `2-regularized negative log-likelihood,

min
w
f(w) =

1

n

n∑
i=1

− log p(yi|xi, w) +
λ

2
‖w‖2, (2)

where λ > 0 is the regularization strength. Evaluating p(yi|xi, w) is expensive due to the normal-
izing constant Z in (1) that sums over all assignments to y. E.g., in chain-structured models we
compute log p(yi|xi, w) and its gradient by running the forward-backward algorithm.

The SAG algorithm has the form
wt+1 = wt − αt

n

n∑
i=1

sti, (3)

where αt is the step-size and at each iteration we set sti = −∇ log p(yi|xi, wt) + λwt for one
randomly chosen data point and keep the remaining sti the same. The surprising aspect of the work
of [11, 17] is that this algorithm achieves a similar convergence rate to the classic full gradient
algorithm despite the iterations being n times faster.

Algorithm 1 SAG algorithm for training CRFs
Require: {xi, yi}, λ, w, δ

1: d = 0, Lg = 1, m = 0, gi = 0 for i = 1, 2, . . . , n
2: while m < n and ‖ 1

n
d+ λw‖∞ ≥ δ do

3: Sample i from {1, 2, . . . , n}
4: f = − log p(yi|xi, w), g = −∇ log p(yi|xi, w)
5: if this is the first time we sampled i then
6: m = m+ 1
7: end if
8: d = d+ g − gi, gi = g
9: if ‖gi‖2 > 10−8 then

10: Lg =lineSearch(xi, yi, f, gi, w, Lg)
11: end if
12: α = 1/(Lg + λ), w = (1− αλ)w − α

m
d, Lg = Lg · 2−1/n

13: end while

3 Implementation

Algorithm 1 outlines a practical variant of the SAG algorithm for training CRFs, that modifies the
update (3) using suggestions in Le Roux et al. [11]. One of the core modifications is using the update

wt+1 = wt − α(1
m

n∑
i=1

gti + λwt) = (1− αλ)wt − α

m
d, (4)

where gti is the value of−∇ log p(yi|xi, wk) for the last iteration k where i was selected and d is the
sum of the gti over all i. Thus, this update uses the exact regularizer and only approximes the CRF
log-likelihoods.This update also uses the number of examples seen, m, rather than the total number
of examples n (since we initialize to g0i = 0). We set the step-size to α = 1/L = 1/(Lg+λ), where
L is the Lipschitz constant of f ′ and Lg is the constant for the gradient of the CRF log-likelihood.
To avoid computing Lg we use the line-search from the code of Schmidt et al. [17]. We can use the
magnitude of (1nd+ λwt) to decide when to stop, since it converges to∇f(wt).

By using the structure in the CRF gradients, we can reduce the memory requirement of Algorithm 1
so that it only depends on the number possible labels and the number of vertices and edges in the

2

graphical model. This is best illustrated with an example. Consider the common case where we
have a set of features xj at position yj in a sequence y of length V , and we define our conditional
probability as

p(y|x,w) = exp(F (y, x, w))

Z(w)
, where F (y, x, w) =

V∑
j=1

xTj wyj
+

V−1∑
j=1

wyj ,yj+1
.

Here we have a vector wk used to combine the features xj to give the potential for state yj , and we
have a set of transition weights wk,k′ for each combination of transitions between k and k′. In this
setting, the log-probability takes the form

log p(y|x,w) = F (y, x, w)− log(Z(w)).

If we take the gradient with respect to a particular vector wk we obtain

∇wk
log p(y|x,w) =

V∑
j=1

xj [I(yj = k)− p(yj = k|x,w)] ,

where p(yj = k|x,w) is the marginal probability of yj = k given x and w,

p(yj = k|x,w) =
∑

{y′|yj=k}

p(y′|x,w).

Notice that Algorithm 1 only depends on the old gradient through its difference with the new gradient
(line 8), which in our example gives

∇wk
log p(y|x,w)−∇wk

log p(y|x,wold) =

V∑
j=1

xj [p(yj = k|x,wold)− p(yj = k|x,w)],

where w is the current parameter vector and wold is the old parameter vector. Thus, to perform this
calculation the only thing we need to know about wold is the unary marginals p(yj = k|x,wold),
while to perform the full gradient difference we will also need the pairwise marginals p(yj =
k, yk+1 = k′|x,wold) to update the transition parameters wk,k′ . For general pairwise graphical
model structures, the memory requirements to store these marginals will be O(V K +EK2), where
V is the number of vertices and E is the number of edges. Further, since computing these marginals
is a by-product of computing the gradient, this potentially-enormous reduction in the memory re-
quirements comes at no extra computational cost.

Recently, several works show that we can improve the convergence rates of randomized optimiza-
tion algorithms by using non-uniform sampling (NUS) schemes. This incldes randomized Kacz-
marz [21], randomized coordinate descent [14], and stochastic gradient methods [13]. Schmidt et
al. [17] argue that faster convergence rates might be achieved with NUS for SAG since it allows a
larger step size α. The key idea behind all of these NUS strategies is to bias the sampling towards
the Lipschitz constants, so we sample more often things that change quickly and sample things that
change slowly less often. We explored a simple NUS strategy where with probability 0.5 we sample
an example uniformly, and with probability 0.5 we sample proportional to our approximations Li of
the Lipschitz constants of the gradients of the examples. We update these approximations Li using
the line-search as in the code of Schmidt et al. [17]. Unlike this code, we initialize each Li with the
current average of the Li (rather than 1, which reduces the number of backtracking operations), and
we only multiply Li by 0.9 after each iteration (instead of 0.5, which also reduces the number of
expensive backtracking steps needed), and we simply set the step-size to α = 1

2

(
1

Lmax
+ 1

Lmean

)
.

4 Experiments

We compared a wide variety of approaches on four CRF training tasks: an optical character recog-
nition (OCR) dataset [22], the CoNLL-2000 shallow parse chunking dataset,1 the CoNLL-2002
Dutch named-entity recognition dataset,2 and POS-tagging task using the Penn Treebank Wall Street

1http://www.cnts.ua.ac.be/conll2000/chunking
2http://www.cnts.ua.ac.be/conll2002/ner

3

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l L−BFGS

Pegasos

SG AdaGrad

ASG
Hybrid

SAG

SAG−NUS
SAG−NUS*

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l L−BFGS

Pegasos

SG

AdaGradASG

Hybrid

SAG

SAG−NUS
SAG−NUS*

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS
Pegasos

SG
AdaGradASG

HybridSAG

SAG−NUSSAG−NUS*

0 20 40 60 80 100

10
−2

10
0

10
2

10
4

10
6

10
8

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

a
l

L−BFGS

Pegasos

SG
AdaGrad

ASG

Hybrid

SAG

SAG−NUS
SAG−NUS*

Figure 1: Objective minus optimal objective value against effective number of passes for different
deterministic, stochastic, and semi-stochastic optimization strategies. Top-left: OCR, Top-right:
CoNLL-2000, bottom-left: CoNLL-2002, bottom-right: POS-WSJ.

Journal data (POS-WSJ). We compared four classic stochastic gradient methods: Pegasos which is
a standard stochastic gradient method with a step-size of α = η/λt on iteration t [20], a basic
stochastic gradient (SG) method where we use a constant α = η, an averaged stochastic gradient
(ASG) method where we use a constant step-size α = η and average the iterations, and AdaGrad

where we use the per-variable αj = η/(δ +
√∑t

i=1∇j log p(yi|xi, wi)2) and the proximal-step
with respect to the `2-regularizer [4]. Since setting the step-size is a notoriously hard problem when
applying stochastic gradient methods, we let these classic stochastic gradient cheat by choosing the
η which gives the best performance among powers of 10 on the training data (and we set δ = 1). Our
comparisons also included a deterministic L-BFGS algorithm and the Hybrid L-BFGS/stochastic al-
gorithm of [6]. Finally, we included the SAG algorithm using our proposed strategy for controlling
the memory, the SAG-NUS variant of [17], and finally SAG-NUS* which uses the modified NUS
strategy from the previous seciton.

Figure 1 shows the result of our experiments on the training objective. Here we measure the number
of ‘effective passes’, meaning (1/n) times the number of times we performed the bottleneck oper-
ation of computing log p(yi|xi, w) and its gradient (this dominates the runtime of all algorithms).
We observe that SG outperformed Pegasos, ASG outperformed AdaGrad, and Hybrid outperformed
L-BFGS. None of the three competitive algorithms ASG/Hybrid/SAG dominated the others, but both
SAG-NUS methods outperform all other methods by a substantial margin based on the training objec-
tive. We omit the test error plot due to lack of space, but we note that SAG-NUS* always performed
as well and in one case much better than the best alternative method in terms of test error.

5 Discussion

An alternate way to reduce the memory requirements would be to group examples into mini-batches,
or to use memory-free linearly-convergent stochastic gradient methods [7, 26]. This algorithm has
been analyzed with NUS [25], but we found it less effective when combined with NUS in this
setting, in addition to doubling the computational cost per iteration. The SAG algorithm could be
modified to use multi-threaded computation as in the algorithm of [10], and indeed might be well-
suited to distributed parallel implementations. We have also explored using the SAGA algorithm [3]
and found it gave similar performance, and we are working on an analysis of this algorithm with
NUS. Our experiments show that our algorithm converges faster than other competing methods and
reaches the optimal test error at the same speed or faster than optimallty-tuned stochastic gradient
methods, but without the actual tuning that often frustrates practitioners.

4

References
[1] T. Cohn and P. Blunsom. Semantic role labelling with tree conditional random fields. In In

Proceedings of CoNLL-2005, pages 169–172, 2005.

[2] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett. Exponentiated gradient al-
gorithms for conditional random fields and max-margin Markov networks. The Journal of
Machine Learning Research, 9:1775–1822, 2008.

[3] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in Neural Information Pro-
cessing Systems, 2014.

[4] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[5] J. R. Finkel, A. Kleeman, and C. D. Manning. Efficient, feature-based, conditional random
field parsing. In Proceedings of ACL-08: HLT, pages 959–967, 2008.

[6] M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal of Scientific Computing, 34(3):A1351–A1379, 2012.

[7] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing Systems, 2013.

[8] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe opti-
mization for structural svms. International Conference on Machine Learning, 2013.

[9] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. International Conference on Machine Learning, 2001.

[10] T. Lavergne, O. Cappé, and F. Yvon. Practical very large scale CRFs. In Proceedings the
48th Annual Meeting of the Association for Computational Linguistics (ACL), pages 504–513,
2010.

[11] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for strongly-convex optimization with finite training sets. Advances in Neural
Information Processing Systems, 2012.

[12] A. McCallum, K. Rohanimanesh, and C. Sutton. Dynamic conditional random fields for jointly
labeling multiple sequences. In NIPS Workshop on Syntax, Semantics, Statistics, 2003.

[13] D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent and the randomized Kaczmarz
algorithm. arXiv preprint, 2013.

[14] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
CORE Discussion Paper, 2010.

[15] S. Nowozin and C. H. Lampert. Structured learning and prediction in computer vision. Foun-
dation and Trends in Computer Vision, 6, 2011.

[16] F. Peng and A. McCallum. Information extraction from research papers using conditional
random fields. Information Processing & Management, 42(4):963–979, 2006.

[17] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. arXiv preprint, 2013.

[18] B. Settles. Biomedical named entity recognition using conditional random fields and rich fea-
ture sets. In Proceedings of the International Joint Workshop on Natural Language Processing
in Biomedicine and its Applications, pages 104–107, 2004.

[19] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of
the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 134–141. Association for Com-
putational Linguistics, 2003.

[20] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient
solver for svm. Mathematical programming, 127(1):3–30, 2011.

[21] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential conver-
gence. Journal of Fourier Analysis and Applications, 15(2):262–278, 2009.

5

[22] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. Advances in Neural
Information Processing Systems, 2003.

[23] S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accelerated training
of conditional random fields with stochastic gradient methods. Iinternational conference on
Machine learning, pages 969–976, 2006.

[24] H. Wallach. Efficient training of conditional random fields. Master’s thesis, University of
Edinburgh, 2002.

[25] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance re-
duction. arXiv preprint arXiv:1403.4699, 2014.

[26] L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent
access of full gradients. Advances in Neural Information Processing Systems, 2013.

[27] J. Zhu and E. Xing. Conditional Topic Random Fields. In International Conference on Ma-
chine Learning, 2010.

6

	Conditional Random Fields
	Stochastic Average Gradient for Conditional Random Fields
	Implementation
	Experiments
	Discussion

