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Abstract

Structured output prediction is a powerful framework for jointly predicting in-
terdependent output labels. Learning the parameters of structured predictors is a
central task in machine learning applications, however, training the model from
data often becomes computationally expensive. Several methods have been pro-
posed to exploit the model structure, or decomposition, in order to obtain efficient
training algorithms. In particular, methods based on linear programming relax-
ation, or dual decomposition, decompose the prediction task into multiple simpler
prediction tasks and enforce agreement between overlapping predictions. In this
work we observe that relaxing these agreement constraints and replacing them
with soft constraints yields a much easier optimization problem. Based on this
insight we propose an alternative training objective, analyze its theoretical prop-
erties, and derive an algorithm for its optimization. Our method, based on the
Frank-Wolfe algorithm, achieves significant speedups over existing state-of-the-
art methods without hurting prediction accuracy.

1 Introduction

Structured output prediction is an effective framework to reason about real-life problems, since it
provides the means to map data instances to meaningful labels. By accounting for the correlations
between labels, prediction accuracy can be improved in a wide range of applications. In the setting of
supervised learning, the parameters of structured predictors are learned from training data. In partic-
ular, in the Structured SVM framework, the learning objective is formulated as regularized structured
hinge loss minimization [2, 11, 12]. Despite the convexity of the structured SVM objective func-
tion, finding the optimal parameters of these models is computationally expensive, since it requires
comparing training labels to predicted labels. For some specific models (e.g., tree-structured graphs,
matchings, and submodular scores), exact prediction can be done efficiently, however, in general
computing the objective or the gradient exactly is intractable. Therefore, one usually resorts to ap-
proximate inference algorithms [cf. 11, 6, 3]. One family of such approximations that has proved
quite successful is based on linear programming (LP) relaxation, or dual decomposition. In this
approach the intractable prediction task is decomposed into simpler prediction tasks, and consis-
tency among overlapping predictions is enforced. Although tractable, these algorithms are often
very expensive when used as a subroutine within the learning algorithm.

In this work we propose a novel training algorithm for structured SVMs. Our main insight is that
the consistency constraints between overlapping predictions significantly complicate the training
objective. Instead, we suggest to enforce these constraints in a soft manner, by introducing a penalty
term that accounts for constraint violation.
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2 Learning with Soft Constraints

We begin by reviewing the framework of structured SVMs [11, 12]. Consider the task of jointly
predicting a set of discrete labels y = (y1, . . . , yn), given a data-instance vector x. Our goal is to
learn the parameters w ∈ Rd of the linear prediction rule y(x;w) = argmaxy w

>φ(x, y), where
φ(x, y) ∈ Rd maps data-label pairs to a feature vector. In this supervised learning setting, w is
learned from training data {(x(m), y(m))}Mm=1 by reducing the regularized structured hinge loss:

min
w

λ

2
‖w‖2 +

1

M

∑
m

max
y

[
w>φ(x(m), y) + ∆(y, y(m))

]
− w>φ(x(m), y(m)) , (1)

where ∆(y, y(m)) is a task-loss that measures the cost of predicting y when the true output is y(m).

Since the space of possible outputs y is exponential in the number of output variables n, the maxi-
mization over outputs will generally not be possible by naive enumeration. In many applications, it
is common to assume that the score function decomposes into simpler score functions with respect
to subsets of indexes α ⊂ {1, ..., n}, namely w>φ(x, y) =

∑
α w
>
α φα(x, yα). Such decomposed

scoring function considers only (possibly overlapping) subsets of output variables yα = {yi}i∈α.
Assuming that the task loss ∆ decomposes in a similar manner, one can write the maximization
problems for prediction and training in the form maxy

∑
α θα(yα). Since this problem is generally

NP-hard, some kind of approximation will be necessary.

One approach to relax the hard learning problem of Eq. (1) replaces the intractable loss for each
training example by its (relaxed) dual [10, 8, 5]. Dividing the subsets α into singletons, denoted by
i = 1, ..., n, and high-order subsets c (also called “factors”), the resulting training problem is:

G : min
w,δ

g(w, δ) :=
λ

2
‖w‖2 +

1

M

∑
m

∑
α

max
yα

θ̂(m)
α (yα;w, δ) , (2)

where θ̂(m)
α (yα;w, δ) =

{
θ

(m)
i (yi;w) +

∑
c:i∈c δ

(m)
ci (yi) α ∈ {i}

θ
(m)
c (yc;w)−

∑
i:i∈c δ

(m)
ci (yi) α ∈ {c}

θ(m)
α (yα;w) = w>α

(
φα(x(m), yα)− φα(x(m), y(m)

α )
)

+ ∆(yα, y
(m)
α ) ∀α ∈ {c, i}

In this formulation θ̂α is a reparameterization of the model scores θα, where the variables δ(m)
ci (yi)

serve to encourage agreement between factor and variable maximizers. For each sample m there
exists such variable for a factor c, variable i ∈ c, and assignment yi [9].

It is well known [cf. 11] that the dual problem associated with problem G takes the form:

F : max
µ∈M×L

f(µ) := µ>`− λ

2
‖Ψµ‖2 , (3)

where µ is the set of dual variables, Ψm,α,yα = 1
λM

(
φα(x(m), y

(m)
α )− φα(x(m), yα)

)
is a column

vector in Rd, and `m,α,yα = 1
M∆(yα, y

(m)
α ) is a scalar. In this formulation the dual variables

µ
(m)
α (yα) can be interpreted as the marginal probability of the subset assignment yα [see, e.g.,

11, 13]. Furthermore, the constraint set M×L , known as the local marginal polytope, is a product
domain which enforces agreement between local marginals within each training example:

M(m)
L =

{
µ(m) ≥ 0 :

µ
(m)
c (yi) = µ

(m)
i (yi) ∀c, i ∈ c, yi∑

yα
µ
(m)
α (yα) = 1 ∀α = {c, i}

}
, (4)

where µ(m)
c (yi) =

∑
yc\i

µ
(m)
c (yc) is the marginal of the variable assignment yi taken from the

factor marginal µ(m)
c .

Focusing on the dual problem F, our main insight is that part of the difficulty in optimizing this
objective stems from the fact that the marginals associated with a training example µ(m) are coupled
together through the agreement constraints inML. Therefore, we next alleviate this complication by
relaxing these constraints. In particular, applying the penalty method [1] to the agreement constraints
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Algorithm 1 Block-coordinate Frank-Wolfe for soft structured SVM

1: Initialize: w = 0, δ = 0, µ(m)
α (yα) = 1{yα = y

(m)
α } for all m,α, yα

2: while not converged do
3: Randomly sample a block (m,α)

4: Let θ̂(m)
α be a reparameterization as in Eq. (2)

5: Let y∗α = argmaxyα θ̂
(m)
α (yα), and let sα be the corresponding indicator vector

6: Let γ =


θ̂>i

(
si−µ(m)

i

)
λ‖Ψm,i(si−µ(m)

i )‖2+ρNi‖si−µ(m)
i ‖2

α ∈ {i}
θ̂>c (sc−µ(m)

c )
λ‖Ψm,c(sc−µ(m)

c )‖2−ρ
∑
i:i∈c ‖Aci(sc−µ

(m)
c )‖2

α ∈ {c}
and clip to [0, 1]

7: Update µ(m)
α ← (1− γ)µ

(m)
α + γsα

8: Update w = Ψµ and δ = Aµ
9: end while

in F (see Eq. (3)) means replacing the constraint µ(m)
c (yi) = µ

(m)
i (yi) with a penalty term of the

form 1
2ρ

(
µ

(m)
c (yi)− µ(m)

i (yi)
)2

for all m, c, i ∈ c, yi. Clearly, as ρ → 0 the penalty increases
and the solution of the unconstrained problem converges to a solution of the original constrained
problem. As before, we can write the resulting problem concisely as:

Fρ : max
µ∈S×

fρ(µ) := µ>`− λ

2
‖Ψµ‖2 − ρ

2
‖Aµ‖2 , (5)

where (Aµ)m,c,i,yi = 1
ρM

(
µ

(m)
c (yi)− µ(m)

i (yi)
)

, and S× is a product domain with per-factor
simplex constraints (see Eq. (4)). Intuitively, the additional penalty term serves to “smooth” the
boundaries of the local marginal polytope constraints in F , while keeping the feasible domain µ ∈
M×L unchanged.

The dual problem of Fρ turns out to be:

Gρ : min
w,δ

gρ(w, δ) := g(w, δ) +
ρ

2
‖δ‖2 (6)

This problem is the same as the primal G, except for the additional L2 term for δ. For this problem
we have the dual-primal mapping: w(µ) = Ψµ and δ(µ) = Aµ, which we will later use.

We next justify the use of the softly constrained objective by bounding its difference from the con-
strained one. In the next theorem we use the following notation. Let ‖w‖2 ≤ B for all w, let
‖φ(x, y)‖2 ≤ R for all (x, y), and let ∆(y, y′) ≤ L for all (y, y′). Therefore, ‖θ‖∞ ≤ 2BR+L. In
addition, let |Yi| be the number of states of output variable i, and let Ymax = maxi |Yi| denote the
maximum over all variables. Finally, let q be the maximal number of factors (including singletons)
in any instance.

Theorem 2.1. Let g∗ρ be the optimal value of Gρ, and let g∗ be the optimal value of G. Then
g∗ρ −

ρ
2h ≤ g

∗ ≤ g∗ρ , where h = M(8Ymaxq(BR+ L))2.

This theorem shows that despite using soft constraints, we still have guarantees w.r.t. the original
constrained objective. At first glance, the bound in Theorem 2.1 may seem quite loose due to the
linear dependence on the number of samples M . However, recall that the difference between gρ and
g is the L2 regularization term for δ. Unlike the weight vector w, the number of agreement variables
(length of δ) grows with M , and therefore its norm also grows linearly with M . We will later see
that this is not a serious limitation of our approach, since in practice the difference between gρ and
g is not so large, even for relatively high values of ρ.

Given Theorem 2.1, we can obtain a similar result for a near-optimal solution.

Theorem 2.2. Let µερ be a dual solution to Fρ for which the duality gap is bounded: Dρ(µ
ε
ρ) =

gρ(w(µερ), δ(µ
ε
ρ))− fρ(µερ) ≤ ε. Then w(µερ) is

(
ε+ ρ

2h
)
-optimal for G.
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Figure 1: Comparison of training objective (top row) and performance measure (bottom row) as a function of
runtime for the Yeast (left column), Reuters (middle column) and MSRC-21 (right column) datasets. In the top
row we show the hard-constrained objective value g(w(µ), δ(µ)).

3 Algorithm

In this section we propose an algorithm for optimizing our alternative dual problem Fρ (Eq. (5)).
In this work we use the block-coordinate Frank-Wolfe (BCFW) algorithm, which was introduced by
[7]. Applying BCFW to our dual objective fρ yields Algorithm 1, where Ni = |{c : i ∈ c}| is the
number of factors containing variable i, Ψm,α is the part in Ψ corresponding to sample m and factor
α, and Aci marginalizes µc to values of variable i ∈ c.
Algorithm 1 has several compelling properties. First, the update of primal variables (w, δ) in line
8 is computationally cheap since a change in µ(m)

α affects only wα and δ variables pertaining to
the chosen α (i.e., its neighbors in the factor graph). Second, the algorithm employs simple per-
factor maximization oracles. Third, since the optimal step-size is computed analytically, there are
no hyperparameters to tune. Finally, we use the duality gap as a sound stopping criterion.

Building on the analysis in [7], we can bound the runtime of Algorithm 1 as follows.
Theorem 3.1. Algorithm 1 obtains an ε-optimal solution µ with ε-duality-gap Dρ(µ) ≤ ε after at

most O
(
q2

ε

(
1
λ + 1

ρ

))
iterations.

In comparison, for the constrained objective f (Eq. (3)) the rate obtained in [7] is O
(

1
λε

)
, which

seems faster. However, each iteration requires calling a maximization oracle for a complete training
example (µ(m) block), while Algorithm 1 requires optimizing only over factor blocks µ(m)

α , which
can be much cheaper.

4 Experiments

In this section we compare our algorithm to other state-of-the-art baselines. In particular, we im-
plement Algorithm 1, the BCFW algorithm [7], the DLPW algorithm [8], and a smooth version of
DLPW [4]. Notice that DLPW is similar to our method in the sense that the updates are ”local” and
do not process complete training samples. We conduct experiments on two different domains: multi-
label classification (Yeast, Reuters) and image segmentation (MSRC-21). In both cases the model
consists of singleton and pairwise scores: w>φ(x, y) =

∑
i w
>
i φi(x, yi) +

∑
i,j w

>
ijφij(yi, yj).

In Figure 1 we observe that our method is upto two orders of magnitude faster than the baselines.
Our algorithm has cheap local updates and uses the optimal step at each iteration, thereby achieving
fast convergence. Moreover, we notice that our algorithm is able to quickly learn a model with high
prediction accuracy. We also see that the performance of our method is rather insensitive to the
choice of ρ, and even a large value ρ = 10 is sufficient to obtain good prediction accuracy.
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