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Abstract

Many real-world data arise naturally in the form of tensors, i.e. multi-dimensional
arrays. Equipped with an appropriate notion of low-rankness, learning algorithms
can benefit greatly from exploiting the rich dependency encoded in a tensor. How-
ever, due to complexity issues, most existing works still resort to unfolding the
tensor to one (or several) matrix, at the risk of losing valuable structural informa-
tion. To address this problem, we choose to directly learn a low-rank tensor in an
approximate manner. By combining a simple approximation algorithm for the ten-
sor spectral norm with the recent generalized conditional gradient, we establish a
formal optimization guarantee for a general low-rank tensor learning formulation.
Extensive experiments verify the superiority of our algorithm.

1 Introduction
Real-world data usually exhibit rich structures that learning algorithms can significantly benefit
from. While data in matrix forms may have low rank, more general multi-way correlations are often
observed in tensor structured data, i.e. multi-dimensional array [1]. Example applications include
multi-channel images, video sequences, chemical compound processes, antenna array signals, etc.

Remarkable success has been achieved in low-rank matrices since the seminal work of [2]. Natu-
rally, one expects a similar picture for tensors—after all they are “just” high order matrices. Unfor-
tunately, the genuine extension of the matrix rank to tensors is challenging, because many “obvious”
properties in matrices cease to hold true. Further complications arise from complexity issues, e.g.
computing the tensor rank is NP-Hard [3]. As a result, many existing methods first unfold the tensor
into a matrix along a certain mode, and then apply the existing matrix technique, e.g., minimizing
the matrix trace norm as a proxy of the rank. In order to complete a partially observed tensor, [4]
compared three methodologies: complete slice-by-slice, take the best of the mode-k matrix com-
pletions, and use a weighted sum of mode-k trace norms. [4] found that the last strategy worked
best in a variety of tasks. Similar ideas also appeared in [5–8]. Instead of enforcing low rank in all
modes, [9] considered decomposing a tensor into a mixture of tensors, each employing low rank in
a specific mode. Recently, [10] proposed a relaxation that is tighter than the matrix trace norm.

However, unfolding a genuine tensor into a matrix may be unsatisfying or even misleading. Intu-
itively, a tensor of “low” rank can nevertheless have large or even full rank in all matrix unfold-
ings. Therefore in this paper, we propose taking a different approach by learning a low-rank tensor
through directly minimizing the tensor trace norm, an effective convex surrogate suggested in the
atomic norm framework [11]. Recently this principle has also been shown promising in theory [12].

Unfortunately tensor trace norm is intractable in computation [3]. To overcome the complexity
barrier, we forgo exact solutions and resort to approximate solutions which provide sub-optimality
guarantees. This idea is consistent with the standard practice of addressing NP-Hard problems with
approximate algorithms that are provably “good”. However, we are not aware of such algorithms
in the context of tensor trace norm optimization1, or efficient implementations that scale up to large
data. Therefore, our key contribution is to fill this gap by utilizing a simple approximation algorithm

1For example, [12] did not provide any computational algorithm.
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for computing the tensor spectral norm, within the optimization framework of generalized condi-
tional gradient [GCG, 13, 14]. By developing a novel error bound for GCG based on multiplicatively
approximate oracle, we further prove the approximation guarantee of our optimization method for
a general formulation of low-rank tensor learning. Thanks to the low-rank factorization of the so-
lution that our approach maintains explicitly, the per-step complexity and memory consumption are
kept low, allowing it to scale to large datasets. Extensive experiments consistently corroborate the
superior efficiency and accuracy of our scheme, in comparison to state-of-the-art competitors.

It is noteworthy that a large body of works exist which directly find a low-rank tensor decomposition,
e.g. [1, 15–17]. However, they usually suffer from a) commitment to a pre-selected rank parameter;
b) tailored for the specific least squares loss; and c) weak convergence guarantee. In contrast, we
promotes low-rank for any loss through the tensor trace norm, finding an optimal rank automatically.

2 CP Decomposition and Low-Rank Tensor Learning
We identify a tensor as a multi-dimensional array A ∈ RI1×I2×···×IK , where K is the order and
each Ik is the dimension of the k-th mode. Following [1], we define the mode-k multiplication with
respect to any matrix U ∈ RJk×Ik as A×k U ∈ RI1×...×Ik−1×Jk×Ik+1×...×IK with elements

(A×k U)i1,...,ik−1,jk,ik+1,...,iK =
∑Ik

ik=1
Ai1,...,ik−1,ik,ik+1,...,iKUjk,ik . (1)

As usual, we define the inner product between two tensors with the same size as 〈A,B〉 :=∑
i1,...,iK

Ai1,...,iKBi1,...,iK , and the induced Frobenius norm ‖A‖F :=
√
〈A,A〉. We can un-

fold (or flatten) a tensor into a 2-D matrix as follows. For any 1 ≤ k ≤ K, A(k) ∈ RIk×(
∏
j 6=k Ij),

with its
(
ik, 1 +

∑K
j=1,j 6=k(ij − 1)

∏K
m=j+1,m 6=k Im

)
-th entry being Ai1,...,iK . Like matrices, we

can decompose a tensor into a combination of primitives, in particular, low-rank factors. We call the
tensor A rank-1 if it can be written as the tensor outer product A = u ◦ v ◦ · · · ◦ z, where the K
vectors u ∈ RI1 , . . . , z ∈ RIK . That is, Ai1,··· ,iK = ui1vi2 · · · ziK . We say rank(A) = r if A can
be decomposed into a sum of r (but not less) rank-1 tensors, namely A =

∑r
i=1 ui ◦ vi ◦ · · · ◦ zi.

This decomposition is known as CANDECOMP/PARAFAC, or more succinctly CP.

In general rank(A) can be much larger than maxk rank(A(k)) or maxk Ik. Even when rank(A) is
low (compared to its degree of freedom), the unfolding A(k) can have large or even full matrix rank
for all k, which suggests that treating a tensor as unfolded matrices can be unsatisfying. Computing
the CP decomposition, or the rank, is intractable [3]. A popular approximation is the alternating
least squares (ALS), which alternatively optimizes each factor matrix with all others fixed [1].

Mathematically, we aim at solving the following optimization problem:
minW `(W) + λ · rank(W), (2)

where ` is any proper convex loss with Lipschitz continuous gradient. In tensor completion, `(W) =

‖L (W −Z)‖2F, where Z is some observed tensor, and L : RI1×···×IK → RI1×···×IK is some
linear operator (e.g. the sampling operator). Here we are interested in the genuine tensor rank,
rather than the mode-k rank. As mentioned in the introduction, we believe and verify, through
extensive experiments, that pursuing a small tensor rank is meaningful and potentially advantageous
in practice. To address the computational issues of tensor rank, we follow the principle of convex
relaxation for matrix ranks, and pursue tensor trace norms that [11] justified in a general atomic
norm framework. Terefore we consider the regularized risk minimization

minW `(W) + λ · ‖W‖tr , (3)
where ‖·‖tr is the tensor trace norm [TNN, 11, 18, 19], defined as the dual of the spectral norm:

‖A‖sp := max{〈A,u1 ◦ · · · ◦ uK〉 : ‖ui‖2 ≤ 1, i = 1, . . . ,K}. (4)

Obviously, ‖A‖sp ≤
∥∥A(k)

∥∥
sp

, implying that ‖A‖tr ≥
∥∥A(k)

∥∥
tr

. For K ≥ 3, almost no significant
effort has been made on solving (3), because the tensor trace norm itself is intractable to compute [3].
However, (3) does enjoy some advantages besides convexity. [12] proved that the tensor trace norm
leads to improved sample size requirements. Furthermore, [11] managed to reformulate (3) as a
hierarchy of semidefinite programs (SDP). In theory, as the hierarchy approaches infinite, one could
solve (3) optimally. But SDP is expensive and hard to scale to large datasets. Our main contribution,
presented in the next section, is a simple algorithm that approximately solves (3) with sub-optimality
guarantee, and scales efficiently on large datasets.
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Algorithm 1: Approximate generalized conditional gradient for sublinear κ
1 choose w1 ∈ dom ` ∩ domκ.
2 for t = 1, 2, . . . do
3 Compute gt ← ∇`(wt), and find zt ∈ Bκ so that 〈zt,gt〉 ≤ α ·minz∈Bκ 〈z,gt〉;
4 ηt ← 2/(t+ 2); st ← argmins≥0 `((1− ηt)wt + sηtzt) + λ · sηt;
5 w̃t+1 ← (1− ηt)wt + ηt(stzt);
6 choose wt+1 so that f(wt+1) ≤ min{f(wt), f(w̃t+1)}.

3 Approximate Generalized Conditional Gradient
Our algorithm is based on the recent work of generalized conditional gradient [GCG, 13, 14], which
extends the conditional gradient (a.k.a. Frank-Wolfe [20]) to the penalized objective in the form of
(3). Our results below allow the trace norm to be generalized into any positive homogeneous convex
function κ, and the tensor variable into any Hilbert space. So henceforce we simply write κ in place
of ‖·‖tr, and boldface symbol w in place of curlyW . The basic algorithm of [13, 14] successively
linearizes the loss ` at the current iterate wt, finds an update direction from the “unit ball” Bκ:

zt ∈ argminz∈Bκ 〈z,∇`(wt)〉 , where Bκ := {w : κ(w) ≤ 1}, (5)
and then performs the update wt+1 = (1− ηt)wt + ηtstzt with some step size ηt and scaling factor
st. However, when GCG is applied to (3), the problem (5) requires computing the tensor spectral
norm (4), which is known to be intractable for K ≥ 3 [3] . The crucial observations we make here
are a) like many other NP-Hard problems, the tensor spectral norm admits simple approximation
algorithms; and b) GCG is “robust” against approximate subroutines—a point we demonstrate first.
Theorem 1 Let ` ≥ 0 be convex, smooth, and have bounded sublevel sets; κ be a positive ho-
mogeneous convex function. Then after t iterations Algorithm 1 outputs wt+1 such that for all w,

f(wt+1)− f(w)

α
≤ 4C

t+ 2
, where f(w) = `(w) + λκ(w).

Here C is some absolute constant depending on f , w, w1 and α. (Proof is provided in [21]).

The approximation constant α lies in ]0, 1], because the objective in the subroutine (5) is nonpositive
(the ball Bκ contains the origin). Note that [22] considered a different multiplicative-approximate
scheme, which in essence requires, in each step, an approximate solution of minz∈Bκ 〈z,∇`(wt)〉−
〈wt,∇`(wt)〉 . Unfortunately, due to the last constant term, it is usually hard, if possible, to come
up with a multiplicative approximate solution for it. On the other hand, [22] was still able to prove
exact convergence while Theorem 1 here yields only an approximate guarantee. We noted in passing
that a strategy similar to ours appeared independently in [23] for matrix factorization.

Approximately Computing the Tensor Spectral Norm We still need to solve the subroutine
(5), approximately. Fortunately tensor spectral norm admits a particularly simple approximation
algorithm [24]. The idea is to iteratively reduce the size of the tensor whereas in the k-th step we lose
at most a factor of 1/

√
Ik (due to relaxing the Frobenius norm to the spectral norm). Algorithm 2

summarizes the main steps. Note that we only need to compute the spectral norm (as opposed to
trace norm) of the unfolded matrices A(k), which can be advantageous in large applications.

It is straightforward to prove that Algorithm 2 yields at least an α =
∏K−2
k=1 I

−1/2
k -approximate

solution whereI1 ≤ · · · ≤ IK (see proof in [21]). Combining Algorithm 1 and 2 we immediately
obtain an α =

∏K−2
k=1 I

−1/2
k -approximate solution for the low-rank tensor learning problem (3).

Although the approximation ratio depends on the size (skipping the two largest modes), it is only a
worst-case bound which is likely not tight. Indeed, by enhancing Algorithm 2 with some local search
procedure such as ALS, in experiments we almost always find the optimal solution. We mention
that it is possible to get a (slightly) better approximation bound, at the expense of complicating the
algorithm [25]. Here, we adopt Algorithm 2 mostly because of its simplicity and efficiency.

Practical Acceleration A very effective acceleration strategy was proposed in [13] for the matrix
trace norm, and it can be extended to the tensor setting by utilizing a new variational representation
of the trace norm (see [21] for the proof, and contrasts with other tensor regularizers in [7, 26]):

‖A‖tr = inf
{

1
K

∑
i
‖ui‖K2 + ‖vi‖K2 + · · · ‖zi‖K2 : A =

∑
i
ui ◦ vi ◦ · · · ◦ zi

}
. (6)
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Algorithm 2: Approximate computation of tensor spectral norm forA∈RI1×···IK .I1≤· · ·≤IK .
1 for k = K − 1, . . . , 2 do
2 uk ← top left singular vector of A(k), and flatten the k-th mode of A by A ← A×k u>k ;

3 (u1,uK)← top left and right singular vectors of A(1).

0.1 0.2 0.3 0.4 0.5

0.15

0.2

0.25

Fraction of Observations (p%)

T
es

t R
S

E

 

 

TTN
HaLRTC
RP

Figure 1: RSE vs p for
image inpainting
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Figure 2: RSE vs p for
video completion
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Figure 3: RSE vs p for
school grade prediction
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Figure 4: Test MSE vs p
for restaurant rating

After the t-th iteration, we obtain a low-rank representation of the current iterateWt =
∑t
i=1 ui ◦

· · · ◦ zi. Using (6), we may interlace GCG updates with optimization of a surrogate objective:

minũi,...,z̃i `(Σ
t
i=1ũi ◦ · · · ◦ z̃i) + λ

K

∑t

i=1

(
‖ũi‖K2 + · · · ‖z̃i‖K2

)
, (7)

initialized with the t-th iterate of Algorithm 1. The resulting procedure is in [21]. Importantly, (7) is
easy to evaluate, facilitating local optimization via, e.g., L-BFGS. Although a naive implementation
of gradient computation costs O(KΠkIk) time, it can be reduced by a factor of K via dynamic pro-
gramming [21]. Empirically, the seamless integration of (7) significantly speeds up the convergence
of GCG, and this is enabled by the explicit low-rank representation maintained in Algorithm 1.

4 Experiments
We studied the empirical performance of TTN in tensor completion, robust PCA, and multitask
learning. The complete results are given at [21], and we highlight some of them due to space limits.

Low-rank Tensor Completion We first consider the loss ‖L (W −Z)‖2F where L is the mask
operator from RI1×···×IK to RI1×···×IK , which simply fills the unobserved entries with zero. Two
state-of-the-art algorithms were used for comparison: HaLRTC [4] which uses the weighted trace
norm on unfolded matrices; and a tighter relaxation by Romera-Paredes and Pontil [10], referred as
RP. For all methods, we randomly picked p% elements of Z as observations for training (20 random
repetitions). The value of λ was selected via a validation set, which always consisted of 10% of the
whole dataset. The test error was evaluated on the remaining (90− p)% entries.

Figures 1 to 3 show the test root square error (RSE) as a function of p, over three real datasets. The
image inpainting dataset uses facade from [4], representing images as a “width (259)” × “height
(247)” × “RGB (3)” tensor. Both RSE and visual results demonstrate the superiority of TTN in
propagating global structure from a small number of observed pixels. The video completion task
used the Ocean video [4, 10], where videos form 4-order tensors sized 160× 112× 3× 32 (“width”
× “height” × “RGB” × “frame”). Figure 2 shows that TNN is again more effective than other
competitors. Following [10], we used the Inner London Education Authority dataset, representing
each of the 15,362 students with five categorical attributes: school, gender, VR-band, ethnic, and
year. This led to a 5-order tensorZ ∈ R139×2×3×11×3. The prediction of exam scores was therefore
formulated as a tensor completion problem. Figure 3 confirms that lower error is achieved by TTN.

Multitask Learning Our last experiment uses a low-rank tensor for multitask learning in restau-
rant recommendation [7]. It predicts the rating that a restaurant (represented by an I1 = 45 dimen-
sional feature vector) would receive from each of the I2 = 138 customers, in I3 = 3 aspects (food,
service, overall). So there are I2 × I3 tasks, with each task employing a I1 dimensional weight
vector, and the whole weight tensor is assumed to have low rank. We used `2 loss for `.

Following [7], we randomly sampled m ratings (across all tasks) for training, 10% for validation,
and the rest for testing. TTN was compared with the convex multilinear multitask learning model
(MLMTL-C) and its non-convex variant MLMTL-NC, which, as shown by [7], predicts more accu-
rately than a number of other multitask algorithms. The test MSE as a function of m is shown in
Figure 4. Clearly, TTN yields significantly lower test error over a range of training set sizes.
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