
Complexity Issues and Randomization Strategies in
Frank-Wolfe Algorithms for Machine Learning

Emanuele Frandi 1∗

ESAT-STADIUS
KU Leuven, Belgium

Ricardo Ñanculef 2∗

Department of Informatics
Federico Santa María University, Chile

Johan Suykens 1∗

ESAT-STADIUS
KU Leuven, Belgium

Abstract

Frank-Wolfe algorithms for convex minimization have recently gained consider-
able attention from the Optimization and Machine Learning communities, as their
properties make them a suitable choice in a variety of applications. However,
as each iteration requires to optimize a linear model, a clever implementation
is crucial to make such algorithms viable on large-scale datasets. For this pur-
pose, approximation strategies based on a random sampling have been proposed
by several researchers. In this work, we perform an experimental study on the
effectiveness of these techniques, analyze possible alternatives and provide some
guidelines based on our results.

1 Introduction

The Frank-Wolfe algorithm [7], hereafter denoted as FW, is a general method to solve
min
α∈Σ

f(α),

where f : Rm → R is a convex differentiable function, and Σ ⊂ Rm is a convex polytope. Given
the current iterate α(k) ∈ Σ, a standard FW iteration consists of the following steps:

1. Define a search direction d(k) by optimizing a linear model:

u(k) ∈ argmin
u∈Σ

(u− α(k))T∇f(α(k)) = argmin
u∈V(Σ)

uT∇f(α(k)), d(k) = u(k) − α(k), (1)

where V(Σ) denotes the set of vertices of Σ.

2. Choose a stepsize λ(k), e.g. by a line-search: λ(k) ∈ argminλ∈ [0,1] f(α(k) + λd(k)).

3. Update: α(k+1) = α(k) + λ(k)d(k) = (1− λ(k))α(k) + λ(k)u(k) .

Recently, the Optimization and Machine Learning communities have showed a renewed surge of
interest in the family of FW algorithms [10, 9, 16]. They enjoy bounds on the number of iterations
which are independent of the problem size, as well as sparsity guarantees [3, 10]. Furthermore,
variants of the above basic procedure exist which attain a linear convergence rate [19, 8, 16, 13].
Such properties make FW a good choice for problems arising in a variety of applications [1, 5, 14].

Complexity of Frank-Wolfe Iterations. As the total number of FW iterations can be large in
practice, devising a convenient way to find a solution to the subproblem (1) is often mandatory in
order to make the algorithm viable. A typical situation arises when (1) has an analytical solution
or the problem structure makes it easy to solve [16, 15]. Still, the resulting complexity can be
impractical when handling large-scale data. As a motivating example, we consider the problem

min
α∈Rm

f(α) = 1
2α

TKα s.t.
m∑
i=1

αi = 1, α ≥ 0 , (2)

∗Emails: 1{efrandi,johan.suykens}@esat.kuleuven.be, 2jnancu@inf.utfsm.cl

1

which stems from the task of training a nonlinear L2-SVM model for binary classification [18, 4].
Here, K is a positive definite kernel matrix. In this case, V(Σ) = {e1, . . . , em}, hence we have

u(k) = e
i
(k)
∗
, where i

(k)
∗ ∈ argmin

i=1,...,m
∇f(α(k))i = argmin

i=1,...,m

∑
j |α(k)

j >0

Ki,jα
(k)
j .

The theoretical cost of an iteration is therefore O(m|I(k)|), where I(k) = {i |α(k)
i > 0}, propor-

tional to the number of examples.1 In order to circumvent the dependence from the dataset size,
the use of approximation strategies based on a random sampling has been proposed by several re-
searchers [18, 5], but, up to our knowledge, never systematically studied on practical problems. We
attempt to fill this gap by performing an experimental study on the effect of using such techniques.

2 Randomization Strategies and Possible Alternatives

In this section, we consider two different techniques to reduce the computational effort in each FW
iteration, and try to identify the kind of problems where each can be applied effectively.

2.1 Random Working Set Selection

A simple and yet effective way to avoid the dependence on m is to explore only a fixed number of
points in V(Σ). In the case of (2), this means extracting a sample S ⊆ {1, . . . ,m} and solving

i
(k)
S ∈ argmin

i∈S
∇f(α(k))i .

The iteration cost becomes in this case O(|S||I(k)|). The following result motivates this kind of
approximation, suggesting that it is reasonable to keep the samples very small, i.e. to pick |S| � m.

Theorem 1 ([17], Theorem 6.33). Let D ⊂ R be a set of cardinality m, and let D′ ⊂ D be a
random subset of size r. Then, the probability that the smallest element in D′ is less than or equal
to m̃ elements of D is at least 1− (m̃m)r.

In the case of (2), where D = {∇f(α(k))1, . . . ,∇f(α(k))m} and D′ = {∇f(α(k))i | i ∈ S}, this
means that, for example, it only takes |S| ≈ 60 to guarantee that, with probability at least 0.95 (and
independently of m), ∇f(α(k))

i
(k)
S

lies between the 5% smallest gradient components.

Choice of the Stopping Criterion and Implications. The stopping criterion for FW algorithms is
usually based on the duality gap [10]:

∆d(α
(k)) := max

u∈Σ
(α(k) − u)T∇f(α(k))

(2)
= 2f(α(k))−∇f(α(k))

i
(k)
∗
≤ ε .

This criterion, however, is not applicable without computing the entire gradient∇f(α(k)), which is
not done in the randomized case. As a possible alternative, we can use the approximate quantity

∆S(α(k)) := 2f(α(k))−∇f(α(k))
i
(k)
S
.

Since ∆S(α(k)) ≤ ∆d(α
(k)), this simplification entails a tradeoff between the reduction in com-

putational cost and risk of an anticipated stopping. Although this can be considered acceptable in
contexts such as SVM classification, where solving the optimization problem with a high accuracy
is usually not needed, it is important to make sure that the impact of this approximation can be kept
to an acceptable level. The experiments in the next section aim precisely at investigating this issue.

2.2 Analytical Gradient Update

Another possibility to obtain a more efficient iteration is to exploit the structure of the problem to
keep the exact gradient∇f(α(k)) updated at each iteration [12]. In the case of problem (2), this can
be done in O(m) operations, since it is easy to see by using the formula for the FW step that

∇f(α(k+1))i = (1− λ(k))∇f(α(k))i + λ(k)K
i,i

(k)
∗
, i = 1, . . . ,m.

Compared to a naive implementation, we get rid of a factor |I(k)| and, as an important by-product,
we have that the duality gap can be updated exactly without any additional cost.

1More in general, it is proportional to |V(Σ)| and to the cost of computing uT∇f(α(k)), with u ∈ V(Σ).

2

3 Numerical Results

In order to assess the effectiveness of the above implementations of the FW step, we conducted
numerical tests on the benchmark datasets Adult a9a (m = 32561), Web w8a (m = 49749),
IJCNN (m = 49990) and USPS-ext (m = 266079) [2, 6]. All the experiments were coded in C++,
and executed on a 3.40GHz 4-core Intel machine with 16GB RAM running Linux.

Table 1 presents the statistics (averaged over 10 runs) for classification accuracy on the test set, CPU
time, number of iterations and support vectors, obtained with samplings of increasing size. The
tolerance parameter was set to ε = 10−4, and a Gaussian kernel was used in all the experiments. An
LRU caching strategy was implemented to avoid the computation of recently used entries ofK [11].

Dataset m points 1000 points 500 points 250 points 125 points

Adult a9a Test acc (%) 83.56 84.10 83.91 83.68 83.88
Time (s) 1.40e + 02 4.26e + 02 2.55e + 02 1.62e + 02 1.12e + 02
Iter 2.02e + 04 1.94e + 04 1.91e + 04 1.85e + 04 1.71e + 04
SVs 1.40e + 04 1.37e + 04 1.36e + 04 1.34e + 04 1.20e + 04

Web w8a Test acc (%) 99.36 99.30 99.28 99.00 98.49
Time (s) 3.17e + 02 2.50e + 02 1.60e + 02 5.55e + 01 2.75e + 01
Iter 1.65e + 04 1.39e + 04 1.24e + 04 4.63e + 03 2.17e + 03
SVs 6.43e + 03 6.33e + 03 5.77e + 03 2.82e + 03 1.70e + 03

IJCNN Test acc (%) 98.24 98.42 98.30 98.28 97.57
Time (s) 4.99e + 01 1.19e + 02 5.80e + 01 3.12e + 01 1.43e + 01
Iter 1.61e + 04 1.46e + 04 1.22e + 04 9.91e + 03 5.69e + 03
SVs 3.17e + 03 3.59e + 03 3.72e + 03 3.84e + 03 3.37e + 03

USPS-ext Test acc (%) 99.52 98.90 98.88 99.50 99.45
Time (s) 1.77e + 03 4.25e + 02 2.83e + 02 1.56e + 02 4.97e + 01
Iter 2.05e + 04 9.07e + 03 4.32e + 03 2.70e + 03 1.65e + 03
SVs 3.94e + 03 3.59e + 03 3.00e + 03 2.37e + 03 1.60e + 03

Table 1: Average statistics with different sampling sizes.

First of all, note that the effect of sampling is substantially problem-dependent. On some datasets,
such as USPS-ext, FW clearly encounters an early stopping even with a fairly large sampling size,
while other results, such as those on Adult a9a, appear more stable. In some cases, e.g. on Web
w8a, there seems to be a cutoff point after which the performance degrades considerably. Still, some
general trends can be estabilished: the number of iterations decreases monotonically with |S|, as
expected from the observations in Section 2, and CPU times decrease accordingly. On the contrary,
as seen from the results on IJCNN, the model size is not always monotonic with respect to |S|. This
arguably happens because solving (1) approximately can lead to spurious points being selected as
FW vertices. Finally, note that the full sampling solution (which employs the strategy in Section
2.2) is very competitive on the smaller problems, while it is still very time consuming on the largest
dataset USPS-ext. This intuitively suggests that a random sampling is computationally convenient
when it can still produce a good solution with |S| � m/µ|I(k)|, where µ|I(k)| is an estimate of the
average cardinality of I(k) across iterations. Some of these conclusions are summarized in Table 2.

In the next experiment, we analyze, on the datasets Adult a9a and USPS-ext, the effect of sampling
on the computation of the duality gap (and therefore on the stopping criterion) and on the minimiza-
tion of the linear model. Figures 1 and 2 report, respectively, the exact gap ∆d and the approximate
gap ∆S , plotted in logarithmic scale against the iteration number for various sampling sizes.

The figures shed light on the results in Table 1. On the dataset Adult a9a, the randomized strategy
appears very effective: the duality gap does not deviate much from the ideal figure obtained with the
full dataset, even for small sampling sizes. Furthermore, there are no significant differences between
computing the exact and approximate duality gap. On the other hand, on USPS-ext, ∆d is noticeably
larger than its approximate counterpart, indicating that the algorithm is making less progress than
predicted by ∆S . Furthermore, the approximate gap exhibits large oscillations due to the random
nature of the sampling, and it is possible that an “unlucky” iteration leads to a premature stopping,
as can be seen from the figure. It is interesting to note that the degradation in optimization quality

3

0 0.5 1 1.5 2

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

lo
g

1
0
(∆

d
)

 m points

 1000 points

 500 points

 250 points

 125 points

(a)

0 0.5 1 1.5 2

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

lo
g

1
0
(∆

d
)

 m points

 1000 points

 500 points

 250 points

 125 points

(b)

Figure 1: Exact duality gap path on datasets Adult a9a (a) and USPS-ext (b).

0 0.5 1 1.5 2

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iterations

lo
g

1
0
(∆

d
)

 m points

 1000 points

 500 points

 250 points

 125 points

(a)

0 0.5 1 1.5 2

x 10
4

−5

−4

−3

−2

−1

0

Iterations

lo
g

1
0
(∆

d
)

 m points

 1000 points

 500 points

 250 points

 125 points

(b)

Figure 2: Approximate duality gap path on datasets Adult a9a (a) and USPS-ext (b).

(as measured by ∆d) is not reflected in this case by a corresponding loss in test accuracy, which
is a phenomenon typical of classification problems. However, this is not true in general, as other
applications such as function estimation are known to be more sensitive to a less accurate solution.

Randomized Working Set Selection - Applicable whenever Σ is a polytope
- Large computational gain when |S| � m/µ|I(k)|
- Performance depends on the problem

Analytical Gradient Update - Convenient for structured f (e.g. quadratic)
- Saves a factor |I(k)| at each iteration
- Deterministic results

Table 2: Some recommendations on the implementation of the FW step.

Adaptive Strategies. Taking into account all the above, one would ideally want to be able to select
an optimal strategy automatically, based on the data and the actual performance. Provided both
strategies can be applied to the problem at hand, one could for example start by performing a fixed
number k̄ > 0 of iterations using both, and then devise some criterion based on the difference
in duality gap to decide whether the approximation is adequate. However, a discussion on how to
effectively implement such a strategy would be nontrivial, and as such is deferred to a separate work.

4 Conclusions

Using SVM classification problems as a motivation, we have performed an experimental study on
the effectiveness and impact of some techniques designed to alleviate the computational burden of
the optimization step in a FW iteration. Our results suggested that, while it comes with some caveats,
a random sampling technique may be the most viable choice on very large-scale problems. On the
other hand, when the problem size is not prohibitive (e.g. batch training tasks with medium to large
datasets), fast updating schemes which exploit the problem structure might provide a better choice.

4

Acknowledgments

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC AdG A-
DATADRIVE-B (290923). This paper reflects only the authors’ views and the Union is not liable
for any use that may be made of the contained information. Research Council KUL: GOA/10/09
MaNet, CoE PFV/10/002 (OPTEC), BIL12/11T; Flemish Government: FWO: projects: G.0377.12
(Structured systems), G.088114N (Tensor based data similarity); PhD/Postdoc grants; iMinds Med-
ical Information Technologies SBO 2014; IWT: POM II SBO 100031; Belgian Federal Science
Policy Office: IUAP P7/19 (DYSCO, Dynamical systems, control and optimization, 2012-2017).

References
[1] A. Argyriou, M. Signoretto, and J. A. K. Suykens. Hybrid algorithms with applications to sparse and

low rank regularization. In J. A. K. Suykens, M. Signoretto, and A. Argyriou, editors, Regularization,
Optimization, Kernels, and Support Vector Machines, chapter 3. Chapman & Hall/CRC (Boca Raton,
USA), 2014.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2011.

[3] K. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Transactions
on Algorithms, 6(4):63:1–63:30, 2010.

[4] E. Frandi, M. G. Gasparo, S. Lodi, R. Ñanculef, and C. Sartori. A new algorithm for training SVMs using
approximate minimal enclosing balls. In Proceedings of the 15th Iberoamerican Congress on Pattern
Recognition, Lecture Notes in Computer Science, pages 87–95. Springer, 2010.

[5] E. Frandi, M. G. Gasparo, S. Lodi, R. Ñanculef, and C. Sartori. Training support vector machines using
Frank-Wolfe methods. International Journal of Pattern Recognition and Artificial Intelligence, 27(3),
2011.

[6] A. Frank and A. Asuncion. The UCI KDD Archive. http://kdd.ics.uci.edu, 2010.

[7] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,
1:95–110, 1956.

[8] J. Guélat and P. Marcotte. Some comments on Wolfe’s “away step”. Mathematical Programming, 35:110–
119, 1986.

[9] Z. Harchaoui, A. Juditski, and A. Nemirovski. Conditional gradient algorithms for norm-regularized
smooth convex optimization. Mathematical Programming, 13(1):1–38, 2014.

[10] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the
30th International Conference on Machine Learning, 2013.

[11] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iterative nearest point algo-
rithm for support vector machine classifier design. IEEE Transactions on Neural Networks, 11(1):124–
136, 2000.

[12] P. Kumar and A. Yildirim. A linearly convergent linear-time first-order algorithm for support vector
classification with a core set result. INFORMS Journal on Computing, 23(3):377–391, 2011.

[13] S. Lacoste-Julien and M. Jaggi. An affine invariant linear convergence analysis for Frank-Wolfe algo-
rithms. arXiv.org, December 2013.

[14] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe optimization
for structural SVMs. In Proceedings of the 30th International Conference on Machine Learning, 2013.

[15] G. Liuzzi and F. Rinaldi. Solving l0-penalized problems with simple constraints via the Frank-Wolfe
reduced dimension method. Optimization Letters (in press), 2014.

[16] R. Ñanculef, E. Frandi, C. Sartori, and H. Allende. A novel Frank-Wolfe algorithm. analysis and appli-
cations to large-scale SVM training. Information Sciences (in press), 2014.

[17] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

[18] I. Tsang, J. Kwok, and P.-M. Cheung. Core vector machines: Fast SVM training on very large data sets.
Journal of Machine Learning Research, 6:363–392, 2005.

[19] P. Wolfe. Convergence theory in nonlinear programming. In J. Abadie, editor, Integer and Nonlinear
Programming, pages 1–36. North-Holland, Amsterdam, 1970.

5

	Introduction
	Randomization Strategies and Possible Alternatives
	Random Working Set Selection
	Analytical Gradient Update

	Numerical Results
	Conclusions

