VARIANCE REDUCED STOCHASTIC PROXIMAL ALGORITHM FOR AUC MAXIMIZATION

» Stochastic Gradient Descent (SGD) has been widely studied with classifica-
tion accuracy as a performance measure.

* These algorithms are not applicable when non-decomposable pairwise per-
formance measures are used, such as Area under the ROC curve (AUC).

 We propose a Variance Reduced Stochastic Proximal algorithm for AUC
Maximization (VRSPAM) which converges faster than existing methods.

Introduction

» Class imbalance poses a challenge in several domains for instance, medical
diagnosis of rare diseases. [1]

« AUC is commonly used to evaluate the performance of a binary classifier in
this setting. AUC measures the ability of a family of classifiers to correctly
rank an example from the positive class with respect to a randomly selected
example from the negative class.

* In the online setting, AUC metric does not decomposes over individual in-
stances, unlike classification accuracy.

* [2] reformulated the pairwise squared loss surrogate of AUC and gave an
log ¢

algorithm with a convergence rate of O ( ; ) under strong convexity.

» This rate is sub-optimal to the linear rate SGD achieves with classification
accuracy as a performance measure. The slow convergence is caused by
the high variance of the gradient in each iteration.

« We present VRSPAM which extends previous work [2, 4] for surrogate-AUC
maximization by using the Proximal SVRG [3] algorithm and achieves linear
convergence rate.

AUC Formulation

« We consider the below objectve function

min f(w) + Q(w)
weRd

where f(w) = p(1 —p)E[(1 —w! (z — 2))?|ly = 1,3 = —1] and Q a convex
regularizer (where p = Pr(y = +1))

* The above minimization problem can be reformulated such that stochastic
gradient descent can be performed to find the optimum value. Below is an
equivalent formulation from Theorem 1 in [2]-

min max E[F(w,a,b,(; z)] + Q(w)
w,a,b CER

where the expectation is with respect to z = (z, y) and
Fiw,a.b,¢:2) = (1= p)(w'z —a)’l,
+p(w' @ — by +2(1+ Ow' z(pl,— ) — (1 = p)Ij—y) — p(1 = p)¢°

[2] shows that the optimal choices for a, b, ¢ satisfy

a(w) =w! Efz|y = 1]
b(w) =w! Elz|y = —1]
C(w) =w' (El'|y’ = =1] — Elz|y = 1])
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Let-
« G(W;2) = O0wF(w,a(w),bw),((W); 2)
=500 G, z)

* Vi = G(Wt, Zit_l) _ G(Wa Zit_l) +

~

Algorithm 1 Proximal SVRG for AUC maximization
INPUT Constant step size n and update frequency m
INITIALIZE W
fors=1,2,...do
W =W, |
=700 Gw, %)
W)= W
fort=1,2.....mdo
Randomly pick i; € {1,..,n} and update weight
wy = w1 —n(G(wi1, 2,) — G(W, 2,) + )
W = Prox,o(wy)
end for
W, = W,,
end for

Bounded Variance

Lemma 1. Consider VRSPAM (Algorithm 1), then the variance of the v; is upper bounded
as:

E[|lvi—0f(wolll]) <A4BM?)|lwi — w*||* +2(8M%) || — w7
At the convergence, w = w* and wy = w"
 Variance of the updates are bounded and go to zero as the algorithm converges

 Variance of the gradient in SPAM [2] does not go to zero as it is a stochastic gradient
descent based algorithm

Convergence Analysis

Theorem 1. Consider VRSPAM (Algorithm 1) and let w* = argming, f(w) + Q(w); ifn <

1285 V2L then there exists o < 1 and we have the geometric convergence in expectation:

E[[[ws — w*||”] < o” E[||wo — w*||’]

|

« We get a geometric convergence rate of o® which is much stronger than the O(
convergence rate obtained in [2].

)

Complexity Analysis:
1

e Forany0 < <land E = , If we choose m ~ 2180 then o ~ 20 E2

952 log B
<1+128M4>
 Thus the time complexity of the algorithm is O(n + 21f§§)(1og<%>) when m = @<f§§§)

4
» As the order has inverse dependency on log E = log 1255%%2, increase in M will

result in increase in number of iterations i.e. as the maximum norm of training samples
IS Increased, larger m is required to reach e accuracy.

« SPAM algorithm takes (’)(@) iterations to achieve € accuracy. Thus, SPAM has lower
per iteration complexity but slower convergence rate as compared to VRSPAM. There-
fore, VRSPAM will take less time to get a good approximation of the solution.
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« German: n = 1000, p = 24; USPS: n = 9298, p = 256; a9a: n = 32,561,
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Fig. 1: The top row shows that VRSPAM (SPAM-L2-SVRG) has lower variance than SPAM-L2
across different datasets. The bottom row shows VRSPAM (SPAM-L2-SVRG) converges faster
and performs better than existing algorithms on AUC maximization.

Conclusion

» Proposed variance reduced stochastic proximal algorithm for AUC maxi-
mization (VRSPAM).

- Obtained convergence rate of O(a!) where o < 1, improving upon state-of-
the-art methods [2] which have a convergence rate of O(3).

« Showed theoretically and empirically VRSPAM converges faster than exist-
ing methods for AUC maximization.
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