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Motivation
k-NN regression faces A smaller set of prototypes can afford
= High storage costs = | ower storage and compute costs
= EXxpensive computation = Robustness to outliers
= Sensitivity to outliers = Better generalization

Description: Methods which leverage the separation of samples
based on class have verified the above benefits for classification

This work generalizes the set-cover based approach by Bien et.
al. 2012 to identify representative points in the regression setting
as prototypes

Benchmark: Decremental Instance Selection for K-NN
Regression (DISKR) Song et. al. 2017

Properties

® Prototypes are representative points that exhibit certain
desirable properties

® The neighborhood of a prototype is determined by an e
covering ball around

® These covering balls are expected to
® Cover many points with similar labels
® Avoid covering points with dissimilar labels

® Proximity in label space is defined by a customizable metric

® These properties are governed by the size of the covering
balls, and automatically induce sparsity in the data
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Formulation

For n samples, the properties are encoded Iinto a mixed-
integer program with indicator variables «; for each sample,
and slack variables n; and ¢; where i € {1, ..., n}
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Heuristic Prototype Selection

The set of prototypes is successively refined by greedily
selecting data points based on the objective

It terminates when the objective cannot be improved anymore

1: Initialize P = ¢
2: do
3: Find i’ + arg maxAODbj(x;)
1€[n|\P
4:  If AObj(xy) > Othendo P < PU{ }
5. while AObj(x;) > 0
6: return P

Tolerance to Outliers

Comments

= One hot encoding reduces the formulation and solution to

multi-class classification (Bien et. al. 2012)

= Time Complexity O(n P max;C(i)) ; P is the number of

prototypes and € (i) is the number of neighbors of x;

* Varying A enables data set condensation by controlling the

number of prototypes
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