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Resumo

We analyze the convergence rate of gradient flow for sol-
ving minU∈Rd×d,V ∈Rd×d

1
2‖UV

> −M‖2F in the case M is full-
rank, and U and V are randomly initialized. In contrast to
previous work, our analysis does not require any balancing
regularizer or additive isotropic noise. Our key idea is to
couple the trajectory of the gradient flow with an ideal trajec-
tory induced by a symmetric training process. We believe
this technique will have applications in other problems.

1. Introduction

This paper studies the convergence rate of applying gradi-
ent descent to solve the asymmetric matrix factorization

min
U∈Rd×d,V ∈Rd×dV

1

2
‖UV > −M‖2F

The main difficulties are 1) the problem is non-convex and
2) this problem is not smooth with respect to U and V be-
cause the magnitudes of them can be imbalanced. This
is a prototypical problem that has the difficulty in analyzing
the convergence of optimization method for homogeneous
models, such as deep neural networks.
In this paper, we take step to understand the global con-
vergence rate of randomly initialized gradient descent. We
analyze continuous time gradient descent in the case M
has full rank. Our main result is the following.

Theorem 1.1 There exists universal constants δ and δ′ such
that the following statement is true. Suppose U0 and V0 are
two random matrices whose coefficients uij and vij are in-
dependent, and are of Gaussian distribution with mean 0
and variance σde−δκ lnκd. Then with high probability, the in-
tegral curve generated by (1) and (2), called U(·) and V (·),
converges at the global optimal point at rate

f (U(t), V (t)) ≤ ε‖Σ‖2,∀t ≥ δ′
(
κ

σd
ln(κd) +

ln 1
ε

σd

)
.

2. Problem Setup

Let Σ ∈ Rd×d be a non-singular matrix with singular value
σ1 ≥ · · · ≥ σd > 0, and U and V are two matrices with the
same size. We study the objective function

f (U, V ) :=
1

2
‖Σ− UV >‖2F ,

and use gradient descent to optimize U and V . In this pa-
per analyze the convergence rate of continuous time gra-
dient descent (gradient descent with stepsize → 0), a.k.a.,
gradient flow. More precisely, we deal with the ODE

U̇ = −∂f∂U = (Σ− UV >)V ; (1)

V̇ = − ∂f∂V = (Σ− UV >)>U. (2)

Equations (1) and (2) define a smooth vector field of mani-
foldM := Rd×d×Rd×d. Suppose θ : D →M is the maximal
flow generated by the vector field, where D ⊆ R ×M. Our
goal is to prove the global convergence speed of f ◦θ(·,M0)
for some initial M0 with large probability, where the proba-
bility is induced by the initial distribution.
If Σ is symmetric and U = V , the next section will show that
the integral curve converges linearly to the global optimum.
However, proving the analogue result for the asymmetric
case is significantly more difficult.

2.1 Notations
We use σ1 ≥ · · · ≥ σd to represent the singular values of
matrix Σ, where Σ is assumed to be a diagonal matrix. With
a little abuse of notation, we use σi(·) and λi(·) to repre-
sent the ith singular value and eigenvalue of a given matrix.
Define κ : σ1σd as the condition number of Σ.

3. Warm up: symmetric case

First of all, we can give a tight bound on symmetric case,
i.e. the case when initial point U0 = V0. In this case, the
symmetry of (1) and (2) implies that U ≡ V during the evo-
lution. Define S := UU>. Then fortunately, we have

Ṡ = (Σ− S)S + S(Σ− S). (3)

Define Msym := Rd×dsym as the manifold of symmetric ma-
trices in Rd×d. Then we can get a maximal flow ϑ :
D′ → Msym generated by smooth vector field (3), where
D′ ⊆ R×Msym.
Here are two useful lemmas.
Lemma 3.1 Suppose P : (−a, a) →Msym is a smooth ma-
trix curve. Suppose the differential equation

Ṡ(t) = P (t)S(t) + S(t)P (t)

with “initial” point S(0) � 0 has a solution S. Then ∀t ∈
(−a, a), S(t) � 0. Moreover, if ∀t ∈ (−a, a), P (t) is a posi-
tive semi-definite matrix, then the minimal and the maximal
singular values of S is non-decreasing.
With lemma 3.1, we know that the matrices S and Σ−S re-
main positive semi-definite if they are initially PSD. Hence,
they are always bounded by Σ, which implies the domain of
ϑ(·, S) is R.
Lemma 3.2 Suppose S1(0), S2(0) are two matrices inMsym
such that S1(0) � S2(0). Define Si(t) := ϑ(t, Si(0)),∀i ∈
{1, 2}, then ∀t in domain, we have S1(t1) � S2(t1).
Now, given arbitrary positive definite matrix S, we have
σd(S)I � S. By applying lemma 3.2, we have ∀t ≥ 0,
ϑ(t, σd(S)I) � ϑ(t, S). Because I is always commutable
with Σ, we can give analytical expression on them and their
eigenvalues. Thus the tight bound for the largest singular
value of Σ− S follows.
Theorem 3.3 Suppose α1 and αd are the largest and smal-
lest singular value of U0. Then ∀t > 0, we have

diag

 1− σi
α2
1

e2σit + σi
α2
1
− 1


i∈[d]

� P (t) � diag

 1− σi
α2
d

e2σit + σi
α2
d
− 1


i∈[d]

,(4)

where P (t) := Σ− U(t)U(t)>.

4. Asymmetric Case

In asymmetric case, we divide the whole process into three
stages.
• In the first stage, the initial matrices are quite small, and
we will prove that A(t) :=

θ(t,U)+θ(t,V )
2 are quite close to

θ
(
t, U+V

2

)
. If this is true, the smallest singular value of

the former matrix can be relatively big, while the diffe-
rence between U and V are quite small.

• In the second stage, we will prove that the smallest sin-
gular value of A increases considerably fast, the function
value decreases to a small value, while the difference B
keeps being small.

• The third stage is the local linear convergence of the in-
tegral curve, by using the continuous version of PL ine-
quality.

4.1 Stage 1
The first stage is the interval t ∈ [0, t1], where t1 is a para-
meter we will define later.
First of all, define A(t) := θ

(
t,
(
U0+V0

2 , U0+V0
2

))
. By applying

lemma 3.2, we could give exact analytical bound on singu-
lar values of A.
Lemma 4.1 If we assume A(0)A>(0) � σdI, we have√√√√ σde

2σdt

e2σdt +
c21dσd
ε2
− 1
≤ σd(A) ≤ σ1(A) ≤

√√√√ σ1e2σ1t

e2σ1t + σ1
ε2c21d

− 1
.(5)

Suppose α ∈ (1, 0) is a parameter we will define later, the
first stage is defined to be {t ≥ 0|a1

1(t) ≤ ασd}, i.e. t ∈ [0, t1]
where

t1 :=
ln
(

σ1
ε2c21d

− 1
)

+ ln κ−α
κ

2σ1
, (6)

where κ := σ1
σd

. We will prove later that σd(A) is of order

ε1−1
κ. We choose such kind of small t1 is to prevent the

largest singular value of A from being too large, so as to
ensure the monotonousness of ‖B‖ where B = U−V

2 , by
using

˙‖B‖2 ≤ −2
〈
B, (Σ− AA> + BB>)B

〉
. (7)

To analyze the curve of A, we define another curve φ as
following.

φ(0,M) = M ; (8)
φ(t, φ(s,M)) = φ(t + s,M); (9)

∂φ

∂t

∣∣∣∣
(t0,M)

= F (φ(t0,M)), (10)

where F (M) := (Σ −MM>)M . We could observe that ve-
locity vector of A and φ are close to each other. Hence we
can bound A(t)− A(t) by∫ t

0

∂φ

∂M

∣∣∣∣
(t−s,A(s))

◦
(
Ȧ(s)− F (A(s))

)
ds (11)

=

∫ t

0

∂φ

∂M

∣∣∣∣
(t−s,A(s))

◦
(
BB>A− AB>B + BA>B

)
(s)ds,(12)

which is relatively small, since B is extremely small.
Now, we can make a brief summary about the first stage.
At the end of stage 1, the smallest singular value of A be-
comes Θ

(
ε1−1

κ

)
, and the norm of B is o(ε).

4.2 Stage 2
Stage 2 is defined to be t ∈ [t1, t2], where t2 is a parame-
ter we will define later. During the second stage, we mainly
consider about three equations.

Ṡ = PS + SP −QBA> + AB>Q, (13)
˙‖B‖2 ≤ −2

〈
B, (Σ− AA> + BB>)B

〉
, (14)

Ṗ = −(AA> + BB>)P − P (AA> + BB>) (15)
−(AB> + BA>)Q + Q(AB> + BA>),

where S := AA>, P := Σ − AA> + BB> and Q :=
AB> − BA>. Here (13) gives the lower bound of the smal-
lest singular value of S, (14) gives upper bound of ‖B‖ and
(15) gives the upper bound for the largest singular value of
P and the lower bound for the smallest singular value of
P . We need to bound these quantities concurrently. A brief
summary of stage 2 is that f = f (U, V ) and B becomes
relatively small, and we will not consider about S anymore,
since its lower bound can be derived by f and U .

4.3 Stage 3
The last stage is the simplest part of the proof. We only
need to bound ` := ‖Σ− UV >‖ and ‖B‖2 simultaneously.
Suppose initially `(t2) ≤ 1

3σd, and ‖B‖2 ≤ ρσd. Then ‖P‖2 ≤
‖P‖2+‖Q‖2 = ‖Σ−UV >‖2 ≤ σ2d

9 . HenceAA> = Σ−P+BB>

implies the smallest singular value of AA> is lower bounded
by 2

3σd. Then, the smallest singular value of U = A+B and

V = A−B is lower bounded by
√
σd
2 , if

√
ρ ≤

√
2
3−

1
2. Hence

we could draw a conclusion that

‖∇f (U, V )‖2 = ‖(Σ− UV >)V ‖2 + ‖(Σ− UV >)>U‖2

≥ σd
2
f (U, V ),

which is exactly Polyak-Łojasiewicz inequality. Hence we
have immediately ‖Σ − U(t2 + t)V >(t2 + t)‖2 ≤ e−

σdt

2 ‖Σ −
U(t2)V >(t2)‖2. For simplicity, we denote ‖Σ−U(t2)V >(t2)‖2
by F0.
Besides, ˙‖B‖2 ≤ 2‖P‖‖B‖2, i.e. ‖B(t2 + t0)‖2 ≤
e
∫ t0
0 2‖P (t)‖dt‖B(t2)‖2, which is bounded by e

8
σd

√
F0B(t2)‖2 ≤

e
8
3‖B(t2)‖2. Hence, we only need to make ‖B(t2)‖2 ≤ ρσd

e
8
3

,

which is an obvious condition (because ‖B‖ is O
(

1
ξ

)
).
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