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Problem Formulation

The sparse optimization problem

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

(1) f continuously differentiable

(1) B is closed and convex

(2) Cs = {x ∈ Rn : ‖x‖0 ≤ s}

Difficulties:

(a) Cs ∩ B non-convex

(b) Cs ∩ B induces a combinatorial constraint

No global optimality conditions, “solution” methods are heuristic
in nature.
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Example - Compressed Sensing

Linear CS Recover a sparse signal x with a sampling matrix A and
a measure b.

(CS)
min ‖Ax− b‖22
s.t. x ∈ Cs ∩ Rn
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Literature - CS

Linear:

1 Conditions for reconstruction: RIP (Candes and Tao ’05),
SRIP (Beck and Teboulle ’10), spark (Donoho and Elad ’03;
Gorodnitsky and Rao ’97), mutual coherence (Donoho et al.
’03; Donoho and Huo ’99; Mallat and Zhang ’93)

2 Reviews: Bruckstein et al. ’09, Davenport et al. ’11, Tropp
and Wright ’10.

3 Iterative algorithms: IHT (Blumensath and Davis ’08, ’09,
’12; Beck and Teboulle ’10), CoSaMP (Needell and Tropp ’09)

Nonlinear:

1 Phase retrieval: Shechtman et al. ’13; Ohlsson and Eldar ’13;
Eldar and Mendelson ’13; Eldar et al. ’13; Hurt. ’89

2 Nonlinear: optimality conditions (Beck and Eldar ’13), GraSP
(Bahmani et al. ’13)
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Example - Sparse Index Tracking

Sparse Index Tracking Track an index b with at most s assets, with
return matrix A.

(IT )
min ‖Ax− b‖22
s.t. x ∈ Cs ∩∆n

Example: Finance - track the S&P500 with a small number of assets

Takeda et al ’12
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Example - Sparse Principal Component Analysis

Sparse Principal Component Analysis Find the first principal eigen-
vector of a matrix A.

(PCA)
max xTAx
s.t. x ∈ Cs ∩ {y ∈ Rn : ‖y‖2 ≤ 1}

Example: Finance - identify the group which explains most of the
variance in the S&P500

Sample of works:
Moghaddam, Weiss, Avidan 06’, d’Aspremont, Bach, El-Ghaoui
08’, d’Aspremont, El-Ghaoui, Jordan Lanckriet 07’,
recent review: Luss and Teboulle ’13
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Objectives

The sparse optimization problem

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

B closed and convex

Main Objectives:

Define necessary optimality conditions

Develop corresponding algorithms

Establish hierarchy between algorithms and conditions.

The case B = Rn: Beck, Eldar 13’

However, we will also need to study and compute Orthogonal
Projections on B ∩ Cs .
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Recap of Necessary First Order Opt. Conditions over
Convex Sets: Stationarity

(∗) min{f (x) : x ∈ S},
S closed and convex, f continuously differentiable.

Equivalent Definitions of Stationarity: x∗ stationary point iff

Projection Form

x∗ = PS

(
x∗ − 1

L
∇f (x∗)

)
for some L > 0

Variational Form

〈∇f (x∗), x− x∗〉 ≥ 0∀x ∈ S

conditions are equivalent ⇒ independent of L
most algorithms that use first order information converge to
stat. points.
condition relies on the properties/computatbility of PS(·)

PS(y) = argmin{‖y − x‖2 : y ∈ S}.
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Why Study Orthogonal Projections?

PCs∩B (x) = argmin
{
‖z− x‖22 : z ∈ Cs ∩ B

}
To define optimality conditions, we need to

compute and analyze properties of the orthogonal projection
PCs∩B .

Computing PCs∩B is in general a difficult task, but in fact
tractable under symmetry assumptions on B

Revised Layout:
Projections, Optimality Conditions, Algorithms
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Projection Onto
Symmetric Sets
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Definitions - Basics

Σn = permutation group of [n]

xσ = reordering of x according to σ ∈ Σn,

(xσ)i = xσ(i).

Example (permutation)

x =
(
5 4 6

)T
, and

σ(1) = 3, σ(2) = 1, σ(3) = 2,

then
xσ =

(
6 5 4

)T
.
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Definitions - sorting permutations

σ ∈ Σn is a sorting permutation of x if

xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n−1) ≥ xσ(n)

Σ̃(x) is the set of all the sorting permutations of x

Example (sorting permutation)

x =
(
7 9 8 9

)T
, and

σ(1) = 2, σ(2) = 4, σ(3) = 3, σ(4) = 1,

then xσ =
(
9 9 8 7

)T
Also σ̃ ∈ Σ̃(x) where σ̃(1) = 4, σ̃(2) = 2, σ̃(3) = 3, σ̃(4) = 1.
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Definitions - Type-1 Symmetric Set

D is a type-1 symmetric set if

x ∈ D ⇒ xσ ∈ D

σ ∈ Σn

set description type-1 nonneg. type-1 type-2

∆′n
1 unit sum X

[`, u]n(` < u) box X

1∆′n = {x ∈ Rn : 1Tx = 1}
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Definitions - Nonnegative Type-1 Symmetric Set

D is nonnegative if ∀x ∈ D, x ≥ 0

set description type-1 nonneg. type-1 type-2

Rn
+ nonnegative orthant X X

∆n unit simplex X X
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Definitions - Type-2 Symmetric Set

D is a type-2 symmetric set if it is type-1 symmetric and

x ∈ D, y ∈ {−1, 1}n ⇒ x ◦ y ≡ (xiyi )
n
i=1 ∈ D

set description type-1 nonneg. type-1 type-2

Rn entire space X X
Bp[0, 1](p ≥ 1) p-ball X X

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



Summary of symmetry properties of simple sets

set desc. type-1 non. t-1 type-2

Rn entire space X X
Rn
+ nonnegative orthant X X

∆n unit simplex X X
∆
′
n unit sum X

Bp[0, 1](p ≥ 1) p-ball X X
[`, u]n(` < u) box X
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Symmetric Projection Monotonicity Lemma

Symmetric Projection Monotonicity Lemma. Let D be a type-1
symmetric set, x ∈ Rn, and y ∈ PD (x) . Then

(yi − yj) (xi − xj) ≥ 0

for any i , j ∈ [n].
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Order Preservation Property

Theorem. Let D be a type-1 symmetric set, and σ ∈ Σ̃(x). Suppose
that PD(x) 6= ∅.
Then

∃y ∈ PD (x) s.t. σ ∈ Σ̃(y)

That is
xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n)
yσ(1) ≥ yσ(2) ≥ · · · ≥ yσ(n)

Example: D = C2,PD((3, 2, 2, 0)) = {(3, 2, 0, 0), (3, 0, 2, 0)}.
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Sparse Projection Onto
Symmetric Sets
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The Sparse Projection Problem

The sparse projection problem

Find an element in orthogonal projection of x ∈ Rn onto B ∩ Cs :

PCs∩B (x) = argmin
{
‖z− x‖22 : z ∈ Cs ∩ B

}

1 B ∩ Cs closed ⇒ PCs∩B(x) 6= ∅
2 B ∩ Cs nonconvex ⇒ |PCs∩B(x)| ≥ 1

A DIFFICULT NONCONVEX PROBLEM IN
GENERAL
(known for B = Rn,Rn

+,∆n)
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Supports, Super Supports

Let x ∈ Rn, s ∈ [n] = {1, . . . , n}.
1 Support of x: I1(x) ≡ {i ∈ [n] : xi 6= 0}.
2 Super support of x: any set T s.t. I1(x) ⊆ T and |T | = s.

3 x has full support if ‖x‖0 = |I1(x)| = s.

4 Off-support of x: I0(x) ≡ {i ∈ [n] : xi = 0}.

Example

s = 3, n = 5 and x = (−3, 4, 0, 0, 0)T

1 Support: I1(x) = {1, 2}
2 Super support: T ∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}}
3 Incomplete support: ‖x‖0 < s

4 Off-support: I0(x) = {3, 4, 5}
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Restriction on Index Sets

x ∈ Rn, T ⊆ [n] index set

1 xT ∈ R|T | is the restriction of x to T

2 UT is the submatrix of In constructed from the columns in T

3 BT = {x ∈ R|T | : UTx ∈ B} is the restriction of B to T

4 ∇T f (x) = UT
T∇f (x) is the restriction of ∇f (x) to T .

Example

x = (8, 7, 6, 5)T ⇒ x1,3 = (8, 6)T .

B = {(x1, x2, x3, x4) : x1 + 2x2 + 3x3 + 4x4 = 1} ⇒ B1,2 = {(x1, x2)T : x1 + 2x2 = 1}.

f (x) = x1x2 + x22 + x33 ⇒ ∇{1,3}f (x) = (x2, 3x
2
3 )T .
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The Order Set

order set Sσ[j1,j2] For any permutation σ ∈ Σn, we define Sσ[j1,j2] as:

Sσ[j1,j2] =

{
{σ(j1), σ(j1 + 1), . . . , σ(j2)} 0 < j1 ≤ j2 ≤ n,

∅ otherwise.

Example (order set)

σ =

(
1 2 3 4
4 1 3 2

)
Sσ[1,2] = {σ(1), σ(2)} = {4, 1}, Sσ[3,4] = {σ(3), σ(4)} = {3, 2}
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Phases in Computing the Projection

To find y ∈ PCs∩B (x):

(1) find its super support S

(2) Compute yS = PBS
(xS), ySc = 0

Naive approach: go over all possible
(n
s

)
super supports, compute

the corresponding projections, and find the sparse projection
vector. TOO EXPENSIVE
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Type-1 Symmetric Sparse Projection Theorem

Type-1 Symmetric Projection Theorem B be a type-1 symmetric

set, σ ∈ Σ̃(x). Then ∃y ∈ PCs∩B (x), k ∈ {0, . . . , s} for which

I1(y) ⊆ Sσ[1,k] ∪ Sσ[n+k−(s−1),n]

Result: to find the super support, find k ∈ {0, . . . , s}:

xσ(1) ≥ · · · ≥ xσ(k) ≥ xσ(k+1) ≥ · · · ≥ xσ(n+k−s) ≥ xσ(n+k−(s−1)) ≥ · · · ≥ xσ(n)
yσ(1) ≥ · · · ≥ yσ(k) ≥ 0 ≥ · · · ≥ 0 ≥ yσ(n+k−(s−1)) ≥ · · · ≥ yσ(n)
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Type-1 Symmetric Sparse Projection Algorithm

Algorithm 1 Projection onto a type-1 symmetric sparse set

Input: x ∈ Rn. Output: u ∈ PCs∩B(x).

1 Find σ ∈ Σ̃(x).
2 for any k = s, s − 1, . . . , 0 do:

1 Set Tk = Sσ[1,k] ∪ Sσ[n+k−(s−1),n].

2 Compute gk = PBTk
(xTk

) and define zk = UTk
gk .

3 Return u = argmin{‖z− x‖2 : z ∈ {zk : k = s, s − 1, . . . , 0}}
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Nonnegative Type-1 Symmetric Sparse Projection Theorem

Nonnegative Type-1 Symmetric Sparse Projection Theorem
B nonnegative type-1 symmetric, and σ ∈ Σ̃(x). Then

∃y ∈ PCs∩B (x) s.t I1(y) ⊆ Sσ[1,s]

Example

B = ∆4, s = 2, x = (1, 0.5,−0.5,−1)T , Sσ[1,2] = {1, 2},
y = (0.75, 0.25, 0, 0)T .

The super support can be found by a simple sort
operation
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Type-2 Symmetric Sparse Projection Theorem

Type-2 Symmetric Sparse Projection Theorem B type-2 symmet-

ric, and σ ∈ Σ̃(|x|). Then

∃y ∈ PCs∩B (x) s.t I1(y) ⊆ Sσ[1,s]

Example

B = B2[0, 1], s = 2, x = (3, 0.5,−0.7,−4)T , Sσ[1,2] = {4, 1},
y = (0.6, 0, 0,−0.8)T .

The super support can be found by a simple
sort operation
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Unified Symmetric Projection Theorem

symmetry function The symmetry function p : Rn → Rn:

p(x) ≡
{

x B is nonnegative type-1,
|x| B is type-2 symmetric.

Unified Symmetric Projection Theorem B be closed, convex, and

a nonnegative type-1 or a type-2 symmetric. σ ∈ Σ̃(p(x)).

Then

∃y ∈ PCs∩B (x) s.t. I1(y) ⊆ Sσ[1,s]
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Unified Symmetric Sparse Projection Algorithm

Algorithm 2 Unified symmetric sparse projection algorithm

Input: x ∈ Rn.
Output: u ∈ PB∩Cs (x).

1 Compute T = Sσ[1,s] for σ ∈ Σ̃(p(x)).

2 Return u = UTPBT
(xT ).
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Super supports for sparse projection onto simple sets

B PB∩Cs (x) super support set(s) BT

Rn UTxT T = Sσ[1,s], σ ∈ Σ̃(|x|) BT = Rs

Rn
+ UT [xT ]+ T = Sσ[1,s], σ ∈ Σ̃(x) BT = Rs

+

∆n UTPBT
(xT ) T = Sσ[1,s], σ ∈ Σ̃(x) BT = ∆s

∆
′

n UTk
PBTk

(xTk
) Tk = Sσ[1,k] ∪ Sσ[n+k−(s−1),n]

k = 0, 1, . . . , s, σ ∈ Σ̃(x)

BTk
= ∆′s

Bn
p [0, 1]

(p ≥ 1)
UTPBT

(xT ) T = Sσ[1,s], σ ∈ Σ̃(|x|) BT =
Bs
p [0, 1]

[`, u]n

(` < u)
UTk

PBTk
(xTk

) Tk = Sσ[1,k] ∪ Sσ[n+k−(s−1),n]

k = 0, 1, . . . , s, σ ∈ Σ̃(x)

BTk
= [`, u]s
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Optimality Conditions and
Algorithms
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Back to the Sparse Optimization Problem

The sparse optimization problem

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

Cs = {x ∈ Rn : ‖x‖0 ≤ s}

Assumption

[A] f : Rn → R is lower bounded, continuously differentiable.

[B] B is a closed and convex set.

In some cases

[C] f ∈ C 1,1
L(f ).
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Road Map of Optimality Conditions

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

Basic Feasibility - “optimality” over the support.

L-Stationarity - extension of stationarity over
convex sets.

CW-optimality

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



Basic Feasibility (BF)

x ∈ Cs ∩ B is a basic feasible (BF) point of (P) if for any
super support set S of x, for some L > 0:

xS = PBS

(
xS −

1

L
∇S f (x)

)
.

Remarks:

(a) If |I1(x)| = s, then the only super support set is the support
itself.

(b) If |I1(x)| = k < s, then there are
(n−k
s−k
)

possible super
supports.

(c) x is a BF ⇔ xT is stationary point of f over BT for any super
support T of x

(d) Optimality ⇒ BF
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Basic Feasibility - Examples

B BF conditions (full support)

Rn ∇I1(x∗)f (x∗) = 0

Rn
+ ∇I1(x∗)f (x∗) = 0

∆n ∃µ ∈ R : ∇i f (x∗) = µ, i ∈ I1(x∗)
∆′n ∃µ ∈ R : ∇i f (x∗) = µ, i ∈ I1(x∗)

Bn
2 [0, 1] ∇I1(x∗)f (x∗) = 0 or ‖x∗‖ = 1 and ∃λ ≤ 0 :

∇I1(x∗)f (x∗) = λx∗I1(x∗)

[`, u]n(` < u) ∂f
∂xi

(x∗)


= 0 ` < xi < u
≥ 0 xi = `
≤ 0 xi = ui

, i ∈ I1(x∗)

What if |I1(x)| < s ?

In all of the above cases, basic feasibility
is exactly like stationarity over B
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Characterization of BF points

Theorem. x ∈ Cs ∩ B is a BF point if and only if

xT = PBT

(
xT −

1

L
∇T f (x)

)
,

where

1 Symmetry: B is non-negative type-1 or type-2 symmetric

2 Fill the support: i ∈ [n + 1] s.t.∣∣∣Sσ[i ,n] ∪ I1(x)
∣∣∣ = s (σ ∈ Σ̃(−p(−∇f (x))))

3 Into super support: T = I1(x) ∪ Sσ[i ,n]

Important: when |I1(x)| < s only one super support
needs to be checked
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Basic Feasible Search - Find a BF point

Algorithm 3 BAsic Feasible Search (BAFS)

Initialization: x0 ∈ Cs ∩ B, k = 0.
Output: u ∈ Cs ∩ B which is a basic feasible point.

1 Repeat
1 k ← k + 1
2 let σ ∈ Σ̃

(
−p
(
−∇f (xk)

))
3 set i ∈ {1, . . . , n + 1} such that

∣∣∣Sσ[i,n] ∪ I1(xk)
∣∣∣ = s

4 set Tk = I1(xk) ∪ Sσ[i,n]
5 take xk ∈ argmin {f (y) : y ∈ B, I1(y) ⊆ Tk}

Until f (xk−1) ≤ f (xk)

2 Set u = xk−1

Finite Termination.
• requires the ability to minimize over the support set.
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Road Map of Optimality Conditions

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

Basic Feasibility - “optimality” over the support.

L-Stationarity - extension of stationarity over
convex sets.

CW-optimality
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L-Stationarity

Unfortunately, the variational form
〈∇f (x∗), x− x∗〉 ≥ 0∀x ∈ B ∩ Cs is not a necessary optimality
condition (in general...)

Let L > 0. A vector x ∈ Cs ∩ B is an L-stationary point of (P) if

x ∈ PCs∩B

(
x− 1

L
∇f (x)

)
.

L-Stationarity in the Hierarchy:

1 L-Stationarity ⇒ BF

2 If f ∈ C 1,1
L(f ), Optimality ⇒ L-stationarity ∀L > L(f )

Condition depends on L, more restrictive as L gets smaller

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



L-Stationarity

Unfortunately, the variational form
〈∇f (x∗), x− x∗〉 ≥ 0∀x ∈ B ∩ Cs is not a necessary optimality
condition (in general...)

Let L > 0. A vector x ∈ Cs ∩ B is an L-stationary point of (P) if

x ∈ PCs∩B

(
x− 1

L
∇f (x)

)
.

L-Stationarity in the Hierarchy:

1 L-Stationarity ⇒ BF

2 If f ∈ C 1,1
L(f ), Optimality ⇒ L-stationarity ∀L > L(f )

Condition depends on L, more restrictive as L gets smaller

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



Gradient Projection Method

xk+1 ∈ PCs∩B

(
xk − 1

L
∇f (xk)

)

B = Rn ⇒ Iterative Hard Thresholding (IHT) method
(Blumensath and Davis ’08, ’09, ’12).

Makes sense only when f ∈ C 1,1.

Only guarantees convergence to an L-stationary point for
L > L(f ).
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L-stationarity characterization

Theorem. Let B be a nonnegative type-1 or type-2 symmetric set.
Then a BF point x∗ is an L-stationary point if and only if

min
i∈I1(x∗)

p(Lx∗i −∇i f (x∗)) ≥ max
j∈I0(x∗)

p(Lx∗j −∇j f (x∗)),

Example (B = Rn)

B = Rn, and σ ∈ Σ̃(|x∗|). Then x∗ is an L-stationary point of (P)
if and only ifa

|∇i f (x∗)|
{
≤ L|x∗σ(s)| if i ∈ I0(x∗),

= 0 if i ∈ I1(x∗).

aBeck, A. & Eldar, Y. C., SIOPT, 2013
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Back to the Variational Form of Stationarity

In general, the variational form is not a necessary optimality
conditions.

However, when f is concave, it is in fact a necessary
optimality condition.

Theorem. Suppose that f is concave and cont. diff.. If x∗ is an
optimal solution of (P), then

〈∇f (x∗), x− x∗〉 ≥ 0 ∀x ∈ B ∩ Cs .

(a direct consequence of Krein-Milman+attainment of opt. sol. at
extreme points)
We will call this type of stationarity co-stationarity
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co-stationarity ⇒ L-stationarity

Theorem. For any L > 0:

x∗ co-stationary ⇒ x∗ is L− stationary

Consequence: for concave f , L-stationarity is a necessary
optimality condition for any L > 0.
sparse PCA max{xTAx : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} (A � 0)

Most algorithms converge to a co-stationary point, e.g.,
conditional gradient method:

xk+1 =
yk

‖yk‖2
, yk = Hs(Axk).

Gradient projection is never employed (since L-stationarity is a
weak condition).

The above is only correct for concave f .
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Back to L-stationarity - Example

min
{
f (x1, x2) ≡ 12x21 + 20x1x2 + 32x22 :

∥∥∥(x1; x2)T
∥∥∥
0
≤ 1
}

L(f ) = 48.3961

Two BF vectors: (0,−9/16) - optimal solution. (−1/12, 0) -
non-optimal, SL=196.

L = 250
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−3

−2

−1

0

1

2

3

L = 500

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



Main Questions

Are there stronger (more restrictive) optimality conditions?

Can we define algorithms that (1) do not depend on the
Lipschitz property and (2) converge to “better” optimality
conditions?

The answer is YES

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



Main Questions

Are there stronger (more restrictive) optimality conditions?

Can we define algorithms that (1) do not depend on the
Lipschitz property and (2) converge to “better” optimality
conditions?

The answer is YES

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms



Road Map of Optimality Conditions

(P)
min f (x)
s.t. x ∈ Cs ∩ B,

Basic Feasibility - “optimality” over the support.

L-Stationarity - extension of stationarity over
convex sets.

CW-optimality
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Simple-CW optimality

Let B be nonnegative type-1 or type-2 symmetric.
A BF point x is a simple-CW point of (P) if

f (x) ≤
{

f (x− xiei ± xiej) B type-2
f (x− xiei + xiej) B nonneg. type-1

where

i ∈ argmin
`∈D(x)

{p(−∇`f (x))} with D(x) = argmin
k∈I1(x)

p(xk)

j ∈ argmin
`∈I0(x)

{−p(−∇`f (x))}
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Simple-CW optimality in the Hierarchy

Results: If B is a non-negative type-1 set or a type-2 symmetric

1 Optimality ⇒ Simple-CW

2 If f ∈ C 1,1
L(f ), then Simple-CW ⇒ L2(f )-stationarity ∀L ≥ L2(f )

L2(f ) - Lipschitz constant of ∇f restricted to two coordinates.
Smaller than L(f )

Simple-CW is more restrictive than L(f )-stationarity
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Local Lipschitz Constant

Under the Lipschitz assumption,

For any i 6= j there exists a Li ,j(f ) for which:

‖∇i ,j f (x)−∇i ,j f (x + d)‖ ≤ Li ,j(f )‖d‖,

for any d ∈ Rn satisfying dk = 0 for any k 6= i , j .

the Local Lipschitz constant is

L2(f ) = max
i 6=j

Li ,j(f )

L2(f ) ≤ L(f ).

Example: f (x) = xTQx + 2bTx with Qn = In + Jn (In - identity,
Jn - all ones)

L(f ) = 2λmax(Qn) = 2(n + 1)

On the other hand,Li ,j(f ) = 2λmax

(
2 1
1 2

)
= 6

We get: L(f ) = 2(n + 1), L2(f ) = 6
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Zero-CW Optimality

Assumption: The function can be minimized over any super
support, B nonnegative type-1 or type-2

x is called a zero-CW optimal point if

f (x) ≤ min {f (y) : y ∈ B, I1(y) ⊆ T} ,

where T = (I1(x) ∪ {j}) \{i} if ‖x‖0 = s, otherwise additional (spe-
cific) indices are added
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Full-CW Optimality

Assumption: The function can be minimized over any super
support, B nonnegative type-1 or type-2

x is a full-CW optimal point if ∀i ∈ I1(x), j ∈ I0(x), it holds that

f (x) ≤ min {f (y) : y ∈ B, I1(y) ⊆ Ti ,j} .

In the non full-support case, additional indices are added to Ti ,j .
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Hierarchy - Summary

Full-CW

⇓
Zero-CW

⇓
Simple-CW

⇓
L2(f )-Stationarity

⇓
Basic Feasibility
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Concave f

x is called CW-minimum point if f (x) ≥ f (z) for any

S2(x) ≡ {z : ‖z− x‖0 ≤ 2, z ∈ Cs ∩ B}.

CW-optimality is a necessary optimality conditions (of a
combinatorial flavor...)

Theorem. If f is concave and B = {x : ‖x‖2 ≤ 1}, then any CW-
maximal point is a co-stationary point.

Quite difficult to prove since co-stationarity is a rather strong
condition.
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pit-prop data

13 variables measuring 180 properties of pitprops. 715 BF points,
28 co-stationary points, 3 CW-optimal points.

# Support CW Value

1 {1,2,9,10} * 2.937
2 {1,2,7,10} 2.883
3 {1,2,7,9} 2.859
4 {1,2,8,9} 2.797
5 {1,2,8,10} 2.759
6 {1,2,6,7} 2.697
7 {2,7,9,10} 2.696
8 {2,6,7,10} 2.592
9 {1,6,7,10} 2.587

10 {1,2,3,4} * 2.563
11 {7,8,9,10} 2.549
12 {6,7,9,10} 2.522
13 {6,7,10,13} 2.459
14 {6,7,8,10} 2.444

# Support CW Value

15 {5,6,7,10} 2.337
16 {7,8,10,12} 2.314
17 {7,8,10,13} 2.302
18 {5,6,7,13} 2.28
19 {3,4,6,7} 2.209
20 {4,5,6,7} 2.196
21 {7,10,12,13} 2.136
22 {3,4,8,12} 1.995
23 {3,4,10,12} 1.992
24 {3,10,11,12} 1.609
25 {3,5,12,13} 1.516
26 {1,5,12,13} 1.414
27 {2,5,12,13} 1.408
28 {3,5,11,13} 1.382
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LS over sparse l1-ball

min


∥∥∥∥∥∥
1000 0 0 1

0 1 0 1
0 0 0.01 1

 x−

3
1
9

∥∥∥∥∥∥
2

2

: x ∈ C2 ∩ B4
1 [0, 1]

 .

support {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

values

0.003 0.003 0.002 0
0.997 0 0 0.910
0 0.997 0 0.090
0 0 0.998 0

BF X X X X
L(f)-stationary X X
simple-CW X X
zero-CW X
full-CW X
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Zero-CW search method

Algorithm 4 Zero-CW search method (ZCWS)

Initialization: x0 ∈ Cs ∩ B a BF, k = 0.
Output: u ∈ Cs ∩ B which is a zero-cw.
General Step (k = 0, 1, 2, . . .)

1 D(xk) = argmin
`∈I1(xk )

p(xk` )

2 i ∈ argmin
`∈D(xk )

{p(−∇`f (xk))}

3 j ∈ argmin
`∈I0(xk )

{
−p(−∇`f (xk))

}
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Zero-CW search method - Find a Zero-CW point

Algorithm 5 Zero-CW search method (ZCWS)

4 let σ ∈ Σ̃(−p(−∇f (xk))) and let ` be such that∣∣∣(Sσ[`,n] ∪ I1(xk) ∪ {j}
)
r {i}

∣∣∣ = s

5 Define
Tk =

(
Sσ[`,n] ∪ I1(xk) ∪ {j}

)
r {i}.

6 Set x ∈ argmin {f (y) : y ∈ B, I1(y) ⊆ Tk} .
7 xk+1 = BFS(x)

8 If f (xk) ≤ f (xk+1), then STOP and the output is u = xk .
Otherwise, k ← k + 1 and go back to step 1.

ZCWS generates a points that is a zero-CW point, and this
converges to “better” points than gradient projection/IHT.
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Full-CW search method - Find a Full-CW point

Algorithm 6 Full-CW search method

Initialization: x0 ∈ Cs ∩ B - a basic feasible point, k = 0.
Output: u ∈ Cs ∩ B which is a full-cw point.
General Step (k = 0, 1, 2, . . .)

1 xk+1 = ZCWS(xk) and set k ← k + 1.

2 let σ ∈ Σ̃(−p(−∇f (xk))), and for any i ∈ I1(xk), j ∈ I0(xk)
let `i ,j be such that∣∣∣(Sσ[`i,j ,n] ∪ I1(xk) ∪ {j}

)
r {i}

∣∣∣ = s

3 define

T i ,j
k =

(
Sσ[`i,j ,n] ∪ I1(xk) ∪ {j}

)
r {i}
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Full-CW search method

Algorithm 7 Full-CW search method

4 take zi ,j ∈ argmin
{
f (y) : y ∈ B, I1(y) ⊆ T i ,j

k

}
.

5 set (i0, j0) ∈ argmin
{
f (zi ,j) : i ∈ I1(x), j ∈ I0(x)

}
6 define xk+1 = BFS(zi0,j0)

7 if f (xk) ≤ f (xk+1), then STOP and the output is u = xk .
Otherwise, k ← k + 1 and go back to step 1.

The full-CW search method obviously find a full-CW point in a
finite number of steps.
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Hierarchy of Algorithms (Best to Worst)

Full-CW search.

ZCWS

Gradient projection/IHT

BAFS
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Numerical Experiments
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Compared Method - TGA

Greedily build the super support

Algorithm 8 TGA

Initialization: x = 0n, S = ∅.
Output: x ∈ Cs ∩ B

1 while |S | < s do:
1 (j , x) ∈ argmin

(`∈Sc ,z∈B)

{f (z) : I1(z) ⊆ S ∪ {`}}

2 set S ← S ∪ {j}
2 Return x
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Numerical Experiment - Sparse index tracking

Objective: track an index with a small number of assets x∗, which
has a return matrix A.

Prob. min‖Ax− b‖22 s.t. x ∈ Cs ∩∆n

A: A ∈ R72×54, daily returns matrix

x: x weights vector

b: b ∈ R72 S&P500 daily returns vector

Data 180 random sets of stocks from NYSE, 60 for each sparsity
level
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Numerical Experiment - Sparse index tracking

improver improved s = 9 s = 18 s = 27 total

ZCWS
FCWS 0 0 0 0

IHT 60 60 60 180
TGA 9 56 50 115

FCWS
ZCWS 33 11 17 61

IHT 60 60 60 180
TGA 15 56 51 122

IHT
ZCWS 0 0 0 0
FCWS 0 0 0 0
TGA 3 56 50 109

1 The IHT never reached a zero-cw or full-cw point.

2 The ZCWS reached a full-cw point in 66%.

3 The TGA was improved in most of the instances when s > 9.
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sparse PCA - gene expression data (GeneChip oncology)

20 data sets. Number of variables 7129-54675.
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