On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions and Algorithms

Amir Beck

Technion - Israel Institute of Technology Haifa, Israel

Based on joint work with Nadav Hallak and Yakov Vaisbourd

OPT2014: Workshop on Optimization for Machine Learning (NIPS 2014), Montreal, December 12, 2014

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, C

Problem Formulation

The sparse optimization problem

$$(P) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap B, \end{array}$$

- (1) f continuously differentiable
- (1) B is closed and convex
- (2) $C_s = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_0 \leq s\}$

Difficulties:

- (a) $C_s \cap B$ non-convex
- (b) $C_s \cap B$ induces a combinatorial constraint

No global optimality conditions, "solution" methods are heuristic in nature.

Linear CS Recover a sparse signal x with a sampling matrix A and a measure b. $(CS) \quad \begin{array}{l} \min & \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ \text{s.t.} & \mathbf{x} \in C_s \cap \mathbb{R}^n \end{array}$

- Linear:
 - Conditions for reconstruction: RIP (Candes and Tao '05), SRIP (Beck and Teboulle '10), spark (Donoho and Elad '03; Gorodnitsky and Rao '97), mutual coherence (Donoho et al. '03; Donoho and Huo '99; Mallat and Zhang '93)
 - 2 **Reviews:** Bruckstein et al. '09, Davenport et al. '11, Tropp and Wright '10.
 - 3 **Iterative algorithms:** IHT (Blumensath and Davis '08, '09, '12; Beck and Teboulle '10), CoSaMP (Needell and Tropp '09)
- Nonlinear:
 - 1 **Phase retrieval:** Shechtman et al. '13; Ohlsson and Eldar '13; Eldar and Mendelson '13; Eldar et al. '13; Hurt. '89
 - 2 **Nonlinear:** optimality conditions (Beck and Eldar '13), GraSP (Bahmani et al. '13)

Sparse Index Tracking Track an index **b** with at most *s* assets, with return matrix **A**.

$$(IT) \quad \begin{array}{l} \min \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap \Delta_r \end{array}$$

Example: Finance - track the S&P500 with a small number of assets

Takeda et al '12

Sparse Principal Component Analysis Find the first principal eigenvector of a matrix **A**.

$$(PCA) \quad \begin{array}{l} \max \quad \mathbf{x}^T \mathbf{A} \mathbf{x} \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap \{\mathbf{y} \in \mathbb{R}^n : \|\mathbf{y}\|_2 \leq 1\} \end{array}$$

Example: Finance - identify the group which explains most of the variance in the S&P500

Sample of works:

Moghaddam, Weiss, Avidan 06', d'Aspremont, Bach, El-Ghaoui 08', d'Aspremont, El-Ghaoui, Jordan Lanckriet 07', recent review: Luss and Teboulle '13

Main Objectives:

- Define necessary optimality conditions
- Develop corresponding algorithms
- Establish hierarchy between algorithms and conditions.

The case $B = \mathbb{R}^n$: Beck, Eldar 13'

Main Objectives:

- Define necessary optimality conditions
- Develop corresponding algorithms
- Establish hierarchy between algorithms and conditions.

The case $B = \mathbb{R}^n$: Beck, Eldar 13' However, we will also need to study and compute Orthogonal Projections on $B \cap C_s$.

Recap of Necessary First Order Opt. Conditions over Convex Sets: Stationarity

(*) $\min\{f(\mathbf{x}) : \mathbf{x} \in S\},\$

S closed and convex, f continuously differentiable. Equivalent Definitions of Stationarity: x^* stationary point iff

Projection Form

$$\mathbf{x}^* = P_S\left(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)\right)$$

for some L > 0

Variational Form

$$\langle
abla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^*
angle \geq 0 orall \mathbf{x} \in \mathcal{S}$$

Recap of Necessary First Order Opt. Conditions over Convex Sets: Stationarity

$(*) \min\{f(\mathbf{x}) : \mathbf{x} \in S\},\$

S closed and convex, f continuously differentiable. Equivalent Definitions of Stationarity: x^* stationary point iff

Projection Form

$$\mathbf{x}^* = P_{\mathcal{S}}\left(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)\right)$$

for some L > 0

Variational Form

$$\langle
abla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^*
angle \geq 0 orall \mathbf{x} \in S$$

- conditions are equivalent \Rightarrow independent of L
- most algorithms that use first order information converge to stat. points.
- condition relies on the properties/computatbility of $P_{\mathcal{S}}(\cdot)$

$$\mathcal{P}_{\mathcal{S}}(\mathbf{y}) = \operatorname{argmin}\{\|\mathbf{y} - \mathbf{x}\|^2 : \mathbf{y} \in \mathcal{S}\}.$$

$$P_{C_{s}\cap B}(\mathbf{x}) = \operatorname{argmin}\left\{\|\mathbf{z} - \mathbf{x}\|_{2}^{2} : \mathbf{z} \in C_{s} \cap B\right\}$$

To define optimality conditions, we need to

• compute and analyze properties of the orthogonal projection $P_{C_s \cap B}$.

Computing $P_{C_s \cap B}$ is in general a difficult task, but in fact tractable under symmetry assumptions on B

$$P_{C_{s}\cap B}\left(\mathbf{x}\right) = \operatorname{argmin}\left\{\|\mathbf{z} - \mathbf{x}\|_{2}^{2} : \mathbf{z} \in C_{s} \cap B\right\}$$

To define optimality conditions, we need to

• compute and analyze properties of the orthogonal projection $P_{C_s \cap B}$.

Computing $P_{C_s \cap B}$ is in general a difficult task, but in fact tractable under symmetry assumptions on BRevised Layout: Projections, Optimality Conditions, Algorithms

Projection Onto Symmetric Sets

Definitions - Basics

 Σ_n = permutation group of [n]

 \mathbf{x}^{σ} = reordering of \mathbf{x} according to $\sigma \in \Sigma_n$,

$$(\mathbf{x}^{\sigma})_i = x_{\sigma(i)}.$$

Example (permutation) $\mathbf{x} = \begin{pmatrix} 5 & 4 & 6 \end{pmatrix}^T$, and $\sigma(1) = 3, \sigma(2) = 1, \sigma(3) = 2,$ then $\mathbf{x}^{\sigma} = \begin{pmatrix} 6 & 5 & 4 \end{pmatrix}^T.$

Definitions - sorting permutations

• $\sigma \in \Sigma_n$ is a sorting permutation of x if

$$x_{\sigma(1)} \ge x_{\sigma(2)} \ge \cdots \ge x_{\sigma(n-1)} \ge x_{\sigma(n)}$$

• $\tilde{\Sigma}(\textbf{x})$ is the set of all the sorting permutations of x

Example (sorting permutation)

$$\begin{aligned} \mathbf{x} &= \begin{pmatrix} 7 & 9 & 8 & 9 \end{pmatrix}^T, \text{ and} \\ &\sigma(1) = 2, \sigma(2) = 4, \sigma(3) = 3, \sigma(4) = 1, \\ \text{then } \mathbf{x}^\sigma &= \begin{pmatrix} 9 & 9 & 8 & 7 \end{pmatrix}^T \\ \text{Also } \tilde{\sigma} \in \tilde{\Sigma}(\mathbf{x}) \text{ where } \tilde{\sigma}(1) = 4, \tilde{\sigma}(2) = 2, \tilde{\sigma}(3) = 3, \tilde{\sigma}(4) = 1. \end{aligned}$$

• D is a type-1 symmetric set if

$$\mathbf{x} \in D \Rightarrow \mathbf{x}^{\sigma} \in D$$

$\sigma \in \Sigma_n$

set	description	type-1	nonneg. type-1	type-2
$\Delta_n^{\prime 1}$	unit sum	\checkmark		
$[\ell, u]^n (\ell < u)$	box	\checkmark		

$${}^{1}\Delta_{n}^{\prime} = \{\mathbf{x} \in \mathbb{R}^{n} : \mathbf{1}^{\mathsf{T}}\mathbf{x} = 1\}$$

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, C

Definitions - Nonnegative Type-1 Symmetric Set

• D is **nonnegative** if $\forall \mathbf{x} \in D$, $\mathbf{x} \ge \mathbf{0}$

set	description	type-1	nonneg. type-1	type-2
\mathbb{R}^n_+	nonnegative orthant	\checkmark	\checkmark	
Δ_n	unit simplex	\checkmark	\checkmark	

• D is a type-2 symmetric set if it is type-1 symmetric and

$$\mathbf{x} \in D, \mathbf{y} \in \{-1, 1\}^n \Rightarrow \mathbf{x} \circ \mathbf{y} \equiv (x_i y_i)_{i=1}^n \in D$$

set	description	type-1	nonneg. type-1	type-2
\mathbb{R}^n	entire space	\checkmark		\checkmark
$B_p[0,1](p\geq 1)$	<i>p</i> -ball	\checkmark		\checkmark

set	set desc.		non. t-1	type-2
\mathbb{R}^n	entire space	\checkmark		\checkmark
\mathbb{R}^{n}_{+}	nonnegative orthant	\checkmark	\checkmark	
Δ_n	unit simplex	\checkmark	\checkmark	
Δ'_n	unit sum	\checkmark		
$B_p[0,1](p\geq 1)$	<i>p</i> -ball	\checkmark		\checkmark
$[\ell, u]^n (\ell < u)$	box	\checkmark		

Symmetric Projection Monotonicity Lemma. Let *D* be a type-1 symmetric set, $\mathbf{x} \in \mathbb{R}^{n}$, and $\mathbf{y} \in P_{D}(\mathbf{x})$. Then

$$(y_i-y_j)(x_i-x_j)\geq 0$$

for any $i, j \in [n]$.

Theorem. Let *D* be a type-1 symmetric set, and $\sigma \in \tilde{\Sigma}(\mathbf{x})$. Suppose that $P_D(\mathbf{x}) \neq \emptyset$. Then $\exists \mathbf{y} \in P_D(\mathbf{x}) \text{ s.t. } \sigma \in \tilde{\Sigma}(\mathbf{y})$ That is $\mathbf{x}_{\sigma(1)} \ge \mathbf{x}_{\sigma(2)} \ge \cdots \ge \mathbf{x}_{\sigma(n)}$ $\mathbf{y}_{\sigma(1)} \ge \mathbf{y}_{\sigma(2)} \ge \cdots \ge \mathbf{y}_{\sigma(n)}$

Example: $D = C_2, P_D((3, 2, 2, 0)) = \{(3, 2, 0, 0), (3, 0, 2, 0)\}.$

Sparse Projection Onto Symmetric Sets

The sparse projection problem

Find an element in orthogonal projection of $\mathbf{x} \in \mathbb{R}^n$ onto $B \cap C_s$:

$$P_{\mathcal{C}_{s}\cap B}\left(\mathbf{x}\right) = \operatorname{argmin}\left\{\|\mathbf{z}-\mathbf{x}\|_{2}^{2}: \mathbf{z} \in \mathcal{C}_{s} \cap B\right\}$$

- $1 \ B \cap C_s \text{ closed} \Rightarrow P_{C_s \cap B}(\mathbf{x}) \neq \emptyset$
- 2 $B \cap C_s$ nonconvex $\Rightarrow |P_{C_s \cap B}(\mathbf{x})| \ge 1$

A DIFFICULT NONCONVEX PROBLEM IN GENERAL (known for $B = \mathbb{R}^n, \mathbb{R}^n_+, \Delta_n$)

Supports, Super Supports

Let $\mathbf{x} \in \mathbb{R}^n$, $s \in [n] = \{1, \ldots, n\}$.

- 1 Support of x: $I_1(\mathbf{x}) \equiv \{i \in [n] : x_i \neq 0\}.$
- 2 Super support of x: any set T s.t. $I_1(x) \subseteq T$ and |T| = s.
- 3 x has full support if $\|\mathbf{x}\|_0 = |l_1(\mathbf{x})| = s$.
- 4 Off-support of \mathbf{x} : $I_0(\mathbf{x}) \equiv \{i \in [n] : x_i = 0\}$.

Example

$$s = 3, n = 5$$
 and $\mathbf{x} = (-3, 4, 0, 0, 0)^7$

- 1 Support: $I_1(\mathbf{x}) = \{1, 2\}$
- 2 Super support: $T \in \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}\}$
- 3 Incomplete support: $\|\mathbf{x}\|_0 < s$
- 4 **Off-support**: $l_0(\mathbf{x}) = \{3, 4, 5\}$

Restriction on Index Sets

- $\mathbf{x} \in \mathbb{R}^n$, $T \subseteq [n]$ index set
 - 1 $\mathbf{x}_{\mathcal{T}} \in \mathbb{R}^{|\mathcal{T}|}$ is the restriction of \mathbf{x} to \mathcal{T}
 - 2 $\mathbf{U}_{\mathcal{T}}$ is the submatrix of \mathbf{I}_n constructed from the columns in \mathcal{T}
 - 3 $B_T = {\mathbf{x} \in \mathbb{R}^{|T|} : \mathbf{U}_T \mathbf{x} \in B}$ is the restriction of B to T
 - 4 $\nabla_T f(\mathbf{x}) = \mathbf{U}_T^T \nabla f(\mathbf{x})$ is the restriction of $\nabla f(\mathbf{x})$ to T.

Example

$$\mathbf{x} = (8,7,6,5)^T \Rightarrow \mathbf{x}_{1,3} = (8,6)^T.$$

 $B = \{(x_1, x_2, x_3, x_4) : x_1 + 2x_2 + 3x_3 + 4x_4 = 1\} \Rightarrow B_{1,2} = \{(x_1, x_2)^T : x_1 + 2x_2 = 1\}.$

$$f(\mathbf{x}) = x_1 x_2 + x_2^2 + x_3^3 \Rightarrow \nabla_{\{1,3\}} f(\mathbf{x}) = (x_2, 3x_3^2)^T.$$

order set
$$S^{\sigma}_{[j_1,j_2]}$$
 For any permutation $\sigma \in \Sigma_n$, we define $S^{\sigma}_{[j_1,j_2]}$ as:

$$S^{\sigma}_{[j_1,j_2]} = \begin{cases} \{\sigma(j_1), \sigma(j_1+1), \dots, \sigma(j_2)\} & 0 < j_1 \le j_2 \le n, \\ \emptyset & \text{otherwise.} \end{cases}$$

Example (order set)

$$\begin{split} \sigma &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \\ S^{\sigma}_{[1,2]} &= \{\sigma(1), \sigma(2)\} = \{4, 1\}, \ S^{\sigma}_{[3,4]} = \{\sigma(3), \sigma(4)\} = \{3, 2\} \end{split}$$

To find $\mathbf{y} \in P_{C_s \cap B}(\mathbf{x})$: (1) find its super support S(2) Compute $\mathbf{y}_S = P_{B_S}(\mathbf{x}_S), \ \mathbf{y}_{S^c} = \mathbf{0}$

Naive approach: go over all possible $\binom{n}{s}$ super supports, compute the corresponding projections, and find the sparse projection vector. TOO EXPENSIVE

Type-1 Symmetric Sparse Projection Theorem

Type-1 Symmetric Projection Theorem *B* be a type-1 symmetric set, $\sigma \in \tilde{\Sigma}(\mathbf{x})$. Then $\exists \mathbf{y} \in P_{C_s \cap B}(\mathbf{x}), k \in \{0, \dots, s\}$ for which $I_1(\mathbf{y}) \subseteq S^{\sigma}_{[1,k]} \cup S^{\sigma}_{[n+k-(s-1),n]}$

Result: to find the super support, find $k \in \{0, ..., s\}$:

$$\begin{array}{lll} \mathbf{x}_{\sigma(1)} \geq \cdots \geq \mathbf{x}_{\sigma(k)} \geq \mathbf{x}_{\sigma(k+1)} \geq & \cdots & \geq \mathbf{x}_{\sigma(n+k-s)} \geq \mathbf{x}_{\sigma(n+k-(s-1))} \geq \cdots \geq \mathbf{x}_{\sigma(n)} \\ \mathbf{y}_{\sigma(1)} \geq \cdots \geq \mathbf{y}_{\sigma(k)} \geq & \mathbf{0} & \geq & \cdots & \geq & \mathbf{0} & \geq \mathbf{y}_{\sigma(n+k-(s-1))} \geq \cdots \geq \mathbf{y}_{\sigma(n)} \end{array}$$

Algorithm 1 Projection onto a type-1 symmetric sparse set

Input:
$$\mathbf{x} \in \mathbb{R}^n$$
. Output: $\mathbf{u} \in P_{C_s \cap B}(\mathbf{x})$.
Ind $\sigma \in \tilde{\Sigma}(\mathbf{x})$.
Ind $\sigma \in \tilde{\Sigma}(\mathbf{x})$.
Ind $\sigma \in S_{[1,k]} \cup S_{[n+k-(s-1),n]}^{\sigma}$.
Ind σ Compute $\mathbf{g}_k = P_{B_{\mathcal{T}_k}}(\mathbf{x}_{\mathcal{T}_k})$ and define $\mathbf{z}^k = \mathbf{U}_{\mathcal{T}_k}\mathbf{g}_k$.
Return $\mathbf{u} = \operatorname{argmin}\{\|\mathbf{z} - \mathbf{x}\|^2 : \mathbf{z} \in \{\mathbf{z}^k : k = s, s - 1, \dots, 0\}\}$

Nonnegative Type-1 Symmetric Sparse Projection Theorem *B* nonnegative type-1 symmetric, and $\sigma \in \tilde{\Sigma}(\mathbf{x})$. Then

 $\exists \mathbf{y} \in P_{C_s \cap B}\left(\mathbf{x}\right) \text{ s.t } l_1(\mathbf{y}) \subseteq S^{\sigma}_{[1,s]}$

Example

$$B = \Delta_4, \ s = 2, \ x = (1, 0.5, -0.5, -1)^T, \ S^{\sigma}_{[1,2]} = \{1, 2\}, y = (0.75, 0.25, 0, 0)^T.$$

The super support can be found by a simple sort operation

Type-2 Symmetric Sparse Projection Theorem *B* type-2 symmetric, and $\sigma \in \tilde{\Sigma}(|\mathbf{x}|)$. Then

$$\exists \mathbf{y} \in P_{C_s \cap B}\left(\mathbf{x}
ight) ext{ s.t } l_1(\mathbf{y}) \subseteq S^{\sigma}_{\left[1,s
ight]}$$

Example

$$B = B_2[0, 1], \ s = 2, \ x = (3, 0.5, -0.7, -4)^T, \ S_{[1,2]}^{\sigma} = \{4, 1\}, y = (0.6, 0, 0, -0.8)^T.$$

The super support can be found by a simple sort operation

symmetry function The symmetry function $p : \mathbb{R}^n \to \mathbb{R}^n$:

$$p(\mathbf{x}) \equiv \begin{cases} \mathbf{x} & B \text{ is nonnegative type-1,} \\ |\mathbf{x}| & B \text{ is type-2 symmetric.} \end{cases}$$

Unified Symmetric Projection Theorem *B* be closed, convex, and a nonnegative type-1 or a type-2 symmetric. $\sigma \in \tilde{\Sigma}(p(\mathbf{x}))$. Then

$$\exists \mathbf{y} \in P_{C_s \cap B}\left(\mathbf{x}
ight) ext{ s.t. } l_1(\mathbf{y}) \subseteq S^{\sigma}_{\left[1,s
ight]}$$

Algorithm 2 Unified symmetric sparse projection algorithm

Input: $\mathbf{x} \in \mathbb{R}^n$.

Output: $\mathbf{u} \in P_{B \cap C_s}(\mathbf{x})$.

• Compute
$$T = S^{\sigma}_{[1,s]}$$
 for $\sigma \in \tilde{\Sigma}(p(\mathbf{x}))$.

2 Return
$$\mathbf{u} = \mathbf{U}_T P_{B_T}(\mathbf{x}_T)$$
.

Super supports for sparse projection onto simple sets

В	$P_{B\cap C_s}(\mathbf{x})$	<pre>super support set(s)</pre>	B _T
\mathbb{R}^n	$\mathbf{U}_T \mathbf{x}_T$	$T = S^{\sigma}_{[1,s]}, \sigma \in ilde{\Sigma}(\mathbf{x})$	$B_T = \mathbb{R}^s$
\mathbb{R}^{n}_{+}	$\mathbf{U}_{\mathcal{T}}[\mathbf{x}_{\mathcal{T}}]_+$	$T=S^{\sigma}_{[1,s]}, \sigma\in ilde{\Sigma}({ t x})$	$B_T = \mathbb{R}^s_+$
Δ_n	$\mathbf{U}_T P_{B_T}(\mathbf{x}_T)$	$T = S^{\sigma}_{[1,s]}, \sigma \in \tilde{\Sigma}(\mathbf{x})$	$B_T = \Delta_s$
Δ'_n	$\mathbf{U}_{T_k} P_{B_{T_k}}(\mathbf{x}_{T_k})$	$T_k = S^{\sigma}_{[1,k]} \cup S^{\sigma}_{[n+k-(s-1),n]}$	$B_{T_k} = \Delta'_s$
		$k=0,1,\ldots,s,\sigma\in ilde{\Sigma}({\sf x})$	
$B_{p}^{n}[0,1]$	$\mathbf{U}_T P_{B_T}(\mathbf{x}_T)$	$T=S^{\sigma}_{[1,s]}, \sigma\in ilde{\Sigma}(\mathbf{x})$	$B_T =$
$(p \ge 1)$		[-]-]	$B_{\rho}^{s}[0,1]$
$[\ell, u]^n$	$\mathbf{U}_{T_k} P_{B_{T_k}}(\mathbf{x}_{T_k})$	$T_k = S^{\sigma}_{[1,k]} \cup S^{\sigma}_{[n+k-(s-1),n]}$	$B_{T_k} = [\ell, u]^s$
$(\ell < u)$		$k=0,1,\ldots,s,\sigma\in\widetilde{\Sigma}({f x})$	

Optimality Conditions and Algorithms

Back to the Sparse Optimization Problem

•
$$C_s = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_0 \le s\}$$

Assumption

[A] $f : \mathbb{R}^n \to \mathbb{R}$ is lower bounded, continuously differentiable.

[B] B is a closed and convex set.

In some cases

[C] $f \in C^{1,1}_{L(f)}$.
$$(P) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap B, \end{array}$$

- Basic Feasibility "optimality" over the support.
- *L*-Stationarity extension of stationarity over convex sets.
- CW-optimality

Basic Feasibility (BF)

x ∈ C_s ∩ B is a basic feasible (BF) point of (P) if for any super support set S of x, for some L > 0:

$$\mathbf{x}_{S} = P_{B_{S}}\left(\mathbf{x}_{S} - \frac{1}{L}\nabla_{S}f(\mathbf{x})\right).$$

Remarks:

- (a) If $|I_1(\mathbf{x})| = s$, then the only super support set is the support itself.
- (b) If $|I_1(\mathbf{x})| = k < s$, then there are $\binom{n-k}{s-k}$ possible super supports.
- (c) **x** is a **BF** \Leftrightarrow **x**_T is stationary point of f over B_T for any super support T of **x**
- (d) Optimality \Rightarrow BF

What if $|I_1(x)| < s$?

What if $|l_1(\mathbf{x})| < s$? In all of the above cases, basic feasibility is exactly like stationarity over *B*

Theorem. $\mathbf{x} \in C_s \cap B$ is a BF point if and only if

$$\mathbf{x}_T = \mathbf{P}_{B_T}\left(\mathbf{x}_T - \frac{1}{L}\nabla_T f(\mathbf{x})\right),$$

where

- 1 Symmetry: B is non-negative type-1 or type-2 symmetric
- 2 Fill the support: $i \in [n+1]$ s.t. $\left|S_{[i,n]}^{\sigma} \cup I_1(\mathbf{x})\right| = s \quad (\sigma \in \tilde{\Sigma}(-p(-\nabla f(\mathbf{x}))))$
- 3 Into super support: $T = I_1(\mathbf{x}) \cup S_{[i,n]}^{\sigma}$

Important: when $|I_1(\mathbf{x})| < s$ only one super support needs to be checked

Algorithm 3 BAsic Feasible Search (BAFS)

Initialization: $\mathbf{x}^0 \in C_s \cap B, k = 0$. **Output:** $\mathbf{u} \in C_{s} \cap B$ which is a basic feasible point. Repeat $\mathbf{0} \quad k \leftarrow k+1$ 2 let $\sigma \in \tilde{\Sigma} \left(-p \left(-\nabla f(\mathbf{x}^k) \right) \right)$ • set $i \in \{1, \ldots, n+1\}$ such that $\left|S_{[i,n]}^{\sigma} \cup I_1(\mathbf{x}^k)\right| = s$ • set $T_k = I_1(\mathbf{x}^k) \cup S^{\sigma}_{[i,n]}$ **5** take $\mathbf{x}^k \in \operatorname{argmin} \{f(\mathbf{y}) : \mathbf{y} \in B, I_1(\mathbf{y}) \subset T_k\}$ Until $f(\mathbf{x}^{k-1}) < f(\mathbf{x}^k)$ **2** Set $u = x^{k-1}$

Finite Termination.

• requires the ability to minimize over the support set.

$$(P) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap B, \end{array}$$

- Basic Feasibility "optimality" over the support.
- *L*-Stationarity extension of stationarity over convex sets.
- CW-optimality

Unfortunately, the variational form $\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge 0 \forall \mathbf{x} \in B \cap C_s$ is not a necessary optimality condition (in general...)

Unfortunately, the variational form $\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge 0 \forall \mathbf{x} \in B \cap C_s$ is not a necessary optimality condition (in general...)

Let L > 0. A vector $\mathbf{x} \in C_s \cap B$ is an *L*-stationary point of (P) if

$$\mathbf{x} \in P_{C_s \cap B}\left(\mathbf{x} - \frac{1}{L} \nabla f(\mathbf{x})\right).$$

L-Stationarity in the Hierarchy:

- 1 L-Stationarity \Rightarrow BF
- 2 If $f \in C_{L(f)}^{1,1}$, Optimality \Rightarrow *L*-stationarity $\forall L > L(f)$

Condition depends on L, more restrictive as L gets smaller

Gradient Projection Method

$$\mathbf{x}^{k+1} \in P_{C_s \cap B}\left(\mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k)\right)$$

- B = ℝⁿ ⇒ Iterative Hard Thresholding (IHT) method (Blumensath and Davis '08, '09, '12).
- Makes sense only when $f \in C^{1,1}$.
- Only guarantees convergence to an *L*-stationary point for *L* > *L*(*f*).

L-stationarity characterization

Theorem. Let *B* be a nonnegative type-1 or type-2 symmetric set. Then a BF point \mathbf{x}^* is an *L*-stationary point if and only if

$$\min_{i\in I_1(\mathbf{x}^*)} p(Lx_i^* - \nabla_i f(\mathbf{x}^*)) \geq \max_{j\in I_0(\mathbf{x}^*)} p(Lx_j^* - \nabla_j f(\mathbf{x}^*)),$$

Example $(B = \mathbb{R}^n)$

 $B = \mathbb{R}^n$, and $\sigma \in \tilde{\Sigma}(|\mathbf{x}^*|)$. Then \mathbf{x}^* is an *L*-stationary point of (P) if and only if^a

$$|\nabla_i f(\mathbf{x}^*)| \begin{cases} \leq L |x^*_{\sigma(s)}| & \text{if } i \in I_0(\mathbf{x}^*), \\ = 0 & \text{if } i \in I_1(\mathbf{x}^*). \end{cases}$$

^aBeck, A. & Eldar, Y. C., SIOPT, 2013

Back to the Variational Form of Stationarity

- In general, the variational form is not a necessary optimality conditions.
- However, when f is concave, it is in fact a necessary optimality condition.

Back to the Variational Form of Stationarity

- In general, the variational form is not a necessary optimality conditions.
- However, when f is concave, it is in fact a necessary optimality condition.

Theorem. Suppose that f is concave and cont. diff.. If \mathbf{x}^* is an optimal solution of (P), then

$$\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \geq 0 \quad \forall \mathbf{x} \in B \cap C_s.$$

(a direct consequence of Krein-Milman+attainment of opt. sol. at extreme points)

Back to the Variational Form of Stationarity

- In general, the variational form is not a necessary optimality conditions.
- However, when f is concave, it is in fact a necessary optimality condition.

Theorem. Suppose that f is concave and cont. diff.. If \mathbf{x}^* is an optimal solution of (P), then

$$\langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \geq 0 \quad \forall \mathbf{x} \in B \cap C_s.$$

(a direct consequence of Krein-Milman+attainment of opt. sol. at extreme points) We will call this type of stationarity co-stationarity

co-stationarity \Rightarrow *L*-stationarity

Theorem. For any L > 0:

 \mathbf{x}^* co-stationary $\Rightarrow \mathbf{x}^*$ is L – stationary

co-stationarity \Rightarrow *L*-stationarity

Theorem. For any L > 0:

 \mathbf{x}^* co-stationary $\Rightarrow \mathbf{x}^*$ is L – stationary

Consequence: for concave f, L-stationarity is a necessary optimality condition for any L > 0.

co-stationarity \Rightarrow *L*-stationarity

Theorem. For any L > 0:

 \mathbf{x}^* co-stationary $\Rightarrow \mathbf{x}^*$ is L – stationary

Consequence: for concave f, L-stationarity is a necessary optimality condition for any L > 0. sparse PCA $\max{\{\mathbf{x}^T \mathbf{A} \mathbf{x} : \|\mathbf{x}\|^2 \le 1, \|\mathbf{x}\|_0 \le s\}}$ $(\mathbf{A} \succeq \mathbf{0})$

 Most algorithms converge to a co-stationary point, e.g., conditional gradient method:

$$\mathbf{x}^{k+1} = rac{\mathbf{y}^k}{\|\mathbf{y}^k\|_2}, \mathbf{y}^k = H_s(\mathbf{A}\mathbf{x}^k).$$

- Gradient projection is never employed (since L-stationarity is a weak condition).
- The above is only correct for concave f.

Back to L-stationarity - Example

$$\min\left\{f(x_1, x_2) \equiv 12x_1^2 + 20x_1x_2 + 32x_2^2 : \left\|(x_1; x_2)^T\right\|_0 \le 1\right\}$$

L(f) = 48.3961

Two BF vectors: (0, -9/16) - optimal solution. (-1/12, 0) - non-optimal, SL=196.

L = 250

- Are there stronger (more restrictive) optimality conditions?
- Can we define algorithms that (1) do not depend on the Lipschitz property and (2) converge to "better" optimality conditions?

- Are there stronger (more restrictive) optimality conditions?
- Can we define algorithms that (1) do not depend on the Lipschitz property and (2) converge to "better" optimality conditions?

The answer is $\ensuremath{\mathsf{YES}}$

$$(P) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C_s \cap B, \end{array}$$

- Basic Feasibility "optimality" over the support.
- *L*-Stationarity extension of stationarity over convex sets.
- CW-optimality

Let *B* be nonnegative type-1 or type-2 symmetric. A BF point \mathbf{x} is a **simple-CW point** of (P) if

$$f(\mathbf{x}) \leq \left\{ egin{array}{ll} f(\mathbf{x} - x_i e_i \pm x_i e_j) & { ext{B}} ext{ type-2} \ f(\mathbf{x} - x_i e_i + x_i e_j) & { ext{B}} ext{ nonneg. type-1} \end{array}
ight.$$

where

 $i \in \underset{\ell \in D(\mathbf{x})}{\operatorname{argmin}} \{ p(-\nabla_{\ell} f(\mathbf{x})) \} \text{ with } D(\mathbf{x}) = \underset{k \in I_{1}(\mathbf{x})}{\operatorname{argmin}} p(x_{k})$ $j \in \underset{\ell \in I_{0}(\mathbf{x})}{\operatorname{argmin}} \{ -p(-\nabla_{\ell} f(\mathbf{x})) \}$

Results: If *B* is a non-negative type-1 set or a type-2 symmetric

- $1 \ \mathsf{Optimality} \Rightarrow \mathsf{Simple-CW}$
- 2 If $f \in C_{L(f)}^{1,1}$, then Simple-CW $\Rightarrow L_2(f)$ -stationarity $\forall L \ge L_2(f)$

 $L_2(f)$ - Lipschitz constant of ∇f restricted to two coordinates. Smaller than L(f)

Simple-CW is more restrictive than L(f)-stationarity

Under the Lipschitz assumption,

• For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

 $\|\nabla_{i,j}f(\mathbf{x}) - \nabla_{i,j}f(\mathbf{x} + \mathbf{d})\| \leq L_{i,j}(f)\|\mathbf{d}\|,$

for any $\mathbf{d} \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

Under the Lipschitz assumption,

• For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

 $\|\nabla_{i,j}f(\mathbf{x})-\nabla_{i,j}f(\mathbf{x}+\mathbf{d})\|\leq L_{i,j}(f)\|\mathbf{d}\|,$

for any $\mathbf{d} \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

$$L_2(f) = \max_{i \neq j} L_{i,j}(f)$$

Under the Lipschitz assumption,

• For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

 $\|\nabla_{i,j}f(\mathbf{x})-\nabla_{i,j}f(\mathbf{x}+\mathbf{d})\|\leq L_{i,j}(f)\|\mathbf{d}\|,$

for any $\mathbf{d} \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

$$L_2(f) = \max_{i \neq j} L_{i,j}(f)$$

•
$$L_2(f) \leq L(f)$$
.
Example: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{b}^T \mathbf{x}$ with $\mathbf{Q}_n = \mathbf{I}_n + \mathbf{J}_n$ (\mathbf{I}_n - identity, \mathbf{J}_n - all ones)

Under the Lipschitz assumption,

• For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

 $\|\nabla_{i,j}f(\mathbf{x})-\nabla_{i,j}f(\mathbf{x}+\mathbf{d})\|\leq L_{i,j}(f)\|\mathbf{d}\|,$

for any $\mathbf{d} \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

$$L_2(f) = \max_{i \neq j} L_{i,j}(f)$$

•
$$L_2(f) \leq L(f)$$
.
Example: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{b}^T \mathbf{x}$ with $\mathbf{Q}_n = \mathbf{I}_n + \mathbf{J}_n$ (\mathbf{I}_n - identity,
 \mathbf{J}_n - all ones)
 $L(f) = 2\lambda_{\max}(\mathbf{Q}_n) = 2(n+1)$
On the other hand, $L_{i,j}(f) = 2\lambda_{\max}\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix} = 6$

Under the Lipschitz assumption,

• For any $i \neq j$ there exists a $L_{i,j}(f)$ for which:

 $\|\nabla_{i,j}f(\mathbf{x})-\nabla_{i,j}f(\mathbf{x}+\mathbf{d})\|\leq L_{i,j}(f)\|\mathbf{d}\|,$

for any $\mathbf{d} \in \mathbb{R}^n$ satisfying $d_k = 0$ for any $k \neq i, j$.

$$L_2(f) = \max_{i \neq j} L_{i,j}(f)$$

•
$$L_2(f) \leq L(f)$$
.
Example: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{b}^T \mathbf{x}$ with $\mathbf{Q}_n = \mathbf{I}_n + \mathbf{J}_n$ (\mathbf{I}_n - identity,
 \mathbf{J}_n - all ones)
 $L(f) = 2\lambda_{\max}(\mathbf{Q}_n) = 2(n+1)$
On the other hand, $L_{i,j}(f) = 2\lambda_{\max}\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = 6$
We get: $L(f) = 2(n+1), L_2(f) = 6$

Assumption: The function can be minimized over any super support, *B* nonnegative type-1 or type-2

x is called a zero-CW optimal point if

 $f(\mathbf{x}) \leq \min \{f(\mathbf{y}) : \mathbf{y} \in B, I_1(\mathbf{y}) \subseteq T\},\$

where $T = (I_1(\mathbf{x}) \cup \{j\}) \setminus \{i\}$ if $||\mathbf{x}||_0 = s$, otherwise additional (specific) indices are added

Assumption: The function can be minimized over any super support, B nonnegative type-1 or type-2

x is a **full-CW optimal point** if $\forall i \in I_1(\mathbf{x}), j \in I_0(\mathbf{x})$, it holds that

 $f(\mathbf{x}) \leq \min \{f(\mathbf{y}) : \mathbf{y} \in B, I_1(\mathbf{y}) \subseteq T_{i,j}\}.$

In the non full-support case, additional indices are added to $T_{i,j}$.

Hierarchy - Summary

```
Full-CW
    Zero-CW
         \parallel
   Simple-CW
L_2(f)-Stationarity
 Basic Feasibility
```

x is called CW-minimum point if $f(\mathbf{x}) \ge f(\mathbf{z})$ for any $S_2(\mathbf{x}) \equiv \{\mathbf{z} : \|\mathbf{z} - \mathbf{x}\|_0 \le 2, \mathbf{z} \in C_s \cap B\}.$ **x** is called CW-minimum point if $f(\mathbf{x}) \ge f(\mathbf{z})$ for any

$$S_2(\mathbf{x}) \equiv \{\mathbf{z} : \|\mathbf{z} - \mathbf{x}\|_0 \le 2, \mathbf{z} \in C_s \cap B\}.$$

CW-optimality is a necessary optimality conditions (of a combinatorial flavor...)

Theorem. If f is concave and $B = {\mathbf{x} : ||\mathbf{x}||_2 \le 1}$, then any CW-maximal point is a co-stationary point.

Quite difficult to prove since co-stationarity is a rather strong condition.

pit-prop data

13 variables measuring 180 properties of pitprops. 715 BF points,

28 co-stationary points, 3 CW-optimal points.

#	Support	CW	Value	#	Support	CW	Value
1	{1,2,9,10}	*	2.937	15	{5,6,7,10}		2.337
2	$\{1,2,7,10\}$		2.883	16	{7,8,10,12}		2.314
3	$\{1,2,7,9\}$		2.859	17	{7,8,10,13}		2.302
4	$\{1,2,8,9\}$		2.797	18	{5,6,7,13}		2.28
5	{1,2,8,10}		2.759	19	{3,4,6,7}		2.209
6	$\{1,2,6,7\}$		2.697	20	{4,5,6,7}		2.196
7	{2,7,9,10}		2.696	21	{7,10,12,13}		2.136
8	{2,6,7,10}		2.592	22	{3,4,8,12}		1.995
9	{1,6,7,10}		2.587	23	{3,4,10,12}		1.992
10	$\{1,2,3,4\}$	*	2.563	24	{3,10,11,12}		1.609
11	{7,8,9,10}		2.549	25	{3,5,12,13}		1.516
12	{6,7,9,10}		2.522	26	$\{1,5,12,13\}$		1.414
13	{6,7,10,13}		2.459	27	{2,5,12,13}		1.408
14	{6,7,8,10}		2.444	28	{3,5,11,13}		1.382

Amir Beck - Technion

On the Minimization Over Sparse Symmetric Sets: Projections, C

$$\min\left\{ \left\| \begin{pmatrix} 1000 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0.01 & 1 \end{pmatrix} \mathbf{x} - \begin{pmatrix} 3 \\ 1 \\ 9 \end{pmatrix} \right\|_2^2 : \mathbf{x} \in C_2 \cap B_1^4[\mathbf{0}, 1] \right\}.$$

support	{1,2}	$\{1,3\}$	$\{1,4\}$	{2,3}	{2,4}	{3,4}
	0.003	0.003	0.002	0		
values	0.997	0	0	0.910		
values	0	0.997	0	0.090		
	0	0	0.998	0		
BF	\checkmark	\checkmark	\checkmark	\checkmark		
L(f)-stationary			\checkmark	\checkmark		
simple-CW			\checkmark	\checkmark		
zero-CW			\checkmark			
full-CW			\checkmark			

Algorithm 4 Zero-CW search method (ZCWS)

Initialization: $\mathbf{x}^{0} \in C_{s} \cap B$ a BF, k = 0. Output: $\mathbf{u} \in C_{s} \cap B$ which is a zero-cw. General Step (k = 0, 1, 2, ...) $D(\mathbf{x}^{k}) = \underset{\ell \in I_{1}(\mathbf{x}^{k})}{\operatorname{argmin}} p(x_{\ell}^{k})$ $i \in \underset{\ell \in D(\mathbf{x}^{k})}{\operatorname{argmin}} \{p(-\nabla_{\ell}f(\mathbf{x}^{k}))\}$ $j \in \underset{\ell \in I_{0}(\mathbf{x}^{k})}{\operatorname{argmin}} \{-p(-\nabla_{\ell}f(\mathbf{x}^{k}))\}$
Zero-CW search method - Find a Zero-CW point

Algorithm 5 Zero-CW search method (ZCWS)

• let
$$\sigma \in \tilde{\Sigma}(-p(-\nabla f(\mathbf{x}^k)))$$
 and let ℓ be such that

$$\left| \left(S^{\sigma}_{[\ell,n]} \cup I_1(\mathbf{x}^k) \cup \{j\} \right) \smallsetminus \{i\} \right| = s$$

O Define

$$T_k = \left(S^{\sigma}_{[\ell,n]} \cup I_1(\mathbf{x}^k) \cup \{j\}\right) \smallsetminus \{i\}.$$

• Set $\mathbf{x} \in \operatorname{argmin} \{ f(\mathbf{y}) : \mathbf{y} \in B, I_1(\mathbf{y}) \subseteq T_k \}$.

•
$$\mathbf{x}^{k+1} = \mathsf{BFS}(\mathbf{x})$$

3 If $f(\mathbf{x}^k) \leq f(\mathbf{x}^{k+1})$, then STOP and the output is $\mathbf{u} = \mathbf{x}^k$. Otherwise, $k \leftarrow k+1$ and go back to step 1.

ZCWS generates a points that is a zero-CW point, and this converges to "better" points than gradient projection/IHT.

Full-CW search method - Find a Full-CW point

Algorithm 6 Full-CW search method

Initialization: $\mathbf{x}^0 \in C_s \cap B$ - a basic feasible point, k = 0. **Output:** $\mathbf{u} \in C_s \cap B$ which is a full-cw point. **General Step (**k = 0, 1, 2, ...**)**

- $\mathbf{x}^{k+1} = \mathsf{ZCWS}(\mathbf{x}^k)$ and set $k \leftarrow k+1$.
- e let σ ∈ Σ̃(−p(−∇f(x^k))), and for any i ∈ l₁(x^k), j ∈ l₀(x^k) let ℓ^{i,j} be such that

$$\left| \left(S^{\sigma}_{[\ell^{i,j},n]} \cup I_1(\mathbf{x}^k) \cup \{j\} \right) \smallsetminus \{i\} \right| = s$$

3 define

$$T_k^{i,j} = \left(S_{\left[\ell^{i,j},n\right]}^{\sigma} \cup I_1(\mathbf{x}^k) \cup \{j\}\right) \smallsetminus \{i\}$$

Algorithm 7 Full-CW search method

- take $\mathbf{z}^{i,j} \in \operatorname{argmin} \left\{ f(\mathbf{y}) : y \in B, I_1(y) \subseteq T_k^{i,j} \right\}$.
- **5** set $(i_0, j_0) \in \operatorname{argmin} \{ f(\mathbf{z}^{i,j}) : i \in I_1(\mathbf{x}), j \in I_0(\mathbf{x}) \}$
- define $\mathbf{x}^{k+1} = \mathsf{BFS}(\mathbf{z}^{i_0, j_0})$
- if $f(\mathbf{x}^k) \leq f(\mathbf{x}^{k+1})$, then STOP and the output is $\mathbf{u} = \mathbf{x}^k$. Otherwise, $k \leftarrow k+1$ and go back to step 1.

The full-CW search method obviously find a full-CW point in a finite number of steps.

Hierarchy of Algorithms (Best to Worst)

- Full-CW search.
- ZCWS
- Gradient projection/IHT
- BAFS

Numerical Experiments

Greedily build the super support

Algorithm 8 TGA

Initialization: $\mathbf{x} = \mathbf{0}_n$, $S = \emptyset$. Output: $\mathbf{x} \in C_s \cap B$ • while |S| < s do: • $(j, \mathbf{x}) \in \underset{(\ell \in S^c, \mathbf{z} \in B)}{\operatorname{argmin}} \{f(\mathbf{z}) : I_1(\mathbf{z}) \subseteq S \cup \{\ell\}\}$ • set $S \leftarrow S \cup \{j\}$

2 Return x

Objective: track an index with a small number of assets \mathbf{x}^* , which has a return matrix \mathbf{A} .

- Prob. min $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$ s.t. $\mathbf{x} \in C_s \cap \Delta_n$
 - A: $\boldsymbol{\mathsf{A}} \in \mathbb{R}^{72 \times 54}$, daily returns matrix
 - x: x weights vector
 - b: $\boldsymbol{b} \in \mathbb{R}^{72}$ S&P500 daily returns vector
- Data 180 random sets of stocks from NYSE, 60 for each sparsity level

improver	improved	<i>s</i> = 9	s = 18	<i>s</i> = 27	total
ZCWS	FCWS	0	0	0	0
	IHT	60	60	60	180
	TGA	9	56	50	115
FCWS	ZCWS	33	11	17	61
	IHT	60	60	60	180
	TGA	15	56	51	122
IHT	ZCWS	0	0	0	0
	FCWS	0	0	0	0
	TGA	3	56	50	109

- 1 The IHT never reached a zero-cw or full-cw point.
- 2 The ZCWS reached a full-cw point in 66%.
- 3 The TGA was improved in most of the instances when s > 9.

sparse PCA - gene expression data (GeneChip oncology)

20 data sets. Number of variables 7129-54675.

THANK YOU FOR YOUR ATTENTION

- Beck, Hallak "On the minimization over sparse symmetric sets".
- Beck, Vaisbourd "Optimization methods for solving the sparse PCA problem".