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Problem Formulation

The sparse optimization problem

min  f(x)
(P) st. xe G NB,

(1) f continuously differentiable
(1) B is closed and convex
(2) G ={xeR": |x|lo <s}

Difficulties:
(a) GsN B non-convex

(b) Cs N B induces a combinatorial constraint

No global optimality conditions, “solution” methods are heuristic
in nature.
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Example - Compressed Sensing

Linear CS Recover a sparse signal x with a sampling matrix A and
a measure b.
min ||Ax — b||3

(C5) st. xe GGNR"
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@ Linear:

1 Conditions for reconstruction: RIP (Candes and Tao '05),
SRIP (Beck and Teboulle '10), spark (Donoho and Elad '03;
Gorodnitsky and Rao '97), mutual coherence (Donoho et al.
'03; Donoho and Huo '99; Mallat and Zhang '93)

2 Reviews: Bruckstein et al. '09, Davenport et al. '11, Tropp
and Wright '10.

3 lterative algorithms: IHT (Blumensath and Davis '08, '09,
'12; Beck and Teboulle '10), CoSaMP (Needell and Tropp '09)

@ Nonlinear:

1 Phase retrieval: Shechtman et al. '13; Ohlsson and Eldar '13;
Eldar and Mendelson '13; Eldar et al. '13; Hurt. '89

2 Nonlinear: optimality conditions (Beck and Eldar '13), GraSP
(Bahmani et al. '13)
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Example - Sparse Index Tracking

Sparse Index Tracking Track an index b with at most s assets, with
return matrix A.

min ||Ax — b||3

(I7) st. xe G NA,

Example: Finance - track the S&P500 with a small number of assets

Takeda et al '12

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, (



Example - Sparse Principal Component Analysis

Sparse Principal Component Analysis Find the first principal eigen-
vector of a matrix A.

max x! Ax

(PCA) st xeGn{yeRr: |yl <1}

Example: Finance - identify the group which explains most of the
variance in the S&P500

Sample of works:

Moghaddam, Weiss, Avidan 06', d'Aspremont, Bach, El-Ghaoui
08’, d'Aspremont, EI-Ghaoui, Jordan Lanckriet 07’,

recent review: Luss and Teboulle '13
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The sparse optimization problem

min  f(x)
st. xe G NB,

(P)

B closed and convex

Main Objectives:

o Define necessary optimality conditions

e Develop corresponding algorithms

e Establish hierarchy between algorithms and conditions.
The case B = R": Beck, Eldar 13’
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The sparse optimization problem

min  f(x)
st. xe G NB,

(P)

B closed and convex

Main Objectives:
o Define necessary optimality conditions
e Develop corresponding algorithms

e Establish hierarchy between algorithms and conditions.

The case B = R": Beck, Eldar 13’
However, we will also need to study and compute Orthogonal
Projections on BN C.
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Recap of Necessary First Order Opt. Conditions over

Convex Sets: Stationarity

(x) min{f(x) : x € S},
S closed and convex, f continuously differentiable.
Equivalent Definitions of Stationarity: x* stationary point iff

Projection Form Variational Form

x* = PS <X* . ivf(x*)> <Vf(X*),X — X*> > ovx € S

for some L >0
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Recap of Necessary First Order Opt. Conditions over

Convex Sets: Stationarity

(x) min{f(x) : x € S},
S closed and convex, f continuously differentiable.
Equivalent Definitions of Stationarity: x* stationary point iff

Projection Form Variational Form

x* = PS <X* . ivf(x*)> <Vf(X*),X — X*> > ovx € S

for some L >0

@ conditions are equivalent = independent of L

@ most algorithms that use first order information converge to
stat. points.

@ condition relies on the properties/computatbility of Ps(+)

Ps(y) = argmin{|ly — x||*: y € S}.

Amir Beck - Technion
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Why Study Orthogonal Projections?

Pcng (x) = argmin{||lz—x||3:z€ C;N B}

To define optimality conditions, we need to
@ compute and analyze properties of the orthogonal projection
Pc,ns.
Computing Pc g is in general a difficult task, but in fact
tractable under symmetry assumptions on B
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Why Study Orthogonal Projections?

Pcng (x) = argmin{||lz—x||3:z€ C;N B}

To define optimality conditions, we need to

@ compute and analyze properties of the orthogonal projection
Pc,ns.
Computing Pc g is in general a difficult task, but in fact

tractable under symmetry assumptions on B
Revised Layout:

Projections, Optimality Conditions, Algorithms
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Projection Onto
Symmetric Sets
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Definitions - Basics

Y, = permutation group of [n]

= reordering of x according to o € ¥,

(x7)i = Xo(i)-

Example (permutation)

x=(5 4 6),and

then
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Definitions - sorting permutations

@ 0 € X, is a sorting permutation of x if

Xo(1) 2 Xo(2) 2 2 Xo(n—1) = Xo(n)

@ 5(x) is the set of all the sorting permutations of x

Example (sorting permutation)

X = (7 9 8 9)T, and
0(1)=2,0(2) =4,0(3) =3,0(4) =1,

thenx”=(9 9 8 7)"
Also 6 € i(x) where 5(1) = 4,5(2) =2,5(3) =3,5(4) = 1.

Amir Beck - Technion
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Definitions - Type-1 Symmetric Set

@ D is a type-1 symmetric set if

xeD=x"€eD

oEY,
] set \ description \ type-1 \ nonneg. type-1 | type-2
Al unit sum v
[¢,u]"(¢ < u) box v

AL ={xeR":1"x =1}
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Definitions - Nonnegative Type-1 Symmetric Set

@ D is nonnegative if Y x € D, x >0

’ set \ description type-1 | nonneg. type-1 | type-2
R? | nonnegative orthant v v
Ap unit simplex v v

Amir Beck - Technion
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Definitions - Type-2 Symmetric Set

e D is a type-2 symmetric set if it is type-1 symmetric and

xeDjye{-1,1}"=xo0y=(xy;)l., €D

] set \ description \ type-1 \ nonneg. type-1 \ type-2 ‘
R" entire space v v
By[0,1](p > 1) p-ball v v
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Summary of symmetry properties of simple sets

set desc. type-1 | non. t-1 | type-2
R" entire space v v
R7 nonnegative orthant v v
A, unit simplex v v
A unit sum v
Bp[0,1](p > 1) p-ball v v
[¢, u]"(¢ < u) box v
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Symmetric Projection Monotonicity Lemma

Symmetric Projection Monotonicity Lemma. Let D be a type-1
symmetric set, x € R”, andy € Pp(x) . Then

(vi —y)(xi—x)) >0

for any i,j € [n].
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Order Preservation Property

Theorem. Let D be a type-1 symmetric set, and o € ¥(x). Suppose
that Pp(x) # 0.

Then _
dy € Pp(x) s.t. 0 € X(y)
That is
Xo(1) Z Xo(2) 2 1 = Xo(n)
Yo(1) 2 Yo2) = 2 Yo(n)

Example: D = G, Pp((3,2,2,0)) = {(3,2,0,0), (3,0,2,0)}.

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, (



Sparse Projection Onto
Symmetric Sets
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The Sparse Projection Problem

The sparse projection problem

Find an element in orthogonal projection of x € R” onto B N Cs:

Pc.ng (x) = argmin {[|z — x|3:z€ CG;N B}

1 BN G closed = Pc,ng(x) # 0
2 BN G nonconvex = |Pc,ng(x)| > 1
A DIFFICULT NONCONVEX PROBLEM IN

GENERAL
(known for B =R", R, A,)
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Supports, Super Supports

Let x e R", s e [n]={1,...,n}.
1 Support of x: 1(x) ={i € [n] : x; # 0}.
2 Super support of x: any set T s.t. 1(x) C T and |T| =s.
3 x has full support if ||x||o = |h(x)| = s.
4 Off-support of x: Ip(x) = {i € [n] : x; = 0}.

s=3,n=5and x=(-3,4,0,0,0)7
1 Support: (x) = {1,2}
2 Super support: T € {{1,2,3},{1,2,4},{1,2,5}}
3 Incomplete support: ||x|[o < s
4 Off-support: Ih(x) = {3,4,5}
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Restriction on Index Sets

x € R", T C [n] index set
1 x7 € RITl is the restriction of x to T
2 U7 is the submatrix of I, constructed from the columns in T
3 Bt = {x e RITl : Uyx € B} is the restriction of B to T
4 V1f(x) = ULVF(x) is the restriction of Vf(x) to T.

x=(8,7,6,5)" = x;3=(8,6)".

B = {(x1,%x2,x3,xa) : x1 +2x0 +3x3 + 4x4 = 1} = B1p = {(Xl,XQ)T ix1+2x = 1}

f(x) = x1x0 + x5 + x5 = Vi f(x) = (x, 3x3)".
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The Order Set

- : : - _
order set SU1J2] For any permutation o € ¥, we define S[jl,jg] as:

o _ {o(j1),0(1+1),...,002)} 0<ji<jp<n,
r.] 1) otherwise.

Example (order set)

Stz = {0(1),0(2)} = {41}, Spq ={0(3),0(4)} = {3,2}
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Phases in Computing the Projection

To find y € Pc,ng (X):
(1) find its super support S
(2) Compute ys = Ppy(xs), ysc =0

Naive approach: go over all possible (’57) super supports, compute
the corresponding projections, and find the sparse projection
vector. TOO EXPENSIVE
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Type-1 Symmetric Sparse Projection Theorem

Type-1 Symmetric Projection Theorem B be a type-1 symmetric
set, o € ¥(x). Then Jy € Pc.n5 (x), k € {0,...,s} for which

h(y) € St Y Siik—(s-1).1]

Result: to find the super support, find k € {0,...,s}:

Xg(1) = "0 2 Xo(k) = Xo(k+1) = 2 Xo(ntk—s) = Xo(ntk—(s—1)) = " = Xo(n)
Yo) 2 2Yoy= 0 = -+ =2 0 ==

2 Yo(ntk—(s—1) © 2 Yo(n)
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Type-1 Symmetric Sparse Projection Algorithm

Algorithm 1 Projection onto a type-1 symmetric sparse set

Input: x € R". Output: u € Pc.np(x).
Q Find o € ¥(x).
Q forany k=s,s—1,...,0do:
@ Set Ty = Sﬁ,k] U S[‘;+k_(s_1)
@ Compute gy = Pg,, (x7,) and define z = U7, g.

n]’

© Return u = argmin{||z—x||?:z€ {zK: k=s,5—1,...,0}}
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Nonnegative Type-1 Symmetric Sparse Projection Theorem

Nonnegative Type-1 Symmetric Sparse Projection Theorem
B nonnegative type-1 symmetric, and o € X(x). Then

Jy € Peng (x) st h(y) € 57 4

Example
B=NA4 s=2 x=(1,05,-05—-1)", e {12,
y = (0.75,0.25,0,0) "

The super support can be found by a simple sort
operation
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Type-2 Symmetric Sparse Projection Theorem

Type-2 Symmetric Sparse Projection Theorem B type-2 symmet-
ric, and o € X(|x|). Then

Jy € Pc,ns (x) st h(y) € S

| \

Example
B = B;[0,1], s =2, x = (3,0.5,-0.7, 4) [12]—{41}
= (0.6,0,0,—0.8) .

The super support can be found by a simple
sort operation

On the Minimization Over Sparse Symmetric Sets: Projections, (

Amir Beck - Technion



Unified Symmetric Projection Theorem

symmetry function The symmetry function p : R” — R":

) = x B is nonnegative type-1,
P\ = |x| B is type-2 symmetric.

Unified Symmetric Projection Theorem B be closed, convex, and
a nonnegative type-1 or a type-2 symmetric. o € ¥(p(x)).
Then

Jy € Pcng (x) st h(y) € S
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Unified Symmetric Sparse Projection Algorithm

Algorithm 2 Unified symmetric sparse projection algorithm
Input: x € R".
Output: u € Pgnc.(x).

Q@ Compute T = 57  for o € ¥ (p(x)).

@ Return u = U7Pg, (x7).
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Super supports for sparse projection onto simple sets

| B | Penc.(x) | super support set(s) Br

R” Urxr T =57 40 ¢€Xx(x]) Br =R®

R7 Ur[xr]+ T=5140¢ Y (x) Br =Rg

A, UTPBT(XT) T = 5[1 o] ,0 € Z(X) Br = A

A, Ur,Pe,, (x7,) = S50 1Y Sk (s1yn | BT = AL
k:O,l,...,s7 o € X(x)

BS[O, 1] UTPBT(XT) T = 5[1 S],O' S Z(|X|) Br =

(p=1) B;10,1]

[& u]n UTk 'DBTk (ka) T = 5[1 K] U S[nJrk (s—1),n] T = [& u]s

(¢ <u) k=0,1,...,s, 0 € ¥(x)

Amir Beck - Technion
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Optimality Conditions and
Algorithms
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Back to the Sparse Optimization Problem

The sparse optimization problem

min  f(x)
(P) st. xe G NB,

o Go={xeR":|x]o <s}

[A] f:R" — R is lower bounded, continuously differentiable.

[B] B is a closed and convex set.
In some cases

[€] € -
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Road Map of Optimality Conditions

min  f(x)
st. xe N B,

(P)

o Basic Feasibility - “optimality” over the support.

o L-Stationarity - extension of stationarity over
convex sets.

o CW-optimality
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Basic Feasibility (BF)

@ x € C; N B is a basic feasible (BF) point of (P) if for any
super support set S of x, for some L > 0:

1
xs = Pg. <xs — Lng(X)) :

Remarks:

(a) If |li(x)| = s, then the only super support set is the support
itself.

(b) If |h(x)] = k < s, then there are ('s’:,f) possible super
supports.

(c) xis a BF < x7 is stationary point of f over Bt for any super
support T of x

(d) Optimality = BF
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Basic Feasibility - Examples

| B | BF conditions (full support) |
R” Vi) () = 0
Rq_ V,l(x*)f(x*) =0
A, du e R:Vif(x*)=p,i € h(x*)
Al du e R: Vif(x*) = p,i € h(x*)

BJ[0,1] Vix)f(x*)=0or x| =1and IN <0
VII(X*)f(x*) = )\X}kl(x*)

=0 {<xi<u
[4, u]"(£ < u) g)’;(x*) >0 x; =/ i € lh(x*)
<0 xi=uy;

What if |1(x)| < s ?
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Basic Feasibility - Examples

| B | BF conditions (full support) |
R” Vi) () = 0
Rq_ V,l(x*)f(x*) =0
A, du e R:Vif(x*)=p,i € h(x*)
Al du e R: Vif(x*) = p,i € h(x*)

BJ[0,1] Vix)f(x*)=0or x| =1and IN <0
VII(X*)f(x*) = )\X}kl(x*)

=0 {<xi<u
[4, u]"(£ < u) g)’;(x*) >0 x; =/ i € lh(x*)
<0 xi=uy;

What if |/1(x)] <s ? Inall of the above cases, basic feasibility
is exactly like stationarity over B
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Characterization of BF points

Theorem. x € C; N B is a BF point if and only if

1
XT = PBT <XT — Lva(X)) N

where
1 Symmetry: B is non-negative type-1 or type-2 symmetric
2 Fill the support: i € [n+ 1] s.t.
[StaUhe)| =5 (o € E(-p(-VF())
3 Into super support: T = /;(x)U Sﬁ ]

Important: when |/;(x)| < s only one super support
needs to be checked
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Basic Feasible Search - Find a BF point

Algorithm 3 BAsic Feasible Search (BAFS)

Initialization: xX° € C,N B,k = 0.
Output: u € C; N B which is a basic feasible point.
O Repeat
O k+k —|:1
@ let o e (—p(—VF(xH)))
© setie{l,...,n+ 1} such that ‘5[‘,?7”] Uh(x¥)| =s
Q@ set T, = L(x*)uU S
9 take x* € argmin {f(y) :y € B, h(y) C Ti}
Until f(xk1) < f(x¥)

@ Set u=xk1

Finite Termination.
e requires the ability to minimize over the support set.
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Road Map of Optimality Conditions

min  f(x)
st. xe N B,

(P)

o Basic Feasibility - “optimality” over the support.

o L-Stationarity - extension of stationarity over
convex sets.

o CW-optimality
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Unfortunately, the variational form
(VF(x*),x —x*) > 0Vx € BN Cs is not a necessary optimality
condition (in general...)
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Unfortunately, the variational form
(VF(x*),x —x*) > 0Vx € BN Cs is not a necessary optimality
condition (in general...)

Let L > 0. A vector x € C; N B is an L-stationary point of (P) if

1
x € Pc.ns (x - LVf(x)) .

L-Stationarity in the Hierarchy:

1 L-Stationarity = BF

2 If f e CLl(’:}), Optimality = L-stationarity VL > L(f)
Condition depends on L, more restrictive as L gets smaller
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Gradient Projection Method

x1 € Peg <xk = %Vf(xk)>

e B =R" = lterative Hard Thresholding (IHT) method
(Blumensath and Davis '08, '09, '12).

@ Makes sense only when f € CL1.

@ Only guarantees convergence to an L-stationary point for
L> L(f).
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L-stationarity characterization

Theorem. Let B be a nonnegative type-1 or type-2 symmetric set.
Then a BF point x* is an L-stationary point if and only if

min p(Lx — V;f(x")) > max p(Lx;" — V;f(x")),
i€l (x*) JE€I(x*)

Example (B = R")

B =R", and o € ¥(|x*|). Then x* is an L-stationary point of (P)
if and only if?

<Lyl i€ h(x)
if(x* (s) 7
[Vif(x )|{ —0 if i € h(x*).

“Beck, A. & Eldar, Y. C., SIOPT, 2013

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, (



Back to the Variational Form of Stationarity

@ In general, the variational form is not a necessary optimality
conditions.

@ However, when f is concave, it is in fact a necessary
optimality condition.
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Back to the Variational Form of Stationarity

@ In general, the variational form is not a necessary optimality
conditions.

@ However, when f is concave, it is in fact a necessary
optimality condition.

Theorem. Suppose that f is concave and cont. diff.. If x* is an
optimal solution of (P), then

(VI(x*),x —x") >0 Vxe BnNC.

(a direct consequence of Krein-Milman+attainment of opt. sol. at

extreme points)
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Back to the Variational Form of Stationarity

@ In general, the variational form is not a necessary optimality
conditions.

@ However, when f is concave, it is in fact a necessary
optimality condition.

Theorem. Suppose that f is concave and cont. diff.. If x* is an
optimal solution of (P), then

(VI(x*),x —x") >0 Vxe BnNC.

(a direct consequence of Krein-Milman+attainment of opt. sol. at

extreme points)
We will call this type of stationarity co-stationarity
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co-stationarity = L-stationarity

Theorem. For any L > 0:

x* co-stationary = x™ is L — stationary
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co-stationarity = L-stationarity

Theorem. For any L > 0:

x* co-stationary = x™ is L — stationary

Consequence: for concave f, L-stationarity is a necessary
optimality condition for any L > 0.

Amir Beck - Technion On the Minimization Over Sparse Symmetric Sets: Projections, (



co-stationarity = L-stationarity

Theorem. For any L > 0:

x* co-stationary = x™ is L — stationary

Consequence: for concave f, L-stationarity is a necessary
optimality condition for any L > 0.
sparse PCA  max{x"Ax: ||x||2 < 1,||x[o <s} (A =0)
@ Most algorithms converge to a co-stationary point, e.g.,
conditional gradient method:
xk+1 — y k_H (Axk)
ClyERY T

e Gradient projection is never employed (since L-stationarity is a
weak condition).
@ The above is only correct for concave f.
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Back to L-stationarity - Example

min {f(xl,xz) = 12x7 + 20x1xp + 32x5 - H(Xl;XQ)THO < 1}

L(f) = 48.3961

Two BF vectors: (0, —9/16) - optimal solution. (—1/12,0) -
non-optimal, SL=196.

L =250 L =500
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@ Are there stronger (more restrictive) optimality conditions?

@ Can we define algorithms that (1) do not depend on the

Lipschitz property and (2) converge to “better” optimality
conditions?
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@ Are there stronger (more restrictive) optimality conditions?

@ Can we define algorithms that (1) do not depend on the
Lipschitz property and (2) converge to “better” optimality
conditions?

The answer is YES
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Road Map of Optimality Conditions

min  f(x)
st. xe N B,

(P)

o Basic Feasibility - “optimality” over the support.

o L-Stationarity - extension of stationarity over
convex sets.

o CW-optimality
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Simple-CW optimality

Let B be nonnegative type-1 or type-2 symmetric.
A BF point x is a simple-CW point of (P) if

f(x — xjei = x;¢;) B type-2
< J
ey = { f(x — xjej + xjej) B nonneg. type-1

where

i€ argmin{p(—V,f(x))} with D(x) = argmin p(xx)
£eD(x) keh(x)

J € argmin{—p(—V,f(x))}
[G/Q(X)
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Simple-CW optimality in the Hierarchy

Results: If B is a non-negative type-1 set or a type-2 symmetric
1 Optimality = Simple-CW

21Iffe CLl(’,lc), then Simple-CW = L,(f)-stationarity VL > Ly(f)

Lr(f) - Lipschitz constant of Vf restricted to two coordinates.
Smaller than L(f)

Simple-CW is more restrictive than L(f)-stationarity |
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Local Lipschitz Constant

Under the Lipschitz assumption,

@ For any i # j there exists a L; j(f) for which:
IVijf(x) = Vijf(x +d)[| < Li;(F)lld],
for any d € R" satisfying dy = 0 for any k # i, .
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Local Lipschitz Constant

Under the Lipschitz assumption,

@ For any i # j there exists a L; j(f) for which:
IVijf(x) = Vijf(x +d)[| < Li;(F)lld],

for any d € R" satisfying dy = 0 for any k # i, .
@ the Local Lipschitz constant is

Lo(f) = max L; ;(f)
i#
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Local Lipschitz Constant

Under the Lipschitz assumption,

@ For any i # j there exists a L; j(f) for which:
IVijf(x) = Vijf(x +d)[| < Li;(F)lld],

for any d € R" satisfying dy = 0 for any k # i, .
@ the Local Lipschitz constant is

Lo(f) = max L; ;(f)
i#

o Lo(f) < L(f).

Example: f(x) = x"Qx 4+ 2b7x with Q, =1, + J,, (1, - identity,
J, - all ones)
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Local Lipschitz Constant

Under the Lipschitz assumption,
@ For any i # j there exists a L; j(f) for which:
IVijf(x) = Vijf(x +d)| < Li;(f)[|d],
for any d € R" satisfying dy = 0 for any k # i, .
@ the Local Lipschitz constant is

Lo(f) = max L; ;(f)
i#

o Lo(f) < L(f).

Example: f(x) = x"Qx 4+ 2b7x with Q, =1, + J,, (1, - identity,
J, - all ones)
L(F) = 2Amax(Qp) = 2(n+ 1)

On the other hand,L; ;(f) = 2Amax (i é) =0
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Local Lipschitz Constant

Under the Lipschitz assumption,
@ For any i # j there exists a L; j(f) for which:
IVijf(x) = Vijf(x +d)| < Li;(f)[|d],
for any d € R" satisfying dy = 0 for any k # i, .
@ the Local Lipschitz constant is

Lo(f) = max L; ;(f)
i#

o Lo(f) < L(f).

Example: f(x) = x"Qx 4+ 2b7x with Q, =1, + J,, (1, - identity,
J, - all ones)
L(f) = 2)\max(Qn) =

= N
l\)l—‘/\
N———

On the other hand,L; j(f) = 2Amax (
We get: L(f) =2(n+1),L2(f) =6
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Zero-CW Optimality

Assumption: The function can be minimized over any super
support, B nonnegative type-1 or type-2

x is called a zero-CW optimal point if

f(x) <min{f(y) :y € B,h(y) € T},

where T = (h(x) U {j}) \{i} if ||x|][o = s, otherwise additional (spe-
cific) indices are added
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Full-CW Optimality

Assumption: The function can be minimized over any super
support, B nonnegative type-1 or type-2

x is a full-CW optimal point if Vi € /1(x),j € lp(x), it holds that

f(x) <min{f(y):ye B, h(y) C Ti;}.

In the non full-support case, additional indices are added to T; ;.
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Hierarchy - Summary

Full-CW

4
Zero-CW

Y
Simple-CW

Y
L,(f)-Stationarity

4

Basic Feasibility
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Concave f

x is called CW-minimum point if f(x) > f(z) for any

S(x)={z:||lz—x|lo <2,z€ C;NB}.
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Concave f

x is called CW-minimum point if f(x) > f(z) for any

S(x)={z:||lz—x|lo <2,z€ C;NB}.

CW-optimality is a necessary optimality conditions (of a
combinatorial flavor...)

Theorem. If f is concave and B = {x : ||x|]2 < 1}, then any CW-
maximal point is a co-stationary point.

Quite difficult to prove since co-stationarity is a rather strong
condition.
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pit-prop data

13 variables measuring 180 properties of pitprops. 715 BF points,
28 co-stationary points, 3 CW-optimal points.

# Support CW | Value # Support CW | Value
1 | {1,2,9,10} * 12,937 15| {5,6,7,10} 2.337
2 | {1,2,7,10} 2.883 16 | {7,8,10,12} 2.314
3 {1,2,7,9} 2.859 17 | {7,8,10,13} 2.302
4 {1,2,8,9} 2.797 18 | {5,6,7,13} 2.28
5 | {1,2,8,10} 2.759 19 {3,4,6,7} 2.209
6 {1,2,6,7} 2.697 20 {4,5,6,7} 2.196
7 | {2,7,9,10} 2.696 21 | {7,10,12,13} 2.136
8 | {2,6,7,10} 2.592 22 | {3,48,12} 1.995
9 | {1,6,7,10} 2.587 23 | {3,4,10,12} 1.992
10 | {1,2,3,4} * ] 2,563 24 | {3,10,11,12} 1.609
11 | {7,8,9,10} 2.549 25 | {3,5,12,13} 1.516
12 | {6,7,9,10} 2.522 26 | {1,5,12,13} 1.414
13 | {6,7,10,13} 2.459 27 | {2,5,12,13} 1.408
14 | {6,7,8,10} 2.444 28 | {3,5,11,13} 1.382
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LS over sparse /;-ball

2

1000 0 0 1 3
min 0 1 0 1]x—|1 x € GNB0,1]
0 0 001 1 9/ I,
support {1,2} | {1,3} | {1,4} | {2,3} | {2,4} | {3,4}
0.003 | 0.003 | 0.002 | 0
values 0.997 | 0 0 0.910
0 0.997 | 0 0.090
0 0 0.998 | 0
BF v v v v
L(f)-stationary v v
simple-CW v v
zero-CW v
full-CW v
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Zero-CW search method

Algorithm 4 Zero-CW search method (ZCWS)

Initialization: x° € C, N B a BF, k = 0.
Output: u € C; N B which is a zero-cw.
General Step (k=0,1,2,...)

@ D(x) = argmin p(xf)
Leh(xk)
Qic argmin{p(—vzf(xk))}
£eD(xk)

© j € argmin {—p(—ng(xk))}
felo(xk)
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Zero-CW search method - Find a Zero-CW point

Algorithm 5 Zero-CW search method (ZCWS)
Q let 0 € ¥(—p(—V£(x¥))) and let £ be such that

[EATECOIINGIEE

O Define
T = (S U LY U L}) ~ L}
@ Set x € argmin{f(y) :y € B, h(y) C Tx}.

@ x**! = BFS(x)

Q If f(xK) < f(x¥*1), then STOP and the output is u = x*.
Otherwise, k <+ k + 1 and go back to step 1.

ZCWS generates a points that is a zero-CW point, and this
converges to “better” points than gradient projection/IHT.
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Full-CW search method - Find a Full-CW point

Algorithm 6 Full-CW search method

Initialization: x° € C; N B - a basic feasible point, k = 0.
Output: u € C; N B which is a full-cw point.
General Step (k=10,1,2,...)
Q@ xt1 =ZCWS(x¥) and set k + k + 1.
Q let 0 € S(—p(—VF(x¥))), and for any i € h(x¥), j € Ip(x¥)
let ¢'J be such that

[CAFELCI NG

=S5

@ define

70 = (Sfis. U RO ULY) ~ 47}
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Full-CW search method

Algorithm 7 Full-CW search method
Q take 2"/ € argmin {f(y) 1y € B,h(y) C T,i’j} :

@ set (in, jo) € argmin {f(z'/) : i € h(x),j € lo(x)}

O define x*1 = BFS(z0+)

@ if f(xX) < f(x¥*1), then STOP and the output is u = x*.
Otherwise, k < k + 1 and go back to step 1.

The full-CW search method obviously find a full-CW point in a
finite number of steps.
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Hierarchy of Algorithms (Best to Worst)

o Full-CW search.
o ZCWS

o Gradient projection/IHT
o BAFS
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Numerical Experiments
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Compared Method - TGA

Greedily build the super support

Algorithm 8 TGA

Initialization: x=0,, S = 0.
Output: xe ;N B
@ while |S] < s do:

® (j,x) € argmin {f(z): h(z) CSU{l}}
(¢€5°,2€B)
@ set S« SU{j}

@ Return x
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Numerical Experiment - Sparse index tracking

Objective: track an index with a small number of assets x*, which
has a return matrix A.

Prob. min||[Ax —b[j3 st.x€ GNA,
A: A € R7*% daily returns matrix

x: X weights vector
b: b € R? S&P500 daily returns vector

Data 180 random sets of stocks from NYSE, 60 for each sparsity
level
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Numerical Experiment - Sparse index tracking

improver | improved | s=9 | s =18 | s =27 | total
FCWS 0 0 0 0
ZCWS IHT 60 60 60 180
TGA 9 56 50 115
ZCWS 33 11 17 61
FCWS IHT 60 60 60 180
TGA 15 56 51 122
ZCWS 0 0 0 0
IHT FCWS 0 0 0 0
TGA 3 56 50 109

1 The IHT never reached a zero-cw or full-cw point.
2 The ZCWS reached a full-cw point in 66%.

3 The TGA was improved in most of the instances when s > 9.
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sparse PCA - gene expression data (GeneChip oncology)

20 data sets. Number of variables 7129-54675.

0.9

o o o o o o
w kS @ > = ®

Probability of Obtaining the Best Solution

o
N

Sparsity Level
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