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Why Polynomial Optimization?

After all ...
the polynomial optimization problem:

f ∗ = min{f (x) : gj(x) ≥ 0, j = 1, . . . ,m}

is just a particular case of Non Linear Programming (NLP)!

True!
... if one is interested with a LOCAL optimum only!!
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When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from REAL and CONVEX analysis and linear algebra

The focus is on how to improve f by looking at a
NEIGHBORHOOD of a nominal point x ∈ K, i.e., LOCALLY

AROUND x ∈ K, and in general,
no GLOBAL property of x ∈ K can be inferred.

The fact that f and gj are POLYNOMIALS does not help much!
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BUT for GLOBAL Optimization
... the picture is different!

Remember that for the GLOBAL minimum f ∗:

f ∗ = sup {λ : f (x)− λ ≥ 0 ∀x ∈ K}.

... and so to compute f ∗ one needs

TRACTABLE CERTIFICATES of POSITIVITY on K!
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REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, POWERFUL CERTIFICATES OF POSITIVITY EXIST!

Moreover .... and importantly,

Such certificates are amenable to PRACTICAL COMPUTATION!

(? Stronger Positivstellensatzë exist for analytic functions but
are useless from a computational viewpoint.)
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LP-based certificate

K = {x : gj(x) ≥ 0; (1− gj(x)) ≥ 0, j = 1, . . . ,m}

Theorem (Krivine-Vasilescu-Handelman’s Positivstellensatz)

Let K be compact and the family {gj , (1− gj)} generate R[x]. If
f > 0 on K then:

? f (x) =
∑
α,β

cαβ
m∏

j=1

gj(x)αj (1− gj(x))βj , ∀x ∈ Rn,

for some NONNEGATIVE scalars (cαβ).

Testing whether ? holds for some

NONNEGATIVE (cαβ) with |α + β| ≤ M, is SOLVING an LP!

Jean B. Lasserre semidefinite characterization



LP-based certificate

K = {x : gj(x) ≥ 0; (1− gj(x)) ≥ 0, j = 1, . . . ,m}

Theorem (Krivine-Vasilescu-Handelman’s Positivstellensatz)

Let K be compact and the family {gj , (1− gj)} generate R[x]. If
f > 0 on K then:

? f (x) =
∑
α,β

cαβ
m∏

j=1

gj(x)αj (1− gj(x))βj , ∀x ∈ Rn,

for some NONNEGATIVE scalars (cαβ).

Testing whether ? holds for some

NONNEGATIVE (cαβ) with |α + β| ≤ M, is SOLVING an LP!

Jean B. Lasserre semidefinite characterization



Indeed with d = maxj [deg g1, . . . , deg gm] and
∑

i αi + βi ≤ M,

∑
α,β

cαβ
m∏

j=1

gj(X )αj (1− gj(X ))βj ,

is a polynomial of degree at most M + d , which can be written

∑
α,β

cαβ
m∏

j=1

gj(X )αj (1− gj(X ))βj =
∑

γ∈Nn
M+d

X γ θγ(c)︸ ︷︷ ︸
linear in c

And so the identity

f (x) =
∑
γ

fγ X γ =
∑
α,β

cαβ
m∏

j=1

gj(X )αj (1− gj(X ))βj ,

for all X ∈ Rn, holds if and only if

{ fγ = θγ(c), ∀γ ∈ Nn
M+d ; c ≥ 0 }. → c ∈ polyhedron!.
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SOS-based certificate

K = {x : gj(x) ≥ 0, j = 1, . . . ,m}

Theorem (Putinar’s Positivstellensatz)
If K is compact (+ a technical Archimedean assumption) and
f > 0 on K then:

† f (x) = σ0(x) +
m∑

j=1

σj(x) gj(x), ∀x ∈ Rn,

for some SOS polynomials (σj) ⊂ R[x].

Testing whether † holds for some

SOS (σj) ⊂ R[x] with a degree bound, is SOLVING an SDP!
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Checking whether a given polynomial is SOS

reduces to solving an SDP ... that one may solve efficiently to
arbitrary precision, in time polynomial in the input size!

Indeed, let vd (X ) = (Xα (= Xα1
1 · · ·X

αn
n )), |α| :=

∑
i αi ≤ d , be

a basis of R[X ]d (polynomials of degree at most d) Example

with n = 2 and d = 3,

v3(X ) = (1, X1, X2, X 2
1 , X1X2, X 2

2 , X 3
1 , X 2

1 X2, X1X 2
2 , X 3

2 )

Let f ∈ R[X ]2d be an SOS polynomial, that is,

f (X ) =
s∑

k=1

qk (X )2,

for some polynomials {qk}sk=1 ⊂ R[X ]d .
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Denote also qk = {qkα}α∈Nn , the vector of coefficients of the
polynomial qk , in the basis vd (X ), that is,

qk (X ) = 〈qk , vd (X )〉 =
∑
|α|≤r

qkαXα

and define the real symmetric matrix Q :=
∑s

k=1 qkqT
k � 0.

〈vd (X ),Q vd (X )〉 =
s∑

k=1

〈qk , vd (X )〉2 =
s∑

k=1

qk (X )2 = f (X )

Conversely, let Q � 0 be a real s(d)× s(d) positive
semidefinite symmetric matrix (s(d) is the dimension of the
vector space R[X ]d ). As Q � 0, write Q =

∑s
k=1 qkqT

k , so that

f (X ) := 〈vd (X ),Q vd (X )〉

(
=

s∑
k=1

〈qk , vd (X )〉2 =
s∑

k=1

qk (X )2

)

is SOS.
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Next, write the matrix vd (X ) vd (X )T as:

vd (X ) vd (X )T =
∑
α∈Nn

2d

Bα xα,

for some real symmetric matrices (Bα). Checking whether

f (X )︸︷︷︸∑
α fα Xα

:= 〈vd (X ),Q vd (X )〉 = 〈Q, vd (X ) vd (X )T 〉

=
∑
α∈Nn

2d

〈Q,Bα〉Xα

for some Q � 0 reduces to checking the LMI{
〈Bα,Q 〉 = fα, α ∈ Nn, |α| ≤ 2d

Q � 0
.

has a solution!
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Example

Let t 7→ f (t) = 6 + 4t + 9t2 − 4t3 + 6t4. Is f an SOS? Do we
have

f (t) =

 1
t
t2

T  a b c
b d e
c e f


︸ ︷︷ ︸

Q�0

 1
t
t2

 ?

for some Q � 0? We must have:

a = 6 ; 2 b = 4; d + 2 c = 9; 2 e = −4; f = 6.

And so we must find a scalar c such that

Q =

 6 2 c
2 9− 2c −2
c −2 6

 � 0.
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With c = −4 we have

Q =

 6 2 −4
2 17 −2
−4 −2 6

 � 0.

et

Q = 2


√

(2/2)
0√

(2)/2


√

(2/2)
0√

(2)/2

′ + 9

 2/3
−1/3
−2/3

 2/3
1/3
−2/3

′

+18

 1/
√

(18)

4/
√

(18)

−1/
√

(18)

 1/
√

(18)

4/
√

(18)

−1/
√

(18)

′
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and so

f (t) = (1 + t2)2 + (2− t − 2t2)2 + (1 + 4t − t2)2

which is an SOS polynomial.
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SUCH POSITIVITY CERTIFICATES

allow to infer GLOBAL Properties of
FEASIBILITY and OPTIMALITY,

... the analogue of (well-known) previous ones

valid in the CONVEX CASE ONLY!

Farkas Lemma→ Krivine-Stengle
KKT-Optimality conditions→ Schmüdgen-Putinar
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In addition, polynomials NONNEGATIVE ON A SET K ⊂ Rn are
ubiquitous. They also appear in many important applications

(outside optimization),

. . . modeled as
particular instances of the so called

Generalized Moment Problem, among which:
Probability, Optimal and Robust Control, Game theory, Signal

processing, multivariate integration, etc.
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The Generalized Moment Problem

(GMP) : inf
µi∈M(Ki )

{
s∑

i=1

∫
Ki

fi dµi :
s∑

i=1

∫
Ki

hij dµi
≤
= bj , j ∈ J}

with M(Ki) space of Borel measures on Ki ⊂ Rni , i = 1, . . . , s.

Global OPTIM → inf
µ∈M(K)

{
∫

K
f dµ :

∫
K

1 dµ = 1}

is the simplest instance of the GMP!
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For instance, one may also want:
• To approximate sets defined with QUANTIFIERS, like .e.g.,

Rf := {x ∈ B : f (x , y) ≤ 0 for all y such that (x , y) ∈ K}

Df := {x ∈ B : f (x , y) ≤ 0 for some y such that (x , y) ∈ K}

where f ∈ R[x , y ], B is a simple set (box, ellipsoid).

• To compute convex polynomial underestimators p ≤ f of a
polynomial f on a box B ⊂ Rn. (Very useful in MINLP.)
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The moment-LP and moment-SOS approaches
consist of using a certain type of positivity certificate
(Krivine-Vasilescu-Handelman’s or Putinar’s certificate) in
potentially any application where such a characterization is
needed. (Global optimization is only one example.)

In many situations this amounts to
solving a HIERARCHY of :

LINEAR PROGRAMS, or
SEMIDEFINITE PROGRAMS

... of increasing size!.
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LP- and SDP-hierarchies for optimization

Replace f ∗ = supλ,σj
{λ : f (x)− λ ≥ 0 ∀x ∈ K} with:

The SDP-hierarchy indexed by d ∈ N:

f ∗d = sup {λ : f − λ = σ0︸︷︷︸
SOS

+
m∑

j=1

σj︸︷︷︸
SOS

gj ; deg (σj gj) ≤ 2d }

or, the LP-hierarchy indexed by d ∈ N:

θd = sup {λ : f −λ =
∑
α,β

cαβ︸︷︷︸
≥0

m∏
j=1

gj
αj (1−gj)

βj ; |α+β| ≤ 2d}
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Theorem
Both sequence (f ∗d ), and (θd ), d ∈ N, are MONOTONE NON
DECREASING and when K is compact (and satisfies a
technical Archimedean assumption) then:

f ∗ = lim
d→∞

f ∗d = lim
d→∞

θd .

Jean B. Lasserre semidefinite characterization



•What makes this approach exciting is that it is at the
crossroads of several disciplines/applications:

Commutative, Non-commutative, and Non-linear
ALGEBRA
Real algebraic geometry, and Functional Analysis
Optimization, Convex Analysis
Computational Complexity in Computer Science,

which BENEFIT from interactions!

• As mentioned ... potential applications are ENDLESS!
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• Has already been proved useful and successful in
applications with modest problem size, notably in optimization,
control, robust control, optimal control, estimation, computer
vision, etc. (If sparsity then problems of larger size can be
addressed)

• HAS initiated and stimulated new research issues:
in Convex Algebraic Geometry (e.g. semidefinite
representation of convex sets, algebraic degree of
semidefinite programming and polynomial optimization)
in Computational algebra (e.g., for solving polynomial
equations via SDP and Border bases)
Computational Complexity where LP- and
SDP-HIERARCHIES have become an important tool to
analyze Hardness of Approximation for 0/1 combinatorial
problems (→ links with quantum computing)
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Recall that both LP- and SDP- hierarchies are
GENERAL PURPOSE METHODS ....

NOT TAILORED to solving specific hard problems!!
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A remarkable property of the SOS hierarchy: I

When solving the optimization problem

P : f ∗ = min {f (x) : gj(x) ≥ 0, j = 1, . . . ,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable xi is modelled via the equality constraint “x2

i − xi = 0".

In Non Linear Programming (NLP),

modeling a 0/1 variable with the polynomial equality constraint
“x2

i − xi = 0"
and applying a standard descent algorithm would be

considered “stupid"!

Each class of problems has its own ad hoc tailored algorithms.
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modeling a 0/1 variable with the polynomial equality constraint
“x2

i − xi = 0"
and applying a standard descent algorithm would be

considered “stupid"!

Each class of problems has its own ad hoc tailored algorithms.
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Even though the moment-SOS approach DOES NOT
SPECIALIZE to each class of problems:

It recognizes the class of (easy) SOS-convex problems as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.
Finite convergence also occurs for general convex
problems and generically for non convex problems
→ (NOT true for the LP-hierarchy.)
The SOS-hierarchy dominates other lift-and-project
hierarchies (i.e. provides the best lower bounds) for hard
0/1 combinatorial optimization problems!

→ The Theoretical Computer Science community speaks of a
META-algorithm ...
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A remarkable property: II

FINITE CONVERGENCE of the SOS-hierarchy is GENERIC!

... and provides a GLOBAL OPTIMALITY CERTIFICATE,

the analogue for the NON CONVEX CASE of the

KKT-OPTIMALITY conditions in the CONVEX CASE!
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Theorem (Marshall, Nie)
Let x∗ ∈ K be a global minimizer of

P : f ∗ = min {f (x) : gj(x) ≥ 0, j = 1, . . . ,m}.

and assume that:
(i) The gradients {∇gj(x∗)} are linearly independent,
(ii) Strict complementarity holds (λ∗j gj(x∗) = 0 for all j .)
(iii) Second-order sufficiency conditions hold at

(x∗, λ∗) ∈ K× Rm
+.

Then f (x)− f ∗ = σ∗0(x) +
m∑

j=1

σ∗j (x)gj(x), ∀x ∈ Rn, for some

SOS polynomials {σ∗j }.

Moreover, the conditions (i)-(ii)-(iii) HOLD GENERICALLY!
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Certificates of positivity already exist in convex optimization

f ∗ = f (x∗) = min { f (x) : gj(x) ≥ 0, j = 1, . . . ,m }

when f and −gj are CONVEX. Indeed if Slater’s condition holds
there exist nonnegative KKT-multipliers λ∗j ∈ Rm

+ such that:

∇f (x∗)−
m∑

j=1

λj
∗ gj(x∗) = 0; λj

∗ gj(x∗) = 0, j = 1, . . . ,m.

... and so ... the Lagrangian

Lλ∗(x) := f (x)− f ∗ −
∑
j=1

λj
∗ gj(x),

satisfies
Lλ∗(x∗) = 0 and Lλ∗(x) ≥ 0 for all x. Therefore:

Lλ∗(x) ≥ 0⇒ f (x) ≥ f ∗ ∀x ∈ K!
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In summary:

KKT-OPTIMALITY PUTINAR’s CERTIFICATE
when f and −gj are CONVEX in the non CONVEX CASE

∇f (x∗)−
m∑

j=1

λ∗j ∇gj(x∗) = 0 ∇f (x∗)−
m∑

j=1

σj(x∗)∇gj(x∗) = 0

f (x)− f ∗ −
m∑

j=1

λ∗j gj(x) f (x)− f ∗ −
m∑

j=1

σ∗j (x)gj(x)

≥ 0 for all x ∈ Rn (= σ∗0(x)) ≥ 0 for all x ∈ Rn.

for some SOS {σ∗j }, and
σ∗j (x∗) = λ∗j .
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So even though both LP- and SDP-relaxations were not
designed for solving specific hard problems ...

The SDP-relaxations behave reasonably well ("efficiently"?) as
they provide the BEST LOWER BOUNDS in very different

contexts (in contrast to LP-relaxations).

→ The Theoretical Computer Science (TCS) community even
speaks of a META-ALGORITHM

→ ... considered as the most promising tool to prove/disprove
the Unique Games Conjecture (UGC)
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A Lagrangian interpretation of LP-relaxations

Consider the optimization problem

P : f ∗ = min {f (x) : x ∈ K },

where K is the compact basic semi-algebraic set:

K := {x ∈ Rn : gj(x) ≥ 0; j = 1, . . . ,m }.

Assume that:

• For every j = 1, . . . ,m (and possibly after scaling), gj(x) ≤ 1
for all x ∈ K.

• The family {gj ,1− gj} generate R[x].
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Lagrangian relaxation

The dual method of multipliers, or Lagrangian relaxation
consists of solving: ρ := maxu{G(u) : u ≥ 0 },

with u 7→ G(u) := min
x

f (x)−
m∑

j=1

uj gj(x)

 .

Equivalently:

ρ = max
u,λ
{λ : f (x)−

m∑
j=1

uj gj(x) ≥ λ, ∀x .}

In general, there is a DUALITY GAP, i.e., ρ < f ∗,

except in the CONVEX case where f and −gj are all convex
(and under some conditions).
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With d ∈ N fixed, consider the new optimization problem Pd :

f ∗d = min
x
{ f (x) :

m∏
j=1

gj(x)αj (1− gj(x))βj ≥ 0

∀α, β : |α + β| =
∑

j αj + βj ≤ 2d
}

Of course

P and Pd are equivalent and so f ∗d = f ∗.

... because Pd is just P with additional redundant constraints!
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The Lagrangian relaxation of Pd consists of solving:

ρd = max
u≥0,λ

{λ : f (x)−
∑
α,β

uαβ
m∏

j=1

gj(x)αj (1− gj(x))βj ≥ λ, ∀x .

|α + β| ≤ 2d}

Theorem
ρd ≤ f ∗ for all d ∈ N, and if K is compact and the family of
polynomials {gj ,1− gj} generates R[x], then:

lim
d→∞

ρd = f ∗.
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The previous theorem provides a rationale

for the well-known fact that :

adding redundant constraints to P helps when doing
relaxations!

On the other hand ...

we don’t know HOW TO COMPUTE ρd !
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The LP-hierarchy may be viewed as

the BRUTE FORCE SIMPLIFICATION of

ρd = max
u≥0,λ

{λ : f (x)−
∑
α,β

uαβ
m∏

j=1

gj(x)αj (1− gj(x))βj ≥ λ, ∀x .

|α + β| ≤ 2d}

to ...

θd = max
u≥0,λ

{λ : f (x)−
∑
α,β

uαβ
m∏

j=1

gj(x)αj (1− gj(x))βj − λ = 0, ∀x .

|α + β| ≤ 2d}
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and indeed, ... with |α + β| ≤ 2d ,

the set of (u, λ) such that u ≥ 0 and

f (x)−
∑
α,β

uαβ
m∏

j=1

gj(x)αj (1− gj(x))βj − λ = 0, ∀x .

is a CONVEX POLYTOPE!

and so, computing θd is solving a Linear Program!

and one has f ∗ ≥ ρd ≥ θd for all d .
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However as already mentioned
For most easy convex problems (except LP) finite
convergence is impossible!
Other obstructions to exactness occur

Typically, if K is the polytope {x : gj(x) ≥ 0, j = 1, . . . ,m} and
f ∗ = f (x∗) with gj(x)∗ = 0, j ∈ J(x∗), then finite convergence is
impossible as soon as the exists x 6= x∗ with J(x) = J(x∗) (x
not necessarily in K)
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A less brutal simplification

With k ≥ 1 FIXED, consider the LESS BRUTAL
SIMPLIFICATION of

ρd = max
u≥0,λ

{λ : f (x)−
∑
α,β

uαβ
m∏

j=1

gj(x)αj (1− gj(x))βj ≥ λ, ∀x .

|α + β| ≤ 2d}

to ...

ρk
d = max

u≥0,λ
{λ : f (x)−

∑
α,β

uαβ
m∏

j=1

gj(x)αj (1− gj(x))βj − λ = σ(x), ∀x .

|α + β| ≤ 2d ; σ SOS of degree at most 2k}
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Why such a simplification?

With k fixed, ρk
d = f ∗ as d →∞.

Computing ρk
d is now solving an SDP (and not an LP any

more!)
However, the size of the LMI constraint of this SDP is

(n+k
n

)
(fixed) and does not depend on d !
For convex problems where f and −gj are SOS-CONVEX
polynomials, the first relaxation in the hierarchy is exact,
that is, ρk

1 = f ∗ (never the case for the LP-hierarchy)

• A polynomial f is SOS-CONVEX if its Hessian ∇2f (x) factors
as L(x) L(x)T for some polynomial matrix L(x). For instance,
separable polynomials f (x) =

∑n
i=1 fi(xi), with convex fi ’s are

SOS-CONVEX.
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An alternative moment-approach
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So far we have considered
LP- and SDP-moment approaches based on

CERTIFICATES of POSITIVITY on K

That is:
One approximates FROM INSIDE the (convex cone) Cd (K) of
polynomials nonnegative on K: For instance if
K = {x : gj(x) ≥ 0, j = 1, . . . ,m}, by the convex cones:

Ck
d (K) = { σ0︸︷︷︸

SOS

+
m∑

j=1

σj︸︷︷︸
SOS

gj : deg(σjgj) ≤ 2k } ∩ R[x]d

Γk
d (K) = {

∑
(α,β)∈N2m

2k

cαβ︸︷︷︸
≥0

m∏
j=1

gj
αj (1− gj)

βj } ∩ R[x]d
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An alternative is to try

to approximate Cd (K) FROM OUTSIDE!

Given a sequence y = (yα), α ∈ Nn:
• Let Ly : R[x]→ R be the Riesz linear functional:

g (=
∑
β

gβ xβ) 7→ Ly (g) :=
∑
β

gβ yβ

• Define the localizing matrix Mk (g y) with respect to y and
g ∈ R[x] is the real symmetric matrix with rows and columns
indexed by α ∈ Nn and with entries

Mk (g y)[α, β] = Ly (xα+β gj), α, β ∈ Nn
k .

? If y comes from a measure µ then

Ly (xα+β gj) =

∫
xα+β gj(x) dµ.
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Theorem
Let K ⊂ Rn be compact and let y = (yα), α ∈ Nn, be the
moments of a Borel measure whose support is K. Then a
polynomial gj is nonnegative on K if and only if:

Mk (gj y) � 0, k = 0,1, . . .

So if y is known checking whether Mk (gj y) � 0 is just
computing the smallest eigenvalue of the matrix Mk (gj y)!
The set ∆k ⊂ R[x ]d defined by:

∆k := {g ∈ R[x]d : Mk (gj y) � 0 }, k = 0,1, . . .

is a convex cone described by a LINEAR MATRIX
INEQUALITY (LMI) on its coefficients (gα), α ∈ Nn

d !
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Of course Cd (K) ⊂ ∆k ⊂ ∆k−1, for all k = 0,1, . . ., and so
Cd (K) = ∩∞k=0∆k , i.e.,

The convex cones ∆k form a nested sequence of INNER
APPROXIMATIONS of Cd (K).

Examples of sets for which the moments of a measure µ can be
computed easily include:

In the compact case: hyper-Rectangle [a,b]n, Ellipsoid
{x : (x−m)T Q(x−m) ≤ 1}, simplex {x ≥ 0 :

∑
i aixi ≤ b},

hypercube {−1,1}n with µ being uniformly distributed, and
in the non-compact case: Rn with dµ = exp(−‖x‖2)dx,
and Rn

+ with dµ = exp(−
∑

i |xi |)dx.
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Application to optimization

Let f ∗ = minx{f (x) : x ∈ K} and let y = (yα), α ∈ Nn, be the
moments of a measure µ whose support is K.

For each d ∈ N consider the optimization problem:

ρd = max
λ
{λ : Md (f y) � λMd (y) }.

with the single unknown λ.

Computing ρd is solving a generalized eigenvalue problem
associated with Md (f y) and Md (y).
ρd ≥ f ∗ for all d and ρd → f ∗ as d →∞
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In other words: the sequence (ρd ), d ∈ N, provides a
converging sequence of upper bounds on f ∗!

Example: MAX-CUT problem: f (x) = xT Q x and K = {−1,1}n.
Take for µ the measure uniformly distributed on K with weights
1/2, and so with moments:

yα =

∫
{−1,1}n

xα dx =

{
0 if αi is odd for some i
1 otherwise

Then build up the localizing matrix Md (f y) and solve

ρd = max
λ
{λ : Md (f y) � λMd (y) }.

In fact, same as computing

the smallest eigenvalue of M̂d (f y) (keeping only the rows and
columns of Md (f y) indexed by square-free monomials (xα).
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THANK YOU!!
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