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Overview

MVE problem: find an ellipsoid of minimum
volume that contains a given set of data points
in Euclidean space. Many applications.

Robust MVE: allow to ignore a fraction of the
points as outliers. Hard problem.
Natural convex relaxation fails. We propose
effective non-convex relaxations.

Extend to compact higher-order polynomial
level-sets: formulation via Sum of Squares
(SOS) programming.



Minimum volume ellipsoids



Overview of minimum volume ellipsoids (MVE)

The MVE problem asks to find an ellipsoid
of minimum volume that contains a set of
given data points in Euclidean space.

A convex formulation for the minimum volume zero-centered
ellipsoid E = {x | xTMx ≤ 1}:

min
M�0
− log detM such that xTi Mxi ≤ 1, i = 1, ...,m.

Applications in statistics, machine learning, control, e.t.c:
covariance estimation, anomaly detection, change-point detection,
experiment-design.



Overview of minimum volume ellipsoids (MVE)

Allowing an arbitrary center is non-convex in this formulation:

(xi − µ)TM(xi − µ) ≤ 1, i = 1, ...,m.

However, one can lift the problem to higher dimension:
non-centered MVE is equivalent to finding the d + 1-dim centered
MVE for points x̄i = [xi ; 1]. We have E = {x | [x ; 1] ∈ Ē}.

Dual of the MVE: Define M(α) =
∑
αixix

T
i . Then the dual is:

max
α

log detM(α)

where
∑

αi = 1, and αi ≥ 0.

Dual is used for D-optimal experiment design. Multiplicative

update solution (Titterington): α
(n+1)
i = α

(n)
i

xTi α
N .



Robust MVE

In practice: need to address outliers. E.g., in anomaly detection we
have an unlabeled mixture of normal and anomalous data.

Robust MVE: allow to ignore a fraction of the points, and fit
MVE to the remaining points:

min
M�0
− log detM such that

xTi Mxi ≤ 1 + ξi and ‖ξ‖0 ≤ k, i = 1, ...,m.

Existing algorithms:

I Greedy influential point removal (ellipsoidal trimming).

I Random sampling: sample small subsets of points, fit
ellipsoids, and expand.

I Branch and Bound (exact) (exponential complexity).

We will consider robust MVE based on convex relaxations.



Complexity of Robust MVE

We prove the following complexity results about the robust MVE:

Proposition

Given a set of m points in Rn with rational coordinates, and two
rational numbers v > 0 an r ∈ (0, 1), it is NP-hard to decide if
there exists an ellipsoid of volume ≤ v that covers at least a
fraction r of the points.

In fact, an even stronger statement is true:

Proposition

For any ε, δ ∈ (0, 1/2), given a set of m points in Rn with rational
coordinates and a rational number v > 0, it is NP-hard to
distinguish between the following cases: (i) there exists an ellipsoid
of volume ≤ v that covers a fraction (1− ε) of the points, and (ii)
no ellipsoid of volume ≤ v can cover even a fraction δ of the
points.



Natural convex relaxation for robust MVE

Motivated by the rich literature on `1 relaxations for sparse
approximations, we first attempt an `1-formulation (`1-MVE):

min
M�0
− log detM + λ

∑
ξi

such that xTi Mxi ≤ 1 + ξi , and ξi ≥ 0 ∀i

The regularization parameter λ trades off sparsity of the errors vs.
the volume. Convex problem. Variety of efficient solvers.

`1-MVE formulation does not give lower bounds on robust-MVE
volume. We also develop an SDP formulation that provides such
bounds (see appendix): i.e.
no ellipsoid that covers more than a fraction r of points can have
volume less than v∗.



Limitations of the convex relaxation

The `1 relaxation gives very poor solutions for robust MVE. 1

Intuitively: the effective penalty on each outlier depends on the
geometry of the ellipsoid (i.e. on the eigenvalues of M). The
`1-MVE stretches the ellipsoid in the direction of the outlier to
reduce the `1 penalty on that outlier.

Figure : (a) Exact robust MVE solution. (b) The solution path of `1

MVE as a function of λ does not include the correct solution for any λ.

1`1-relaxations also fail for other sparse approximation problems:
sparse-Markowitz portfolios, Total Least Squares (Malioutov et al., 2014), etc.



Reweighted-`1 MVE relaxation

Limitation of `1 norm: penalizes large coefficients more than small
coefficients.

Weighted `1-norm:
∑

wi |xi |. Defining wi = 1
|x∗i |

, where x∗ is the

unknown optimal solution would be equivalent to the `0-norm.

Practical solution: w
(n+1)
i = 1

δ+|x̂(n)
i |

, with small δ > 0.

Reweighted-`1 approach is equivalent to iterative linearization of
the non-convex log-sum penalty for sparsity:2

min
M�0
− log detM + λ

∑
log(ξi + δ)

such that xTi Mxi ≤ 1 + ξi , and ξi ≥ 0 ∀i

2Faster solution via iterative log-thresholding (Malioutov, Aravkin, 2014)



Experiments with RW-`1 MVE
(i) SOLVE (1) with a weighted `1-norm in the objective:
− log detM + λ

∑
i wiξi

(ii) UPDATE the weights wi = 1
δ+|x̂i | .

Typically only a few iterations (< 10) needed for convergence.

At fixed point:
∑

i wi |xi | ≈
∑

i
|x̂i |
δ+|x̂i | ≈ ‖x̂‖0. This avoids the

dependence on the geometry of the ellipsoid that plagues `1-MVE.

Figure : (a) `1-MVE. (b) RW-`1-MVE correctly identifies the outliers.
(c) Oil-markets anomaly detection.



Extension to
higher-order polynomial level sets



Higher order polynomial level sets

Ellipsoids are sublevel sets of quadratic functions: {x | q(x) ≤ 1},
where q(x) , (x − µ)TM(x − µ).
More flexible: sublevel sets of higher order (degree d) polynomials:
{x | p(x) ≤ 1}, where p(x) =

∑
α:|α|≤d aαx

α =
∑

α aαx
α1
1 ...xαn

n .

Constraints p(xi ) ≤ 1 for all i are linear in the coefficients aα.

I We minimize a proxy for the volume as a heuristic.

I Impose compactness and convexity via SOS formulation.

Consider the set of positive semi-definite (p.s.d.) polynomials
p(x) ≥ 0. This is a convex set, but NP-hard to optimize over3.

Sum of squares (SOS) approximation: p(x) =
∑

i pi (x)2. If p(x)
is SOS, then p(x) is p.s.d. Converse not true in general.

3Ahmadi et. al, 2013



Sum of Squares (SOS) polynomials

For simplicity, we first assume that p(x) is homogeneous (all
monomials have the same degree).

Then compactness of {x | p(x) ≤ 1} is equivalent to p(x) > 0 for
all x , i.e. p(x) is p.d. SOS sufficient condition for p.d.:

p(x)− ε(x2
1 + . . .+ x2

n )d/2 is SOS =⇒ p(x) is positive definite
where ε is a small constant.

SDP formulation for SOS: Suppose p(x) is degree d . Collect
monomials up-to power d/2 into vector z(x). Then p(x) is SOS iff
p(x) = z(x)TM z(x) for some p.s.d. matrix M � 0.



SOS formulation with compactness and convexity

Heuristic for minimizing the volume of the sublevel set:4

minimizep,β β
subject to p(xi ) ≤ β, i = 1, . . . ,m

p(x)− ε(x2
1 + . . .+ x2

n )d/2 is SOS∫
x2

1 +...+x2
n=1 p(x) = 1

The integral
∫
Sn p(x) = 1 over the unit sphere Sn reduces to a

single linear constraint on the coefficients of p(x).

Convexity: p(x) convex is sufficient for {x | p(x) ≤ 1} to be
convex. However, NP-hard to enforce (or even check) for d > 2.

SOS-convexity:
p(x) is SOS-convex if g(x , y) = yTH(x)y is SOS.
p(x) is SOS-convex =⇒ p(x) is convex.

4Another approximation for volume (Magnani, Lall, Boyd, 2005):
min− log detM, where M appears in SOS-convex constraint.



Experiments with SOS-poly level sets

Robust versions can be formulated in the same manner as for
MVE, by allowing sparse errors p(xi ) ≤ 1 + ξi , i = 1, ...,m.

Figure : (a) Non-convex compact polynomial level set. (b) Convex
compact polynomial level-set. (c) Robust polynomial level-set.

An alternative formulation for level-sets of higher order
polynomials is through kernel-MVE (Dolia et al., 2007). However,
it does not allow enforcing compactness and convexity.



Summary and Conclusion

Talk summary:

I Reviewed the robust minimum volume ellipsoid problem

I Established its computational complexity

I Studied convex relaxations and showed their limitations

I Proposed a reweighted-`1 approach for robust-MVE

I Extended the framework to higher-order polynomial level-sets
via sum of squares (SOS) programming

Directions for future work:

I Fast algorithms

I Polynomials with sparse coefficients

Thank you!



Appendix



SDP lower bound

`1-MVE formulation does not give lower bounds on robust-MVE
volume. These can be obtained via an SDP formulation:

An equivalent formulation of robust MVE is (for large C ):

minM�0 − log det(M)
subject to xTi Mxi ≤ 1 + Cξi ,

ξi (1− ξi ) = 0,
∑

i ξi ≤ k

Define Y = [ξT , 1]T [ξT , 1] and another equivalent formulation is:

minM�0 − log det(M)
subject to xTi Mxi ≤ 1 + CYii ,Yn+1,n+1 = 1

Yn+1,i = Yii ,
∑

i Yii ≤ k ,Y � 0, rank(Y ) = 1

and if we drop the rank constraint, we get a convex lower bound.



SOS formulation with convexity

Suppose we need sublevel-sets {x | p(x) ≤ 1} to be convex.
Sufficient condition: p(x) is convex. NP-hard to enforce for d > 2.

Instead we impose that p(x) is SOS-convex:

I p(x) is SOS-convex if the Hessian H(x) is an SOS-matrix.

I H(x) is an SOS-matrix if yTH(x)y is SOS in lifted dimension
z = (xT , yT )T

I p(x) is SOS-convex =⇒ p(x) is convex.

The heuristic for minimizing the volume of convex sublevel set is

minimizep,β β
subject to p(xi ) ≤ β, i = 1, . . . ,m

p(x)− ε(x2
1 + . . .+ x2

n )d/2is SOS-convex∫
x2

1 +...+x2
n=1 p(x) = 1
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