
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Adaptive Learning of the Optimal Batch Size of SGD

Motasem Alfarra MOTASEM.ALFARRA@KAUST.EDU.SA

Slavomı́r Hanzely SLAVOMIR.HANZELY@KAUST.EDU.SA

Alyazeed Albasyoni ALYAZEED.ALBASYONI@KAUST.EDU.SA

Bernard Ghanem BERNARD.GHANEM@KAUST.EDU.SA

Peter Richtárik PETER.RICHTARIK@KAUST.EDU.SA

Abstract
Recent advances in the theoretical understanding of SGD [8] led to a formula for the optimal batch
size minimizing the number of effective data passes, i.e., the number of iterations times the batch
size. However, this formula is of no practical value as it depends on the knowledge of the variance of
the stochastic gradients evaluated at the optimum. In this paper we design a practical SGD method
capable of learning the optimal batch size adaptively throughout its iterations for strongly convex
and smooth functions. Our method does this provably, and in our experiments with synthetic and
real data robustly exhibits nearly optimal behaviour; that is, it works as if the optimal batch size was
known a-priori. Further, we generalize our method to several new batch strategies not considered
in the literature before, including a sampling suitable for distributed implementations.

1. Introduction

Stochastic Gradient Descent (SGD), in one disguise or another, is undoubtedly the backbone of
modern systems for training supervised machine learning models [2, 7, 9]. The method earns its
popularity due to its superior performance on very large datasets where more traditional methods
such as gradient descent (GD), relying on a pass through the entire training dataset before adjusting
the model parameters, are simply too slow to be useful. In contrast, SGD in each iteration uses a
small portion of the training data only (a batch) to adjust the model parameters, and this process
repeats until a model of suitable quality is found. In practice, batch SGD is virtually always applied

to a finite-sum problem of the form x∗ = arg min
x∈Rd

1
n

n∑
i=1

fi(x), where n is the number of training

data and f(x) = 1
n

∑n
i=1 fi(x) represents the average loss, i.e. empirical risk, of model x on the

training dataset. With this formalism in place, a generic batch SGD method performs the iteration
xk+1 = xk − γk

∑
i∈Sk

vki∇fi(xk), where Sk ⊆ {1, 2, . . . , n} is the batch considered in iteration k

and vk1 , . . . , v
k
n are appropriately chosen scalars. Often in practice, and almost invariably in theory,

the batch Sk is chosen at random according to some fixed probability law, and the scalars vki are
chosen to ensure that gk =

∑
i∈Sk

vki∇fi(xk) is an unbiased estimator of the gradient ∇f(xk). One

standard choice is to fix a batch size τ ∈ {1, 2, . . . , n}, and pick Sk uniformly from all subsets of
size τ . Another option is to partition the training dataset into n/τ subsets of size τ , and then in each
iteration let Sk to be one of these partitions, chosen with some probability, e.g., uniformly.

Contributions Effective online learning of the optimal batch size. We make a step towards
the development of a practical variant of optimal batch SGD, aiming to learn the optimal batch size
τ∗ on the fly. To the best of our knowledge, our method (Algorithm 1) is the first variant of SGD
able to learn the optimal batch. Sampling strategies. We do not limit our selves to the uniform

c© M. Alfarra, S. Hanzely, A. Albasyoni, B. Ghanem & P. Richtárik.

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

sampling strategy we used for illustration purposes above and develop closed-form expressions for
the optimal batch size for several other sampling techniques. Our adaptive method works well for all
of them. Convergence theory. We prove that our adaptive method converges, and moreover learns
the optimal batch size. Practical robustness. We show the algorithm’s robustness by conducting
extensive experiments using different sampling techniques and different machine learning models
on both real and synthetic datasets.

Related work A stream of research attempts to boost the performance of SGD in practice is
tuning its hyperparameters such as learning rate, and batch size while training. In this context, a
lot of work has been done in proposing various learning rate schedulers [1, 6, 10, 11, 13, 16]. De
et al. [4] showed that one can reduce the variance by increasing the batch size without decreasing
step-size (to maintain the constant signal to noise ratio). Besides, Smith et al. [12] demonstrated the
effect of increasing the batch size instead of decreasing the learning rate in training a deep neural
network. However, most of these strategies are based on empirical results only. You et al. [14, 15]
show empirically the advantage of training on large batch size, while Masters and Luschi [5] claim
that it is preferable to train on smaller one.

SGD Overview. To study batch SGD for virtually all (stationary) subsampling rules, we adopt
the stochastic reformulation paradigm for finite-sum problems proposed in [8]. The random vector
v ∈ Rn is sampled from a distribution D and satisfies ED[vi] = 1. Typically, the vector v is
defined by first choosing a random batch Sk ⊆ {1, 2, . . . , n}, then defining vki = 0 for i /∈ Sk,
and choosing vki to an appropriate value for i /∈ Sk in order to make sure the stochastic gradient
∇fvk(xk) is unbiased. In this work, we consider two particular choices of the probability law
governing the selection of Sk.

τ−partition nice sampling In this sampling, we divide the training set into partitions Cj (of
possibly different sizes nCj), and each of them has at least a cardinality of τ . At each iteration, one
of the sets Cj is chosen with probability qCj , and then τ−nice sampling (without replacement) is
applied on the chosen set. For each subset C cardinality τ of partition Cj cardinality nCj , P[vC =
1C∈S] = qj/

(nCj
τ

)
. τ−partition independent sampling Similar to τ−partition nice sampling,

we divide the training set into partitions Cj , and each of them has at least a cardinality of τ . At
each iteration one of the sets Cj is chosen with probability qCj , and then τ−independent sampling
is applied on the chosen set. For each element i of partition Cj , we have P[vi = 1C∈S] = qjpi. The
stochastic formulation naturally leads to the following concept of expected smoothness.
Assumption 1 The function f is L−smooth with respect to a datasets D if there exist L > 0 with

ED
[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ 2L(f(x)− f(x∗)). (1)

Assumption 2 The gradient noise σ = σ(x∗), where σ(x) := ED[‖∇fv(x)‖2], is finite.

Theorem 1 Assume f is µ−strongly convex and Assumptions 1, 2 are satisfied. For any ε > 0, if
the learning rate γ is set to be

γ = 1
2 min

{
1
L ,

εµ
2σ

}
and k ≥ 2

µ max
{
L, 2σεµ

}
log
(
2‖x0−x∗‖2

ε

)
then E

∥∥∥xk − x∗∥∥∥2 ≤ ε (2)

2. Deriving Optimal Batch Size

After giving this thorough introduction to the stochastic reformulation of SGD, we can move on
to study the effect of the batch size on the total iteration complexity. In fact, for each sampling
technique, the batch size will affect both the expected smoothness L and the gradient noise σ. This
effect reflects on the number of iterations required to reach to ε neighborhood around the optimum.

2

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Formulas for L and σ Before proceeding, we establish some terminologies. In addition of
having f to be L−smooth, we also assume each fi to be Li−smooth. In τ−partition samplings
(both nice and independent), let nCj be number of data-points in the partition Cj , where nCj ≥
τ . Let LCj be the smoothness constants of the function fCj = 1

nCj

∑
i∈Cj fi. Also, let LCj =

1
nCj

∑
i∈Cj Li be the average of the Lipschitz smoothness constants of the functions in partition

Cj . In addition, let hCj (x) =
∥∥∇fCj (x)∥∥2 be the norm of the gradient of fCj at x. Finally, let

hCj (x) =
1
nCj

∑
i∈Cj

hi(x). For ease of notation, we will drop x from all of the expression since it

is understood from the context (hi = hi(x)). Also, superscripts with (∗, k) refer to evaluating the
function at x∗ and xk respectively (e.g. h∗i = hi(x

∗)). Now we introduce our key lemma, which
gives an estimate of the expected smoothness for different sampling techniques.

Lemma 2 For the considered samplings, the expected smoothness constants L can be upper
bounded by L(τ) (i.e. L ≤ L(τ)), where L(τ) is expressed as follows

(i) For τ -partition nice sampling,L(τ) = 1
nτ maxCj

nCj
qCj (nCj−1)

[
(τ−1)LCjnCj+(nCj−τ)maxi∈Cj Li

]
.

(ii) For τ -partition independent sampling, we have: L(τ) = 1
n maxCj

nCjLCj
qCj

+maxi∈Cj

Li(1−pi)
qCj

pi
.

For the considered samplings, the gradient noise is given by σ(x∗, τ), where

(i) For τ -partition nice sampling,σ(x, τ) = 1
n2τ

∑
Cj

n2
Cj

qCj (nCj−1)

[
(τ−1)hCjnCj +(nCj−τ)hCj

]
.

(ii) For τ−partition independent sampling, we have σ(x, τ) = 1
n2

∑
Cj

n2
Cj
hCj+

∑
i∈Cj

1−pi
pi

hi

qCj

Optimal Batch Size Our goal is to estimate total iteration complexity as a function of τ . In
each iteration, we work with τ gradients, thus we can lower bound on the total iteration com-
plexity by multiplying lower bound on iteration complexity (2) by τ . We can apply similar anal-
ysis as in [8]. Since we have estimates on both the expected smoothness constant and the gra-
dient noise in terms of the batch size τ , we can lower bound total iteration complexity (2) as
T (τ) = 2

µ max
{
τL(τ), 2

εµτσ(x
∗, τ)

}
log
(
2‖x0−x∗‖2

ε

)
. Note that if we are interested in mini-

mizer of T (τ), we can drop all constant terms in τ . Therefore, optimal batch size τ∗ minimizes
max

{
τL(τ), 2

εµτσ(x
∗, τ)

}
. It turns out that all τL(τ), and τσ(x∗, τ) from Lemma 2, are piece-

wise linear functions in τ , which is cruicial in helping us find the optimal τ∗ that minimizes T (τ)
which can be accomplished through the following theorem.

Theorem 3 For τ -partition nice sampling and τ−partition independent sampling with pi = τ
nCj

,

the optimal batch size is τ(x∗), where τ(x) is given by

min
Cr

nn2
Cr

eCr
(LCr−L

Cr
max)+

2
εµ
∑
Cj

n3
Cj
eCj

(
hCj−hCj

)
nnCr
eCr

(nCrLCr−L
Cr
max)+

2
εµ
∑
Cj

n2
Cj
eCj

(hCj−nCjhCj)

, min
Cr

2
εµ
∑
Cj

n2
Cj
qCj

hCj−
n
qCr

LCrmax

2
εµ
∑
Cj

nCj
qCj

(hCj−nCjhCj)+
n
qCr

(nCrLCr−L
Cr
max)

,

respectively, if
∑
Cj

n2
Cj
ej

(h∗CjnCj−h
∗
Cj) ≤ 0 for τ -partition nice sampling, and

∑
Cj

nCj
qCj

(nCjh
∗
Cj−

h
∗
Cj) ≤ 0 for τ−partition independent sampling, where eCk = qCk(nCk−1) andLCrmax = maxi∈Cr Li.

Otherwise: τ(x∗) = 1.

3

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Algorithm 1: SGD with Adaptive Batch size
Input: Smoothness constants L, Li, strong convexity constant µ, target neighborhood ε,
Sampling Strategy S, initial point x0, variance cap C ≥ 0. Initialize: Set k = 0
while not converged do

Set τk ← τ(xk), Lk ← L(τk), σk ← σ(xk, τk), γk ← 1
2 min

{
1
Lk ,

εµ
min(C,2σk)

}
Sample vk from S and Do SGD step: xk+1 ← xk − γk∇fvk(xk)

end while. Output: xk

3. Proposed Algorithm

The theoretical analysis gives us the optimal batch size for each of the proposed sampling tech-
niques. However, we are unable to use these formulas directly since all of the expressions of optimal
batch size depend on the knowledge of x∗ through the values of h∗i ∀i ∈ [n]. Our algorithm over-
comes this problem by estimating the values of h∗i at every iteration by hki . Although this approach
seems to be mathematically sound, it is costly because it requires passing through the whole training
set every iteration. Alternatively, a more practical approach is to store h0i = hi(x

0) ∀i ∈ [n], then
set hki =

∥∥∇fi(xk)∥∥2 for i ∈ Sk and hki = hk−1i for i /∈ Sk, where Sk is the set of indices
considered in the kth iteration. In addition to storing an extra n dimensional vector, this approach
costs only computing the norms of the stochastic gradients that we already used in the SGD step.
Both options lead to convergence in a similar number of epochs, so we let our proposed algorithm
adopt the second (more practical) option of estimating h∗i .

In our algorithm, for a given sampling technique, we use the current estimate of the model
xk to estimate the sub-optimal batch size τk := τ(xk) at the kth iteration. Based on this esti-
mate, we use Lemma 2 in calculating an estimate for both the expected smoothness L(τk) and
the noise gradient σ(xk, τk) at that iteration. After that, we compute the step-size γk and finally
conduct a SGD step. The summary can be found in Algorithm 1. For theoretical convergence
purposes, we cap σk by a positive constant C, and we set the learning rate at each iteration to
γk ← 1

2 min
{

1
Lk ,

εµ
min{C,2σk}

}
. This way, learning rates generated by Algorithm 1 are bounded by

positive constants γmax = 1
2 maxτ∈[n]

{
1
L(τ)

}
and γmin = 1

2 min
{
minτ∈[n]

{
1
L(τ)

}
, εµC

}
.

Theorem 4 Assume f is µ−strongly convex and assumptions 1, and 2 hold. Then the iterates of
Algorithm 1 satisfy: E

∥∥xk − x∗∥∥2 ≤ (1− γminµ)
k
∥∥x0 − x∗∥∥2 +R,

where R = 2γ2maxσ
∗

γminµ
. Theorem 4 guarantees the convergence of the proposed algorithm. Al-

though there is no significant theoretical improvement here compared to previous SGD results in
the fixed batch and learning rate regimes, we measure the improvement to be significant in practice.

Convergence of τk to τ∗. The motivation behind the proposed algorithm is to learn the optimal
batch size in an online fashion so that we get to ε−neighborhood of the optimal model with the
minimum number of epochs. For simplicity, let’s assume that σ∗ = 0. As xk → x∗, then hki =
∇fi(xk)→ ∇fi(x∗) = h∗i , and thus τk → τ∗. In Theorem 4, we showed the convergence of xk to
a neighborhood around x∗. Hence the theory predicts that our estimate of the optimal batch τk will
converge to a neighborhood of the optimal batch size τ∗.

4

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Figure 1: Convergence of ridge and logistic regression using τ−partition nice sampling on body-
fat dataset (first row) and τ−partition independent sampling on a1a dataset (second row).

4. Experiments

In this section, we compare our algorithm to fixed batch size SGD in terms of the number of epochs
needed to reach a pre-specified neighborhood ε/10. In the following results, we capture the conver-
gence rate by recording the relative error (‖xk−x∗‖2/‖x0−x∗‖2) where x0 is drawn from a standard
normal distribution N (0, I). We also report the number of training examples n, the dimension of
the machine learning model d, regularization factor λ, and the target neighborhood ε above each fig-
ure. We consider the problems of regularized ridge and logistic regression where each fi is strongly
convex and L-smooth, and x∗ can be known a-priori.Specifically, we want to minx∈Rd f(x) where

fridge(x) =
1
2n

n∑
i=1

∥∥aTi x− bi∥∥22 + λ
2 ‖x‖

2
2 , flogistic(x) =

1
2n

n∑
i=1

log
(
1 + exp

(
bia

T
i x
))

+ λ
2 ‖x‖

2
2

where (ai, bi) ∼ D are pairs of data examples from the training set. For each of the considered
problems, we performed experiments on real datasets from LIBSVM [3]. We tested our algorithm
on ridge and logistic regression on bodyfat and a1a datasets in Figure 1. For these datasets, we
considered τ−partition independent and τ−partition nice sampling with distributing the training
set into one, two, and three partitions. Moreover, we take the previous experiments one step further
by running a comparison of various fixed batch size SGD, as well as our adaptive method with
a single partition (last column of 1). We plot the total iteration complexity for each batch size,
and highlight optimal batch size obtained from our theoretical analysis, and how many epochs our
adaptive algorithm needs to converge. This plot can be viewed as a summary of grid-search for
optimal batch size (throughout all possible fixed batch sizes). Despite the fact that the optimal batch
size is nontrivial and varies significantly with the model, dataset, sampling strategy, and number of
partitions, our algorithm demonstrated consistent performance overall. In some cases, it was even
able to cut down the number of epochs needed to reach the desired error to a factor of six.

The produced figures of our grid-search perfectly capture the tightness of our theoretical anal-
ysis. In particular, the total iteration complexity decreases linearly up to a neighborhood of τ∗ and
then increases linearly. In addition, Theorem 3 always captures the empirical minimum of T (τ) up
to a negligible error. Moreover, these figures show how close Tadaptive is to the total iteration com-
plexity using optimal batch size T (τ∗). Finally, in terms of running time, our algorithm requires
0.2322 ms per epoch, while running SGD with the optimal batch size requires 0.2298 ms.

5

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

5. Acknowledgement

This work was supported by the King Abdullah University of Science and Technology (KAUST)
Office of Sponsored Research. The work of Motasem Alfarra and Bernard Ghanem was supported
by Award No. OSR-CRG2019-4033.

References

[1] Jonathan Barzilai and Jonathan M Borwein. Two-point Step Size Gradient Methods. IMA
Journal of Numerical Analysis, 8(1):141–148, 1988.

[2] Léon Bottou. Large-scale Machine Learning with Stochastic Gradient Descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

[4] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated Inference with Adap-
tive Batches. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, pages 1504–1513, 2017.

[5] Dominic Masters and Carlo Luschi. Revisiting Small Batch Training for Deep Neural Net-
works. arXiv preprint arXiv:1804.07612, 2018.

[6] V John Mathews and Zhenhua Xie. A Stochastic Gradient Adaptive Filter with Gradient
Adaptive Step Size. IEEE transactions on Signal Processing, 41(6):2075–2087, 1993.

[7] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust Stochas-
tic Approximation Approach to Stochastic Programming. SIAM Journal on Optimization, 19
(4):1574–1609, 2009.

[8] Xun Qian, Peter Richtárik, Robert M. Gower, Alibek Sailanbayev, Nicolas Loizou, and Egor
Shulgin. SGD with arbitrary sampling: General analysis and improved rates. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15, 2019.

[9] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[10] MA Schumer and Kenneth Steiglitz. Adaptive Step Size Random Search. IEEE Transactions
on Automatic Control, 13(3):270–276, 1968.

[11] Sungho Shin, Yoonho Boo, and Wonyong Sung. Fixed-Point Optimization of Deep Neural
Networks with Adaptive Step Size Retraining. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1203–1207. IEEE, 2017.

[12] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations, 2019.

[13] Conghui Tan, Shiqian Ma, Yu-Hong Dai, and Yuqiu Qian. Barzilai-Borwein Step Size for
Stochastic Gradient Descent. In Advances in Neural Information Processing Systems, pages
685–693, 2016.

6

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

[14] Yang You, Igor Gitman, and Boris Ginsburg. Large Batch Training of Convolutional Networks.
arXiv preprint arXiv:1708.03888, 2017.

[15] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD Batch Size to 32k for Imagenet
Training. arXiv preprint arXiv:1708.03888, 6, 2017.

[16] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

7

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Appendix A. Proof of Lemma 2

For the considered partition sampling, the indices 1, . . . , n are distributed into the sets C1, . . . , CK
with each having a minimum cardinality of τ . We choose each set Cj with probability qCj where∑
j
qCj = 1. Note that

Pij =

0 if i ∈ Ck, j ∈ Cl, k 6= l

qk
τ(τ−1)
nk(nk−1) if i 6= j, i, j ∈ Ck, |Ck| = τk

qk
τ
nk

if i=j

.

8

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Therefore

E
[
‖∇fv(x)−∇fv(y)‖2

]
=

1

n2

∑
Ck

∑
i,j∈Ck

Pij

pipj

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

Pij

pipj

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
+

1

n2

∑
Ck

∑
i∈Ck

1

pi

〈
∇fi(x)−∇fi(y),∇fi(x)−∇fi(y)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

nCk(τ − 1)

qCkτ(nCk − 1)

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
+

1

n2

∑
Ck

∑
i∈Ck

nCk
qCkτ

〈
∇fi(x)−∇fi(y),∇fi(x)−∇fi(y)

〉
=

1

n2

∑
Ck

nCk(τ − 1)

qCkτ(nCk − 1)

∑
i 6=j∈Ck

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
+

1

n2

∑
Ck

nCk
qCkτ

∑
i∈Ck

‖∇fi(x)−∇fi(y)‖2

=
1

n2

∑
Ck

nCk(τ − 1)

qCkτ(nCk − 1)

∥∥∥∥∥∥
∑
i∈Ck

∇fi(x)−∇fi(y)

∥∥∥∥∥∥
2

+
1

n2

∑
Ck

nCk(nCk − τ)
qCkτ(nCk − 1)

∑
i∈Ck

‖∇fi(x)−∇fi(y)‖2

≤ 1

n2

∑
Ck

n3Ck(τ − 1)

qCkτ(nCk − 1)
2LCkDfCk

(x, y)

+
1

n2

∑
Ck

nCk(nCk − τ)
qCkτ(nCk − 1)

∑
i∈Ck

2LiDfi(x, y)

≤ 1

n2

∑
Ck

n3Ck(τ − 1)

qCkτ(nCk − 1)
2LCkDfCk

(x, y)

+
1

n2

∑
Ck

n2Ck(nCk − τ)
qCkτ(nCk − 1)

2max
i∈Ck

LiDfCk
(x, y)

=
1

n2

∑
Ck

2
n2Ck(τ − 1)LCk + nCk(nCk − τ)maxi∈Ck Li

qCkτ(nCk − 1)
nCkDfCk

(x, y)

≤ 2
1

n
(max
Ck

n2Ck(τ − 1)LCk + nCk(nCk − τ)maxi∈Ck Li

qCkτ(nCk − 1)
nCk)Df (x, y),

9

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

whereDf (x, y) = f(x)−f(y)−〈∇f(y), x−y〉. Setting y ← x∗, leads to the desired upper bound
of the expected smoothness which is given by

L(τ) = 1

nτ

(
max
Ck

nCk
qCk (nCk − 1)

(
n2Ck(τ − 1)LCk + nCk (nCk − τ)max

i∈Ck
Li

))
.

Next, we derive a similar bound for τ−independent partition sampling.

E
[
‖∇fv(x)−∇fv(y)‖2

]
=

1

n2

∑
Ck

∑
i,j∈Ck

Pij

pipj

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

Pij

pipj

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
+

1

n2

∑
Ck

∑
i∈Ck

1

pi

〈
∇fi(x)−∇fi(y),∇fi(x)−∇fi(y)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

1

qCk

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
+

1

n2

∑
Ck

∑
i∈Ck

1

qCkpi

〈
∇fi(x)−∇fi(y),∇fi(x)−∇fi(y)

〉
=

1

n2

∑
Ck

1

qCk

∑
i 6=j∈Ck

〈
∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)

〉
+

1

n2

∑
Ck

1

qCk

∑
i∈Ck

1

pi
‖∇fi(x)−∇fi(y)‖2

=
1

n2

∑
Ck

1

qCk

∥∥∥∥∥∥
∑
i∈Ck

∇fi(x)−∇fi(y)

∥∥∥∥∥∥
2

+
1

n2

∑
Ck

1

qCk

∑
i∈Ck

1− pi
pi
‖∇fi(x)−∇fi(y)‖2

≤ 1

n2

∑
Ck

n2Ck
qCk

2LCkDfCk
(x, y)

+
1

n2

∑
Ck

1

qCk

∑
i∈Ck

1− pi
pi

2LiDfi(x, y)

≤ 1

n2

∑
Ck

n2Ck
qCk

2LCkDfCk
(x, y)

+
1

n2

∑
Ck

nCk
qCk

2max
i∈Ck

1− pi
pi

LiDfCk
(x, y)

=
1

n2

∑
Ck

2(
nCkLCk
qCk

+max
i∈Ck

(1− pi)Li
qCkpi

)nCkDfCk
(x, y)

≤ 2
1

n
max
i∈Ck

(
nCkLCk
qCk

+max
i∈Ck

(1− pi)Li
qCkpi

)Df (x, y).

10

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

This gives the desired upper bound for the expected smoothness

L(τ) = 1

n
max
i∈Ck

(
nCkLCk
qCk

+max
i∈Ck

(1− pi)Li
qCkpi

)
.

Following the same notation, we move on to compute σ for each sampling. First, for τ−nice
partition sampling we have

E
[
‖∇fv(x∗)‖2

]
=

1

n2

∑
Ck

∑
i,j∈Ck

Pij

pipj

〈
∇fi(x∗),∇fj(x∗)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

Pij

pipj

〈
∇fi(x∗),∇fj(x∗)

〉
+

1

n2

∑
Ck

∑
i∈Ck

1

pi

〈
∇fi(x∗),∇fi(x∗)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

nCk(τ − 1)

τ(nCk − 1)qCk

〈
∇fi(x∗),∇fj(x∗)

〉
+

1

n2

∑
Ck

∑
i∈Ck

nCk
τqCk

〈
∇fi(x∗),∇fi(x∗)

〉
=

1

n2

∑
Ck

nCk(τ − 1)

τ(nCk − 1)qCk

∑
i 6=j∈Ck

〈
∇fi(x∗),∇fj(x∗)

〉
+

1

n2

∑
Ck

nCk
τqCk

∑
i∈Ck

hi

=
1

n2

∑
Ck

nCk(τ − 1)

τ(nCk − 1)qCk

∥∥∥∥∥∥
∑
i∈Ck

∇fi(x∗)

∥∥∥∥∥∥
2

+
1

n2

∑
Ck

nCk(nCk − τ)
τ(nCk − 1)qCk

∑
i∈Ck

hi

=
1

n2

∑
Ck

n3Ck(τ − 1)

τ(nCk − 1)qCk
hCk +

1

n2

∑
Ck

n2Ck(nCk − τ)
τ(nCk − 1)qCk

hCk .

Where its left to rearrange the terms to get the first result of the lemma. Next, we compute σ for
τ−independent partition:

E
[
‖∇fv(x∗)‖2

]
=

1

n2

∑
Ck

∑
i,j∈Ck

Pij

pipj

〈
∇fi(x∗),∇fj(x∗)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

Pij

pipj

〈
∇fi(x∗),∇fj(x∗)

〉
+

1

n2

∑
Ck

∑
i∈Ck

1

pi

〈
∇fi(x∗),∇fi(x∗)

〉
=

1

n2

∑
Ck

∑
i 6=j∈Ck

1

qCk

〈
∇fi(x∗),∇fj(x∗)

〉
+

1

n2

∑
Ck

∑
i∈Ck

1

qCkpi

〈
∇fi(x∗),∇fi(x∗)

〉
=

1

n2

∑
Ck

1

qCk

∑
i 6=j∈Ck

〈
∇fi(x∗),∇fj(x∗)

〉
+

1

n2

∑
Ck

1

qCk

∑
i∈Ck

1

pi
hi

=
1

n2

∑
Ck

1

qCk

∥∥∥∥∥∥
∑
i∈Ck

∇fi(x∗)

∥∥∥∥∥∥
2

+
1

n2

∑
Ck

∑
i∈Ck

(1− pi)hi
qCkpi

=
1

n2

∑
Ck

n2Ck
qCk

hCk +
1

n2

∑
Ck

∑
i∈Ck

(1− pi)hi
qCkpi

.

11

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Appendix B. Proof of Theorem 3

Recall that the optimal batch size τ(x∗) is chosen such that the quantity max
{
τL(τ), 2

εµτσ(x
∗, τ)

}
is minimized. Note that in both τ−nice partition, and τ− independent partition with (pi =

τ
nCj

),

τσ(x∗, τ) is a linear function of τ while τL(τ) is a max across linearly increasing functions of τ .
To find the minimized in such a case, we leverage the following lemma.

Lemma 5 Suppose that l1(x), l2(x), ..., lk(x) are increasing linear functions of x, and r(x) is
linear decreasing function of x, then the minimizer of max(l1(x), l2(x), ..., lk(x), r(x)) is x∗ =
mini(xi) where xi is the unique solution for li(x) = r(x)

Proof: Let x∗ be defined as above, and let x be an arbitrary number. If x ≤ x∗, then r(x) ≥
r(x∗) ≥ r(xi) = li(xi) ≥ li(x

∗) for each i which means r(x) ≥ max(l1(x
∗), ..., lk(x

∗), r(x∗)).
On the other hand, if x ≥ x∗, then let i be the index s.t. xi = x∗. We have li(x) ≥ li(x

∗) =
r(x∗) ≥ r(xj) = lj(xj) ≥ lj(x

∗), hence li(x) ≥ max(l1(x
∗), ..., lk(x

∗), r(x∗)). This means that
x∗ = mini(xi) is indeed the minimizer of max(l1(x), l2(x), ..., lk(x), r(x)).

Now we can estimate optimal batch sizes for proposed samplings.

τ−nice partition: if
∑
Cj

n2
Cj
ej

(h∗CjnCj − h
∗
Cj) ≤ 0 then τσ(τ) is a decreasing linear function

of τ , and τL(τ) is the max of increasing linear functions. Therefore, we can leverage the previous

lemma with r(τ) = 2
εµτσ(x

∗, τ) and lCk(τ) =
n2
Ck

(τ−1)LCk+nCk (nCk−τ)maxi∈Ck Li

qCk (nCk−1)
nCk to find the

optimal batch size as τ∗ = min
Ck

(τ∗Ck), where

τ∗Ck =

nn2
Cr

eCr
(LCr−L

Cr
max)+

2
εµ
∑
Cj

n3
Cj
eCj

(
hCj−hCj

)
nnCr
eCr

(nCrLCr−L
Cr
max)+

2
εµ
∑
Cj

n2
Cj
eCj

(hCj−nCjhCj)

.

τ−independent partition: Similar to τ−nice partition, we have τσ(τ) is a decreasing linear func-
tion of τ if

∑
Cj

nCj
qCj

(nCjh
∗
Cj − h

∗
Cj) ≤ 0, and τL(τ) is the max of increasing linear func-

tions of τ . Hence, we can leverage the previous lemma with r(τ) = 2
εµτσ(x

∗, τ) and lCk(τ) =
nCkLCkτ

qCk
+ (nCk − τ)maxi∈Ck

Li
qCk

to find the optimal batch size as τ∗ = min
Ck

(τ∗Ck), where

τ∗Ck =

2
εµ
∑
Cj

n2
Cj
qCj

hCj−
n
qCr

LCrmax

2
εµ
∑
Cj

nCj
qCj

(hCj−nCjhCj)+
n
qCr

(nCrLCr−L
Cr
max)

.

Appendix C. Proof of bounds on step sizes

For our choice of the learning rate we have

γk =
1

2
min

{
1

Lk
,

εµ

min(C, 2σk)

}
=

1

2
min

{
1

Lk
,max

{εµ
C
,
εµ

2σk

}}
≥ 1

2
min

{
1

Lk
,
εµ

C

}
.

12

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Since Lk is a linear combination between the smoothness constants of the functions fi, then it
is bounded. Therefore, both Lk and C are upper bounded and lower bounded as well as 1

Lk

and εµ
C , thus also γk is bounded by positive constants γmax = 1

2 maxτ∈[n]

{
1
L(τ)

}
and γmin =

1
2 min

{
minτ∈[n]

{
1
L(τ)

}
, εµC

}
.

Appendix D. Proof of Theorem 4

Let rk =
∥∥xk − x∗∥∥2, then

E
[
rk+1|xk

]
= E

[∥∥∥xk − γk∇fvk(xk)− x∗∥∥∥2 |xk]
= rk + (γk)2E

[∥∥∥∇fvk(xk)∥∥∥2 |xk]− 2γk〈E
[
∇fvk(x

k)|xk
]
, rk〉

= rk + (γk)2E
[∥∥∥∇fvk(xk)∥∥∥2 |xk]− 2γk

(
f(xk)− f(x∗) + µ

2
rk
)

= (1− γkµ)rk + (γk)2E
[∥∥∥∇fvk(xk)∥∥∥2 |xk]− 2γk(f(xk)− f(x∗))

≤ (1− γkµ)rk + (γk)2(4Lk(f(xk)− f(x∗)) + 2σ)− 2γk(f(xk)− f(x∗))
= (1− γkµ)rk − 2γk((1− 2γkLk)(f(xk)− f(x∗))) + 2(γk)2σ

≤ (1− γkµ)rk + 2(γk)2σ for γk ≤
1

2Lk
.

From Eariler bounds, there exist upper and lower bounds for step-sizes, γmin ≤ γk ≤ γmax,
thus

E
[
rk+1|xk

]
≤ (1− γkµ)rk + 2(γk)2σ ≤ (1− γminµ)r

k + 2γ2maxσ.

Therefore, unrolling the above recursion gives

E
[
rk+1|xk

]
≤ (1− γminµ)

kr0 + 2γ2maxσ
k∑
i=0

(1− γminµ)
k

≤ (1− γminµ)
kr0 +

2γ2maxσ

γminµ
.

Appendix E. Proof of convergence to linear neighborhood in ε

In this section, we prove that our algorithm converges to a neighborhood around the optimal solution
with size upper bounded by an expression linear in ε. First of all, we prove that σ(x) is lower
bounded by a multiple of the variance in the optimum σ∗ (in Lemma 6). Then, by showing an
alternative upper bound on the step-size, we obtain an upper bound for neighborhood size R as
expression of ε.

Lemma 6 Suppose f is µ−strongly convex, L−smooth and with expected smoothness constant L.
Let v be as in the SGD overview, i.e., E [vi = 1] for all i. Fix any c > 0. The function σ(x) =

13

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

E
[
‖∇fv(x)‖2

]
can be lower bounded as follows:

σ(x) ≥
{
µ2c, 1− 2

√
LLc

}
σ(x∗), ∀x ∈ Rd.

The constant c maximizing this bound is c =
(√

LL+µ2−
√
LL

µ2

)2

, giving the bound

σ(x) ≥

(√
LL+ µ2 −

√
LL
)2

µ2
σ(x∗), ∀x ∈ Rd.

Proof: Choose c > 0. If ‖x− x∗‖ ≥
√
cσ(x∗), then using Jensen’s inequality and strong

convexity of f , we get

σ(x) ≥ ‖E [∇fv(x)]‖2 = ‖∇f(x)‖2 = ‖∇f(x)−∇f(x∗)‖2 ≥ µ2 ‖x− x∗‖2 ≥ µ2cσ(x∗). (3)

If ‖x− x∗‖ ≤
√
cσ(x∗), then using expected smoothness and L-smoothness, we get

E
[
‖∇fv(x)−∇fv(x∗)‖2

] (1)
≤ 2L(f(x)− f(x∗)) ≤ LL ‖x− x∗‖2 ≤ LLcσ(x∗). (4)

Further, we can write

σ(x∗)− σ(x) = E
[
‖∇fv(x∗)‖2

]
− E

[
‖∇fv(x)‖2

]
= −2E [〈∇fv(x)−∇fv(x∗),∇fv(x∗)〉]− E

[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ −2E [〈∇fv(x)−∇fv(x∗),∇fv(x∗)〉]
≤ 2E [‖∇fv(x)−∇fv(x∗)‖ ‖∇fv(x∗)‖]

≤ 2

√
E
[
‖∇fv(x)−∇fv(x∗)‖2

]√
E
[
‖∇fv(x∗)‖2

]
(4)
≤ 2

√
LLc

√
σ(x∗)

√
σ(x∗)

= 2
√
LLcσ(x∗),

where the first inequality follows by neglecting a negative term, the second by Cauchy-Schwarz and
the third by Hölder inequality for bounding the expectation of the product of two random variables.
The last inequality implies that

σ(x) ≥
(
1− 2

√
LLc

)
σ(x∗). (5)

By combining the bounds (3) and (5), we get

σ(x) ≥ min
{
µ2c, 1− 2

√
LLc

}
σ(x∗).

Using Lemma 6, we can upper bound step-sizes γk. Assume that σ∗ = σ(x∗) > 0. Let

γ
′
max = εµ

2 max
{

1
C ,

1
2ησ∗

}
, where η =

(√
LL+µ2−

√
LL
)2

µ2
.

14

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

We have

γk =
1

2
min

{
1

Lk
,

εµ

min(C, 2σk)

}
≤ εµ

2
max

{
1

C
,

1

2σk

}
≤ εµ

2
max

{
1

C
,

1

2ησ∗

}
= γ

′
max.

Now, we use this alternative step-sizes upper bound to obtain alternative expression for residual
term R = 2γ2maxσ

∗

γminµ
in Theorem 4 (let’s denote it R

′
). Analogically to proof of Theorem 4 (with

upper bound of step-sizes γ
′
max), we have R

′
= 2γ

′2
maxσ

∗

γminµ
.

Finally, expanding expression for residual term R
′

yields the result:

R
′
=

2γ
′2
maxσ

∗

γminµ
=

2
(
εµ
2 max

{
1
C ,

1
2ησ∗

})2
σ∗

1
2 min

{
minτ∈[n]

{
1
L(τ)

}
, εµC

}
µ
= ε2µ

(
max

{
1

C
,

1

2ησ∗

})2

max

{
max
τ∈[n]

{L(τ)} , Cµε

}
σ∗

= εµ

(
max

{
1

C
,

1

2ησ∗

})2

max

{
εmax
τ∈[n]

{L(τ)} , Cµ

}
σ∗.

As conclusion, if we consider R
′

to be function of ε, then it is at least linear in ε, R
′ ∈ O(ε).

Appendix F. Additional Experimental Results

In this section, we present additional experimental results. Here we test each dataset on the sampling
that was not tested on. Similar to the earlier result, the proposed algorithm outperforms most of the
fixed batch size SGD. Moreover, it can be seen as a first glance, that the optimal batch is non-trivial,
and it is changing as we partition the dataset through different number of partitions. For example,
in bodyfat dataset that is located in one partition, the optimal batch size was τ∗ = 74. Although
one can still sample τ = 74 when the data is divided into two partitions, the optimal has changed
to τ∗ = 57. This is clearly shown in Figure 4 where it shows that the optimal batch size varies
between different partitioning, and the predicted optimal from our theoretical analysis matches the
actual optimal.

Figure 2: Convergence of Ridge regression using τ−partition independent sampling on Bodyfat
dataset (first row) and τ−partition nice sampling on mg dataset (second row). In first
three columns, training set is distributed among 1, 2, 3 and 4 partitions, respectively.

15

ADAPTIVE LEARNING OF THE OPTIMAL BATCH SIZE OF SGD

Figure 3: Convergence of Logistic regression using τ−partition independent sampling on mush-
rooms dataset (first row) and τ−partition nice sampling on a1a dataset (second row). In
first three columns, training set is distributed among 1, 2, 3 and 4 partitions, respectively.

Figure 4: Effect of batch size on the total iteration complexity. First row: mg dataset sam-
pled using τ−nice partition sampling. Second row: bodyfat dataset sampled using
τ−independent partition sampling. From left to right: dataset is distributed across 1,
2, 3, and 4 partitions. This figure reflects the tightness of the theoretical result in relating
the total iteration complexity with the batch size, and the optimal batch size. Moreover,
This figure shows how close the proposed algorithm is to the optimal batch size in terms
of the performance.

16

	Introduction
	Deriving Optimal Batch Size
	Proposed Algorithm
	Experiments
	Acknowledgement
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of bounds on step sizes
	Proof of Theorem 4
	Proof of convergence to linear neighborhood in
	Additional Experimental Results

