
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Deep Residual Partitioning

Neal Lawton NLAWTON@USC.EDU

Greg Ver Steeg GREGV@ISI.EDU

Aram Galstyan GALSTYAN@ISI.EDU

Information Sciences Institute, Marina Del Rey, CA / University of Southern California, Los Angeles, CA

Abstract
Deep neural networks are trained by solving a hard optimization problem. This optimization prob-
lem can be effectively solved using general optimization methods like Adam, but we can exploit
the special structure of neural networks to derive even better training algorithms. We introduce
residual partitioning, a novel second-order optimization method for training neural nets. In each
training iteration, residual partitioning uses Jensen’s inequality to bound the objective; this bound
has a diagonal Hessian and so is simple to optimize. In our experiments, we compare residual
partitioning with several standard optimization algorithms on several machine learning tasks and
conclude residual partitioning converges to a competitive or better solution.

1. Introduction

Training deep neural networks is a difficult optimization problem. This problem can be solved
using gradient descent, which incrementally moves the model parameters in the direction of the
gradient and uses a learning rate to determine how far. Since the curvature of the objective function
varies greatly along different directions, using a constant learning rate causes the process to ping-
pong along directions of high curvature, leading to slow convergence. Instead, fast optimization
methods estimate the curvature of the objective around the current solution and adjust the learning
rate accordingly, decreasing the learning rate along dimensions with high curvature and increasing
the learning rate along dimensions with low curvature.

Adaptive learning rate methods such as Adam [10], AdaGrad [8], and AdaDelta [26] estimate
the local curvature from an exponential moving average of past gradients using different heuristics.
Since implementing these methods only requires efficient computation of the gradient, they can be
used to solve a wide variety of optimization problems.

Second-order methods estimate the curvature using the Hessian matrix of second derivatives.
Hessian-free learning uses the special structure of neural networks to efficiently compute Hessian-
vector products [14, 17, 20, 22, 24]. Many second-order methods use a structured approximation
of the Hessian matrix, e.g. low-rank [4, 13, 23], diagonal [2], or block-diagonal [6], to decrease
wall time per training step or memory utilization. Since the Hessian typically exhibits negative
curvature [18], many second-order methods make a positive-definite approximation to the Hessian,
e.g., the Gauss-Newton approximation [3], the Fisher Information Matrix [1, 9, 15, 16, 19, 21], or
by identifying and bounding the negative eigenvalues of the Hessian [5, 7]. In practice, modern
second-order methods are still too slow, too memory-intensive, and too complicated to compete
against adaptive gradient methods.
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In this paper we introduce residual partitioning, a novel second-order optimization algorithm
for training neural networks. In each training iteration, residual partitioning uses Jensen’s inequality
to construct an upper bound on the local second-order approximation of the loss function. This is
a strong theoretical claim, since it guarantees that the decrease in loss achieved by minimizing the
bound will also be achieved for the local second-order approximation. The bound we derive has a
diagonal Hessian matrix and is therefore easy to optimize and memory efficient. This also makes
it exceedingly simple to correct for negative curvature introduced by the non-linear activation func-
tions without computing the eigendecomposition of any dense matrix. We can efficiently construct
and minimize our bound with a single forward and backward pass through the network and in the
same time complexity as an Adam or SGD step.

In our experiments, we compare residual partitioning with Adam and SGD by training an au-
toencoder and classifier network on MNIST, Fashion-MNIST [25], and CIFAR-10 [12]. We observe
that residual partitioning converges to a competitive or better solution compared to Adam and SGD.

2. Notation and Setup

We use subscript ` or superscript (`) to index layers, subscript s to index dataset samples, and
subscript i or j to index neurons in a layer. The `-th layer of a neural net with L layers has m`

neurons with activations {y(`)
sj }

m`
j=1. Each affine layer has weights {wij} and biases {bi}, though we

write each bias bi as a weight wi0 with incoming activation ys0 ≡ 1. Each activation layer has an
activation function σ`(·) : R→ R.

Denote P ⊆ [L] as the set of indices corresponding to layers with trainable parameters. In each
training step, for each ` ∈ P , we update each weight w(`)

ij by adding on ∆w
(`)
ij . The new weight is

ŵ
(`)
ij ≡ w

(`)
ij + ∆w

(`)
ij . Updating the weights causes the activation y(`)

sj to change; denote this change

∆y
(`)
sj , so the activation after updating weights is ŷ(`)

sj ≡ y
(`)
sj + ∆y

(`)
sj . Residual partitioning is a

method for solving optimization problems of a special form:

min
{∆w

(`)
ij }
L L ≡

S∑
s=1

f(ŷ(L)
s |xs) (1)

where {xs}Ss=1 is a dataset of observations, ŷ(L)
s is the output of a neural net consisting of some

combination of activation layers and affine layers, and f(ŷ
(L)
s |xs) : RmL → R is a convex loss

function of ŷ(L)
s , such as the L2 loss or cross-entropy error.

3. Residual Partitioning

To bound the second-order approximation to the objective function L̃ ≈ L, we will peel back the
neural network layer by layer working backwards. Formally, we will prove the following with
induction:

Theorem 1 For each ` ∈ [L], there exists an upper bound L̃` on L̃ of the following form, where
Y(`)
sj andW(`)

ij are univariate convex quadratic functions of ∆y
(`)
sj and ∆w

(`)
ij , respectively:

L̃ ≤ L̃` ≡
S∑

s=1

m∑̀
j=1

Y(`)
sj +

∑
`′∈P, `′≥`

m`′+1∑
i=1

m`′∑
j=1

W(`′)
ij (2)
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However, L̃` is only an intermediary bound, withW(`)
ij terms for parameters that have already been

assigned part of the residual andY(`)
sj terms for the remaining pieces of the residual that will continue

to backpropagate up to parameters in higher layers. The bound we are ultimately interested in is L̃1,
where the quadratic function Y(1)

sj is a constant (since ∆y
(1)
sj = 0) and the bound can be written

L̃ ≤ L̃1 ≡
∑
`∈P

m`+1∑
i=1

m∑̀
j=1

W(`)
ij . (3)

We call L̃1 the residual partitioning bound. We are interested in this bound because its Hessian with
respect to {∆w(`)

ij } is diagonal, and so is easily minimized.
To prove Theorem 1, we must show how to bound through three different parts of the network:

the convex loss function, the trainable affine layers, and the activation layers. However, here we
only show how to bound through the affine layers to demonstrate the main technique used. The
process of bounding through the other parts of the network is treated in the Appendix.

3.1. Bounding through affine layers

Affine layers include fully connected layers, convolutional layers, and residual connections. Here
we only consider fully connected layers, but the work shown here generalizes to other affine layer
types. For an affine layer, the i-th component of the output and change in output are

y
(`+1)
si ≡

m∑̀
j=0

w
(`)
ij y

(`)
sj ∆y

(`+1)
si ≈

m∑̀
j=0

∆w
(`)
ij y

(`)
sj +

m∑̀
j=1

w
(`)
ij ∆y

(`)
sj . (4)

Note that we have omitted the term ∆w
(`)
ij ∆y

(`)
sj from ∆y

(`+1)
si . Doing so is not necessary, but

simplifies notation and the resulting algorithm. If ` 6= 1, for each s ∈ [S] and i ∈ [m`+1] choose
partitioning variables {ε(`)

sij}
m`
j=0 and {ϕ(`)

sij}
m`
j=1 that are non-negative and together add to one:

m∑̀
j=0

ε
(`)
sij +

m∑̀
j=1

ϕ
(`)
sij = 1 ∀ s, i ε

(`)
sij ≥ 0 ϕ

(`)
sij ≥ 0 ∀ s, i, j (5)

We can interpret ε(`)
sij as the fraction of the residual backpropagated through y(`+1)

si that will be used

to update w(`)
ij , and ϕ(`)

sij as the fraction that will continue to backpropagate to higher layers through

y
(`)
sj . We will construct L̃` from L̃`+1 by bounding the ∆y

(`+1)
si

2 term in Y(`+1)
si . To do this, multiply

by one and apply Jensen’s inequality:

∆y
(`+1)
si

2 =

 m∑̀
j=0

ε
(`)
sij

∆w
(`)
ij y

(`)
sj

ε
(`)
sij

+

m∑̀
j=1

ϕ
(`)
sij

w
(`)
ij ∆y

(`)
sj

ϕ
(`)
sij

2

(6)

≤
m∑̀
j=0

(∆w
(`)
ij y

(`)
sj )2

ε
(`)
sij

+

m∑̀
j=1

(w
(`)
ij ∆y

(`)
sj )2

ϕ
(`)
sij

(7)
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Applying this to each Y(`+1)
si term of L̃`+1 yields the following bound, where Y(`)

sj andW(`)
ij are uni-

variate convex quadratic functions of ∆y
(`)
sj and ∆w

(`)
ij respectively with the following coefficients:

S∑
s=1

m`+1∑
i=1

Y(`+1)
si ≤

m`+1∑
i=1

m∑̀
j=0

W(`)
ij +

S∑
s=1

m∑̀
j=1

Y(`)
sj (8)

Ẇ(`)
ij ≡

S∑
s=1

Ẏ(`+1)
si y

(`)
sj Ẏ(`)

sj ≡
m`+1∑
i=1

Ẏ(`+1)
si w

(`)
ij

Ẅ(`)
ij ≡

S∑
s=1

Ÿ(`+1)
si y

(`)
sj

2

ε
(`)
sij

Ÿ(`)
sj ≡

m`+1∑
i=1

Ÿ(`+1)
si w

(`)
ij

2

ϕ
(`)
sij

(9)

Note that Ÿ(`+1)
si ≥ 0 guarantees Ẅ(`)

ij ≥ 0 and Ÿ(`)
sj ≥ 0, so the bound remains in the correct

direction. Finally, plugging this bound (8) into L̃`+1 and collecting like terms yields L̃`.
Since residual partitioning only bounds the second-order terms of the loss function, Ẇ(`)

ij is sim-

ply the gradient of the loss with respect to ∆w
(`)
ij normally calculated by backpropagation. We say

residual partitioning updates w(`)
ij with learning rate 1/Ẅ(`)

ij and from (9), we see that this learning

rate is an increasing function of ε(`)
sij . We interpret this to mean that if we assign a large fraction of

the residual to w(`)
ij , then we will update w(`)

ij using a large learning rate.

4. Choosing partitioning variables

Now that we have shown how to construct the residual partitioning bound L̃1, we need to choose
values for the partitioning variables ε(`)

sij and ϕ(`)
sij that satisfy the constraint (5). There are many

ways to choose the partitioning variables, but in this paper, we choose the partitioning variables so
the residual partitioning bound L̃1 is minimized if all parameter updates are equal size, i.e., ∆w

(`)
ij

2

is constant.

Theorem 2 If ∆w
(`)
ij

2 is constant, the choice of partitioning variables that minimizes L̃1 is ε(`)
sij = ε∗

(`)
sij

and ϕ(`)
sij = ϕ∗

(`)
sij:

ε∗
(`)
sij =

|y(`)
sj |

u
(`+1)
si

ϕ∗
(`)
sij =

|w(`)
ij |u

(`)
sj

u
(`+1)
si

for 1 < ` < L, ` ∈ P (10)

where u(`)
si is calculated by a forward pass through the network:

u
(1)
si ≡ 0 u

(`+1)
si ≡

{
|σ̇`(y

(`)
sj )|u(`)

sj for activation layers `∑m`
j=0 |y

(`)
sj |+

∑m`
j=1 |w

(`)
ij |u

(`)
sj for affine layers `

(11)

We call u(`)
si the total gradient coming into y(`)

si . In effect, u(`)
si quantifies how much y(`)

si can
change after updating all parameters.
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5. Experiments

In all of our experiments, use a mini-batch size of 100. We preprocessed all three datasets by
scaling and shifting the values of both train and test data to lie in the interval [−1, 1]. We initialized
the weights using PyTorch’s default parameter initialization, which is U(−

√
k,
√
k), where k =

1/in_features. We use L2 weight regularization with strength 10−2 for all parameters. We
repeated each experiment 10 times, using random seeds 1 through 10; the results we report are the
average over those 10 trials. For each experiment we plot the test and train loss every 100 epochs.

Note that one iteration of residual partitioning has the same computational complexity as SGD
and Adam. In practice, we observed that when running on a CPU with 16 cores, one training step
of residual partitioning took about 36% more time than one training step of Adam, and 66% more
time than one training step of SGD (we used PyTorch’s implementations of Adam and SGD).

In our first experiment, we train an autoencoder with residual partitioning, Adam, and SGD. The
autoencoder has a D−64−2−64−D architecture, where D is the size of the input. All layers are
fully connected and use Tanh activations. The results are in Figure 1, in the Appendix. We observe
that although residual partitioning does not not always achieve the best training loss, it generally
overfits less compared to SGD and Adam and achieves the best validation loss on all three datasets.
We speculate that residual partitioning overfits less because it computes higher quality curvature in-
formation from the local second-order approximation than Adam does from an exponential moving
average of past gradients.

In our second experiment, we train a classifier network with residual partitioning, Adam, and
SGD. The classifier has a D− 400− 100− 36− 10 architecture. All layers are fully connected and
use softplus activations. The results are in Figures 2 and 3, in the Appendix. Residual partitioning
achieves noticeably worse cross-entropy error on all three datasets, and overfits much worse on
the CIFAR-10 dataset. However, residual partitioning achieves similar test accuracy on all three
datasets.

We speculate that the difference in performance of residual partitioning on the autoencoder task
versus the classification task is due to the inherent difference in network architecture: if residual
partitioning splits the residual amongst many parameter, Jensen’s inequality may yield too loose a
bound.

6. Conclusion

Adaptive gradient methods have found widespread use in the research community while interest
in second-order methods has languished. In this paper, we developed a second order method that
is computation efficient, memory efficient, remedies the problem of saddle points efficiently, and
provides strong theoretical guarantees. Deep residual partitioning accomplishes this goal by using
Jensen’s inequality to construct an upper bound on the objective function with a diagonal Hessian.
We demonstrate a clear advantage on autoencoder experiments, achieving better quality solutions
and a reduction in overfitting. While results on classification tasks are mixed, we believe that deep
residual partitioning presents a promising path to match the speed and efficiency of adaptive gradient
methods but with the theoretical advantages of second order methods.
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7. Appendix
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Figure 1: L2 loss achieved by training an autoencoder with each optimization algorithm with the
specified learning rate. Train loss is marked with circles, validation loss is marked with
exes. Note residual partitioning achieves the lowest validation loss in all three experi-
ments.
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Figure 2: Cross-entropy error and accuracy achieved by training a classifier network with each
optimization algorithm with the specified learning rate. Train statistics are marked with
circles, validation statistics are marked with exes.
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7.1. Bounding ` = L

In the main body of the paper, we briefly show how to construct L̃L using {ϕ(L)
si } when the loss

function is convex and its Hessian with respect to the network outputs is not diagonal. Here is the
same work, but without skipping steps. Here, � is componentwise multiplication and ei is the i-th
standard basis vector.

L =

S∑
s=1

f(ŷ(L)
s |xs) =

S∑
s=1

f(y(L)
s + ∆y(L)

s |xs) (12)

=

S∑
s=1

f

(
y(L)
s +

mL∑
i=1

∆y(L)
s � ei

∣∣∣∣∣xs

)
(13)

=
S∑

s=1

f

(
mL∑
i=1

ϕ
(L)
si

(
y(L)
s +

1

ϕ
(L)
si

∆y(L)
s � ei

)∣∣∣∣∣xs

)
(14)

≤
S∑

s=1

mL∑
i=1

ϕ
(L)
si f

(
y(L)
s +

1

ϕ
(L)
si

∆y(L)
s � ei

∣∣∣∣∣xs

)
(15)

7.2. Bounding ` = 1

We can bound through an affine layer at the top of the network using only {ε(`)
sij}, i.e., without

{ϕ(`))
sij }, since ∆y

(`)
sj = 0. First, bound ∆y

(`+1)
si

2:

∆y
(`+1)
si

2 =

 m∑̀
j=0

ε
(`)
sij

∆w
(`)
ij y

(`)
sj

ε
(`)
sij

2

≤
m∑̀
j=0

(∆w
(`)
ij y

(`)
sj )2

ε
(`)
sij

(16)

Applying this to each Y(`+1)
si term of L̃`+1 yields

S∑
s=1

m`+1∑
i=1

Y(`+1)
si ≤

m`+1∑
i=1

m∑̀
j=0

W(`)
ij (17)

Ẇ(`)
ij ≡

S∑
s=1

Ẏ(`+1)
si y

(`)
sj Ẅ(`)

ij ≡
S∑

s=1

Ÿ(`+1)
si y

(`)
sj

2

ε
(`)
sij

(18)

7.3. Proof of Theorem 2

Before we prove Theorem 2, let us prove a much simpler lemma that we will use extensively:

Lemma 3 Let {xi} be a set of n real numbers, and let {pi} be a set of n non-negative real numbers
that sum to one. Then the solution to the following constrained optimization problem is pi = p∗i :

min
{pi}

n∑
i=1

x2
i

pi
p∗i ≡

|xi|∑n
i′=1 |xi′ |

(19)
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Proof First, let us reparameterize pi by a set of unconstrained parameters ηi. Let {ηi} be a set of n
real numbers, and let

pi ≡
exp{ηi}∑n

i′=1 exp{ηi′}
(20)

We can solve the optimization problem by setting the gradient with respect to {ηi} to zero. We will
need the following partial derivatives:

∂pi
∂ηi

= pi(1− pi)
∂pi′

∂ηi
= −pipi′ if i′ 6= i (21)

Now the gradient of the objective is

∂

∂ηi

n∑
i′=1

x2
i′

pi′
=

n∑
i′=1

−
x2
i′

p2
i′

∂pi′

∂ηi
= pi

(
x2
i

p2
i

−
n∑

i′=1

pi′
x2
i′

p2
i′

)
(22)

The gradient is zero in particular when x2
i /p

2
i is constant across i: if x2

i /p
2
i = c, then

pi

(
x2
i

p2
i

−
n∑

i′=1

pi′
x2
i′

p2
i′

)
= pi

(
c−

n∑
i′=1

pi′c

)
= pi(c− c) = 0 (23)

Note x2
i /p

2
i is constant across i in particular when ηi = log |xi|, so pi = |xi|/

∑n
i′=1 |xi′ | and

x2
i

p2
i

=
x2
i

(|xi|/
∑n

i′=1 |xi′ |)2
=

(
n∑

i′=1

|xi′ |

)2

= c. (24)

Now let us use the lemma to prove the theorem:

Theorem 2 If ∆w
(`)
ij

2 is constant, the choice of partitioning variables that minimizes L̃1 is ε(`)
sij = ε∗

(`)
sij

and ϕ(`)
sij = ϕ∗

(`)
sij:

ε∗
(`)
sij =

|y(`)
sj |

u
(`+1)
si

ϕ∗
(`)
sij =

|w(`)
ij |u

(`)
sj

u
(`+1)
si

for 1 < ` < L, ` ∈ P (10)

where u(`)
si is calculated by a forward pass through the network:

u
(1)
si ≡ 0 u

(`+1)
si ≡

{
|σ̇`(y

(`)
sj )|u(`)

sj for activation layers `∑m`
j=0 |y

(`)
sj |+

∑m`
j=1 |w

(`)
ij |u

(`)
sj for affine layers `

(11)

Proof We will optimize over the partitioning variables one layer at a time working forwards. More
formally, we will prove the theorem by induction. To do this, we need to strengthen the inductive

11
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hypothesis by also proving the following holds for all ` ∈ {0} ∪ [L− 1], where const is a constant
with respect to all partitioning variables:

∑
`′∈P,`′≤`

m`′+1∑
i=1

m`′∑
j=0

Ẅ(`′)
ij =

S∑
s=1

m`+1∑
i=1

Ÿ(`+1)
si u

(`+1)
si

2 + const (25)

The base case ` = 0 is simple: the left hand side of (25) is zero since there are no terms to sum over,
and the right hand side is zero since u(1)

si ≡ 0. Now assume the inductive hypothesis (25) is true for
`− 1, and let us prove it holds for `.

Suppose layer ` is an affine layer. Then the left hand side of (25) has one additional term for `
compared to `− 1, which we can pull out before applying the inductive hypothesis (25):

∑
`′∈P,`′≤`

m`′+1∑
i=1

m`′∑
j=0

Ẅ(`′)
ij =

∑
`′∈P,`′≤`−1

m`′+1∑
i=1

m`′∑
j=0

Ẅ(`′)
ij +

m`+1∑
i=1

m∑̀
j=0

Ẅ(`)
ij (26)

=
S∑

s=1

m∑̀
j=1

Ÿ(`)
sj u

(`)
sj

2 +

m`+1∑
i=1

m∑̀
j=0

Ẅ(`)
ij + const (27)

If we are at the top of the network, i.e., ` = 1, then u(`)
sj ≡ 0 and plugging in the formula for Ẅ(`)

ij

(18) yields

S∑
s=1

m∑̀
j=1

Ÿ(`)
sj u

(`)
sj

2 +

m`+1∑
i=1

m∑̀
j=0

Ẅ(`)
ij (28)

=

m`+1∑
i=1

m∑̀
j=0

Ẅ(`)
ij (29)

=
S∑

s=1

m`+1∑
i=1

Ÿ(`+1)
si

m∑̀
j=0

y
(`)
sj

2

ε
(`)
sij

(30)

Since for each s ∈ [S] and i ∈ [m`+1] we have {ε(`)
sij} are non-negative and sum to one, they fulfill

the role of {pi} in our lemma. Applying the lemma, the optimal choice of {ε(`)
sij} is

ε∗
(`)
sij ≡

|y(`)
sj |∑m`

j′=1 |y
(`)
sj′ |

(31)

Using the formula for u(`+1)
si (11) and u(`)

sj ≡ 0 (since ` = 1), we can write this as

ε∗
(`)
sij ≡

|y(`)
sj |

u
(`+1)
si

(32)

Plugging this back into (30) yields

S∑
s=1

m`+1∑
i=1

Ÿ(`+1)
si

m∑̀
j=0

y
(`)
sj

2

ε
(`)
sij

=

S∑
s=1

m`+1∑
i=1

Ÿ(`+1)
si u

(`+1)
si

2 (33)

12
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and the inductive hypothesis holds. If layer ` is affine but we are not at the top of the network, i.e.,
` 6= 1, plugging the formulae for Ÿ(`)

sj and Ẅ(`)
ij (9) into (27) yields

S∑
s=1

m∑̀
j=1

Ÿ(`)
sj u

(`)
sj

2 +

m`+1∑
i=1

m∑̀
j=0

Ẅ(`)
ij (34)

=
S∑

s=1

m`+1∑
i=1

m∑̀
j=1

Ÿ(`+1)
si

w
(`)
ij

2

ϕ
(`)
sij

u
(`)
sj

2 +
S∑

s=1

m`+1∑
i=1

m∑̀
j=0

Ÿ(`+1)
si

y
(`)
sj

2

ε
(`)
sij

(35)

=
S∑

s=1

m`+1∑
i=1

Ÿ(`+1)
si

 m∑̀
j=1

(
w

(`)
ij u

(`)
sj

)
2

ϕ
(`)
sij

+

m∑̀
j=0

y
(`)
sj

2

ε
(`)
sij

 (36)

Since for each s ∈ [S] and i ∈ [m`+1] we have {ε(`)
sij} and {ϕ(`)

sij} are non-negative and together
sum to one, they fulfill the role of {pi} in our lemma. Applying the lemma, the optimal choice of
{ε(`)

sij} and {ϕ(`)
sij} is

ε∗
(`)
sij ≡

|y(`)
sj |∑m`

j′=0 |y
(`)
sj′ |+

∑m`
j′=1 |w

(`)
ij′ |u

(`)
sj′

ϕ∗
(`)
sij ≡

|w(`)
ij |u

(`)
sj∑m`

j′=0 |y
(`)
sj′ |+

∑m`
j′=1 |w

(`)
ij′ |u

(`)
sj′

(37)

Using the formula for u(`+1)
si (11) we can write this as

ε∗
(`)
sij ≡

|y(`)
sj |

u
(`+1)
si

ϕ∗
(`)
sij ≡

|w(`)
ij |u

(`)
sj

u
(`+1)
si

(38)

Plugging this back into (36) yields

S∑
s=1

m`+1∑
i=1

Ÿ(`+1)
si

 m∑̀
j=1

(
w

(`)
ij u

(`)
sj

)
2

ϕ
(`)
sij

+

m∑̀
j=0

y
(`)
sj

2

ε
(`)
sij

 =

S∑
s=1

m`+1∑
i=1

Ÿ(`+1)
si u

(`+1)
si

2 (39)

and the inductive hypothesis (25) holds.
If layer ` is an activation layer, then there are no additional terms on the left hand side for `

compared to `− 1, so ∑
`′∈P,`′≤`

m`′+1∑
i=1

m`′∑
j=0

Ẅ(`′)
ij =

∑
`′∈P,`′≤`−1

m`′+1∑
i=1

m`′∑
j=0

Ẅ(`′)
ij (40)

For the right hand side, we plug in the formula for Ÿ(`)
sj and the formula for u(`+1)

si (11) to get

S∑
s=1

m∑̀
j=1

Ÿ(`)
sj u

(`)
sj

2 =
S∑

s=1

m`+1∑
i=1

(
Ÿ(`+1)
si σ̇`(y

(`)
sj )2 + Ẏ(`+1)

si σ̈(y
(`)
sj )
)
u

(`)
sj

2 (41)

=

S∑
s=1

m`+1∑
i=1

Ÿ(`+1)
si σ̇`(y

(`)
sj )2u

(`)
sj

2 + const (42)

=
S∑

s=1

m`+1∑
i=1

Ÿ(`+1)
si u

(`+1)
si

2 + const (43)

13
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Putting (40) and (43) together gives the inductive hypothesis (25). There are no partitioning vari-
ables to optimize over in an activation layer, so we are done with this case.

Finally, if ` = L, the inductive hypothesis tells us

L̃1 =
∑
`∈P

m`′+1∑
i=1

m`′∑
j=0

Ẅ(`′)
ij =

S∑
s=1

mL∑
i=1

Ÿ(L)
si u

(L)
si

2 (44)

Plugging in the formula for Ÿ(L)
si yields

S∑
s=1

mL∑
i=1

Ÿ(L)
si u

(L)
si

2 =
S∑

s=1

mL∑
i=1

1

ϕ
(L)
si

∂2f(y
(L)
s |xs)

∂y
(L)
si

2
u

(L)
si

2 (45)

Since for each s ∈ [S] we have {ϕ(`)
si } are non-negative and sum to one, they fulfill the role of {pi}

in our lemma. Applying the lemma, the optimal choice of {ϕ(L)
si } is

ϕ∗
(`)
si ∝ |u

(L)
si |

√√√√∂2f(y
(L)
s |xs)

∂y
(L)
si

2
(46)
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Algorithm 1 One training step of residual partitioning.

INPUT: Network inputs {y(1)
s }.

INPUT: Network targets {xs}.
INPUT: Current weights {w(`)

ij }.
INPUT: Global learning rate λ > 0.
OUTPUT: Weight updates {∆w(`)

ij }.

for s ∈ [S], i ∈ [m1] do // Initialize Foward Pass
u

(0)
si ← 0

end for
for `← 1, . . . , L− 1 do // Foward Pass

for i ∈ [m`+1] do
if layer l is an affine layer then
u

(`+1)
si ←

∑m`
j=0 |y

(`)
sj |+

∑m`
j=1 |w

(`)
ij |u

(`)
sj

y
(`+1)
si ←

∑m`
j=0w

(`)
ij y

(`)
sj

else if layer l is an activation layer then
u

(`+1)
si ← |σ̇`(y

(`)
sj )|u(`)

sj

y
(`+1)
si ← σ(y

(`)
sj )

end if
end for

end for
for s ∈ [S], i ∈ [mL] do // Initialize Backward Pass

Ẏ(L)
si ←

∂f(y
(L)
s |xs)

∂y
(L)
si

Ÿ(L)
si u

(L)
si ←

√
∂2f(y

(L)
s |xs)

∂y
(L)
si

2

∑mL
i′=1 |u

(L)
si′ |
√

∂2f(y
(L)
s |xs)

∂y
(L)

si′
2

end for
for `← L− 1, . . . , 1 do // Backward Pass

if layer l is an affine layer then
for i ∈ [m`+1], j ∈ [m`] do
Ẇ(`)

ij ←
1
S

∑S
s=1 Ẏ

(`+1)
si y

(`)
sj

Ẅ(`)
ij ←

1
S

∑S
s=1 Ÿ

(`+1)
si u

(`+1)
si |y(`)

sj |
end for
for s ∈ [S], j ∈ [m`] do
Ẏ(`)
sj ←

∑m`+1

i=1 Ẏ
(`+1)
si w

(`)
ij

Ÿ(`)
sj ←

∑m`+1

i=1 Ÿ
(`+1)
si u

(`+1)
si |w(`)

ij |
end for

else if layer l is an activation layer then
for s ∈ [S], j ∈ [m`] do
Ẏ(`)
sj ← Ẏ

(`+1)
si σ̇`(y

(`)
sj )

Ÿ(`)
sj ← |Ÿ

(`+1)
si σ̇`(y

(`)
sj )2 + Ẏ(`+1)

si σ̈`(y
(`)
sj )|

end for
end if

end for
for ` ∈ P , i ∈ [m`+1], j ∈ {0} ∪ [m`] do // Return

∆w
(`)
ij ← −λ · Ẇ

(`)
ij /Ẅ

(`)
ij

end for
return {∆w(`)

ij }
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