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Abstract
Understanding the algorithmic regularization effect of stochastic gradient descent (SGD) is one
of the key challenges in modern machine learning and deep learning theory. Most of the existing
works, however, focus on very small or even infinitesimal learning rate regime, and fail to cover
practical scenarios where the learning rate is moderate and annealing. In this paper, we make an
initial attempt to characterize the particular regularization effect of SGD in the moderate learning
rate regime by studying its behavior for optimizing an overparameterized linear regression problem.
In this case, SGD and GD are known to converge to the unique minimum-norm solution; however,
with the moderate and annealing learning rate, we show that they exhibit different directional bias:
SGD converges along the large eigenvalue directions of the data matrix, while GD goes after the
small eigenvalue directions. Furthermore, we show that such directional bias does matter when
early stopping is adopted, where the SGD output achieves nearly optimal estimation error but the
GD output is only suboptimal.

1. Introduction

Stochastic gradient descent (SGD) and its variants play a key role in training deep learning models.
From the optimization perspective, SGD is favorable in many aspects, e.g., scalability for large-scale
models [13], parallelizability with big training data [9], and rich theory for its convergence [7, 8].
From the learning perspective, more surprisingly, overparameterized deep nets trained by SGD
usually generalize well, even in the absence of explicit regularizers [20, 34, 35]. This suggests that
SGD favors certain “good” solutions among the numerous global optima of the overparameterized
model. Such phenomenon is attributed to the implicit regularization effect of SGD. It remains one of
the key theoretical challenges to characterize the algorithmic bias of SGD, especially with moderate
and annealing learning rate as typically used in practice [13, 20].

In the small learning rate regime, the regularization effect of SGD is relatively well understood,
thanks to the recent advances on the implicit bias of gradient descent (GD) [1, 3, 6, 10–12, 17–
19, 23, 25–27, 31]. According to classical stochastic approximation theory [21], with a sufficiently
small learning rate, the randomness in SGD is negligible (which scales with learning rate), and as a
consequence SGD will behave highly similar to its deterministic counterpart, i.e., GD. Based on this
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fact, the regularization effect of SGD with small learning rate can be understood through that of GD.
Take linear models for example, GD has been shown to be biased towards max-margin/minimum-
norm solutions depending on the problem setups [1, 11, 31]; correspondingly, follow-ups show that
SGD with small learning rate has the same bias (up to certain small uncertainty governed by the
learning rate) [2, 11, 28].

However, the regularization theory for SGD with small learning rate cannot explain the ben-
efits of SGD in the moderate learning rate regime, where the initial learning rate is moderate
and followed by annealing [16, 22, 24, 29]. In particular, empirical studies show that, in the
moderate learning rate regime, (small batch) SGD generalizes much better than GD/large batch
SGD [15, 20, 34, 36]. This observation implies that, instead of imitating the bias of GD as in the
small learning rate regime, SGD in the moderate learning rate regime admits superior bias than
GD — it requires a dedicated characterization for the implicit regularization effect of SGD with
moderate learning rate.

In this paper, we reveal a particular regularization effect of SGD with moderate learning rate
that involves convergence direction. In specific, we consider an overparameterized linear regres-
sion model learned by SGD/GD. In this setting, SGD and GD are known to converge to the unique
minimum-norm solution [11] (see also Section 2.1). However, with a moderate and annealing learn-
ing rate, we show that SGD and GD favor different convergence directions: SGD converges along
the large eigenvalue directions of the data matrix; in contrast, GD goes after the small eigenvalue
directions. Furthermore, we show the particular directional bias of SGD with moderate learning
rate benefits generalization when early stopping is used. This is because converging along the large
eigenvalue directions (SGD) leads to solutions with nearly optimal estimation error, while con-
verging along the small eigenvalue directions (GD) can only give suboptimal solutions. To our
knowledge, these results initiate the regularization theory for SGD in the moderate learning rate
regime, and complement existing results for the small learning rate.

2. Preliminary

Let (x, y) ∈ Rd×R be a pair of d-dimensional feature vector and 1-dimensional label. We consider
a linear regression problem with square loss defined as `(x, y;w) := (w>x− y)2, where w ∈ Rd is
the model parameter. LetD be the population distribution over (x, y), then the test loss is LD(w) :=
E(x,y)∼D [`(x, y;w)] . Let S := {(xi, yi)}ni=1 be a training set of n data points drawn i.i.d. from the
population distributionD. Then the training/empirical loss is defined as the average of the individual
loss over all training data points, LS(w) := 1

n

∑n
i=1 `i(w), where `i(w) := `(xi, yi;w) = (w>xi−

yi)
2. We use {ηk} to denote a learning rate scheme (LR). Then gradient descent (GD) iteratively

performs the following update:

wk+1 = wk − ηk∇LS(wk) = wk −
2ηk
n

n∑
i=1

xi(x
>
i wk − yi). (GD)

Next we introduce mini-batch stochastic gradient descent (SGD). Let b be the batch size. For sim-
plicity suppose n = mb for an integer m (number of mini-batches). Then at each epoch, SGD first
randomly partitions the training set into m disjoint mini-batches with size b, and then sequentially
performs m updates using the stochastic gradients calculated over the m mini-batches. Specif-
ically, at the k-th epoch, let the mini-batch index sets be Bk1 ,Bk2 , . . . ,Bkm, where |Bkj | = b and
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⋃m
j=1 Bkj = {1, 2, . . . , n}, then SGD takes m updates as follows

wk,j+1 = wk,j−
ηk
b

∑
i∈Bkj

∇ `i(wk,j) = wk,j−
2ηk
b

∑
i∈Bkj

xi(x
>
i wk,j−yi), j = 1, . . . ,m. (SGD)

We also write wk+1 = wk,m+1 and wk = wk,1 to be consistent with notations in (GD).

2.1. The minimum-norm bias

Before presenting our results on the directional bias, let us first recap the well-known minimum-
norm bias for SGD/GD optimizing linear regression problem [4, 5, 11]. We rewrite the training loss
as LS(w) = 1

n

∥∥X>w − Y ∥∥2

2
, where X = (x1, . . . , xn) ∈ Rd×n and Y = (y1, . . . , yn)> ∈ Rn.

Then its global minima are given by W∗ :=
{
w ∈ Rd : Pw = PY

}
, where P is the projection

operator onto the data manifold, i.e., the column space of X . We focus on overparameterized cases
whereW∗ contains multiple elements.

Notice that every gradient∇ `i(w) = 2xi(x
>
i w−yi) is spanned in the data manifold, thus (GD)

and (SGD) can never move along the direction that is orthogonal to the data manifold. In other
words, (GD) and (SGD) implicitly admit the following hypothesis class:

HS =
{
w ∈ Rd : P⊥w = P⊥w0

}
, (1)

where w0 is the initialization and P⊥ = I − P is the projection operator onto the orthogonal
complement to the column space of X .

Putting things together, for any global optimum w ∈ W∗ (hence Pw = PY ), we have

‖w − w0‖22 = ‖Pw − Pw0‖22 + ‖P⊥w − P⊥w0‖22 = ‖PY − Pw0‖22 + ‖P⊥w − P⊥w0‖22 ,

where the right hand side is minimized when P⊥w = P⊥w0, i.e., w ∈ HS , thus w is the solution
found by SGD/GD in the non-degenerated cases (when the learning rate is set properly so that the
algorithms can find a global optimum). In sum, SGD/GD is biased to find the global optimum that
is closest to the initialization, which is referred as the “minimum-norm” bias in literature since the
initialization is usually set to be zero.

3. Main Theory

In this section we present our main theoretical results. The proofs are deferred to Appendix B.
We specify the population distribution of (x, y) ∈ Rd × R in the following manner: (1) we

consider the feature vector given by x = ζ · ξ, where ζ ∈ R1 is a magnitude random variable
that takes value in (0, 1], and ξ ∈ Rd is an angle random variable that follows a sphere uniform
distribution, i.e., ξ ∼ U(Sd−1); (2) we consider a realizable setting where the label is given by
y = w>∗ x, i.e., there exists a true parameter w∗ ∈ Rd that generates the label from the feature
vector. Then the test loss is LD(w) = E(x,y)∼D

[
(w − w∗)>xx>(w − w∗)

]
= µ ‖w − w∗‖22 ,

where µ = E[ζ]/d. For an i.i.d. generated training set S = {(xi, yi)}ni=1, the training loss and the
individual losses are

LS(w) = 1
n (w − w∗)>XX> (w − w∗), `i(w) = (w − w∗)> xix>i (w − w∗) , i = 1, . . . , n,
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where X = (x1, . . . , xn). We denote by P the projection operator onto the column space of X (the
data manifold). For i ∈ [n], we denote λi := ‖xi‖22. By the previous data generalization process, we
have λi ∈ (0, 1]. Without loss of generality, we assume {λi}i∈[n] are sorted in a descending order,
i.e., λ1 ≥ λ2 ≥ · · · ≥ λn. With the these preparations, we are ready to state our main theorems.

3.1. The directional bias of SGD

We first present Theorems 1 and 2 that characterize the different directional biases of SGD and GD
in the moderate learning rate regime.

Theorem 1 (The directional bias of SGD with moderate LR, informal) Suppose d ≥ poly (n),
λ1 > λ2 +o (1) and λn > o (1), where o (1) is a small positive constant depending on n/d, and the
initialization is away from w∗. Consider (SGD) with the following moderate learning rate scheme

ηk =

{
η ∈

(
b

λ1−o(1) ,
b

λ2+o(1)

)
, k = 1, . . . , k1;

η′ ∈
(
0, b

2λ1

)
, k = k1 + 1, . . . , k2.

(2)

Then for ε = o (1), there exist k1 > O (log(1/ε)) and k2, such that with high probability the output
of SGD wsgd satisfies

(1− ε) · γ1 ≤
(
P (wsgd − w∗)

)> ·XX> · P (wsgd − w∗
)

‖P (wsgd − w∗)‖22
≤ γ1, (3)

where γ1 is the largest eigenvalue of the data matrix XX>.

Theorem 2 (The directional bias of GD with moderate or small LR, informal) Suppose d ≥ poly (n),
λn−1 > λn + o (1) and λn > o (1), where o (1) is a small positive constant depending on n/d, and
the initialization is away from w∗. Consider (GD) with the following moderate or small learning
rate scheme

ηk ∈
(

0,
n

2λ1 + o (1)

)
, k = 1, . . . , k2. (4)

Then for any ε > 0, if k2 > O
(
log 1

ε

)
, then with high probability the output of GD wgd satisfies

γn ≤
(
P (wgd − w∗)

)> ·XX> · P (wgd − w∗
)

‖P (wgd − w∗)‖22
≤ (1 + ε) · γn, (5)

where γn is the smallest eigenvalue of the data matrix XX> restricted in the column space of X .

Remark 1 As the Rayleigh quotient (3) (resp. (5)) converges to its maximum (resp. minimum), the
vector gets closer to the eigenvector of the largest (resp. smallest) eigenvalue [32]. Thus Theorems 1
and 2 suggest that, when projected onto the data manifold, SGD and GD converge to the optimum
along the largest and smallest eigenvalue direction respectively. Here we are only interested in the
projection onto the data manifold, since SGD/GD cannot move along the direction that is orthogonal
to the data manifold as discussed in Section 2.1.
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Remark 2 We legitimately assume b < n/2 − o (1) since it is not very meaningful to discuss
SGD that uses more than (roughly) half of the training set as a mini-batch. Then the learning
rate schedule in (2) intersects with that in (4), i.e., (4) covers both moderate and small learning rate
schemes. And their intersection determines a moderate learning rate scheme, where SGD converges
along the large eigenvalue directions while GD goes after the small eigenvalue directions. This
justifies the regularization effect of SGD with moderate learning rate.

Remark 3 Technically, in Theorem 1 one can set b = n to include GD as a special case, so that
GD also follows the large eigenvalue directions. However, the initial learning rate in (2) needs to
be at least n

λ1
≥ n ignoring the small order term, which is way too large to be even numerically

stable in practical big data circumstances. The typical learning rate for GD falls into learning rate
schedule in (4). Thus it follows the small eigenvalue directions according to Theorem 2.

Note GD with small learning rate also converges along the small eigenvalue directions, since the
learning rate schedule in (4) covers the small learning rate scheme. In complement, the following
Theorem 3 shows that in the small learning rate regime, SGD is imitating GD and converges along
the small eigenvalue directions as well. Theorems 1, 2 and 3 together show that, converging along
the large eigenvalue directions is a distinct regularization effect that is unique to SGD with moderate
learning rate.

Theorem 3 (The directional bias of SGD with small LR, informal) Theorem 2 applies to (SGD)
with the following small learning rate scheme

ηk = η′ ∈
(

0,
b

2λ1 + o (1)

)
, k = 1, . . . , k2. (6)

3.2. Effects of the directional bias

Next we justify the benefit of the particular directional bias of SGD with moderate learning rate.
Recall the hypothesis classHS (Eq. (1)) for SGD and GD. Then for an algorithm with output walg,
we have the following generalization error decomposition [30],

LD(walg)− inf
w
LD(w) = LD(walg)− inf

w′∈HS
LD(w′)︸ ︷︷ ︸

∆(walg), estimation error

+ inf
w′∈HS

LD(w′)− inf
w
LD(w)︸ ︷︷ ︸

approximation error

.

The approximate error is an intrinsic error determined by the hypothesis class, and is not improvable
unless enlarging the hypothesis class. In contrast, the estimation error ∆(walg) is determined by
the algorithm as well as its hyperparameters. Thus, in the following theorem, we use the estimation
error to compare the generalization performance of the SGD and GD outputs in different learning
rate regimes.

Theorem 4 (Effects of the directional bias, informal) LetWα :=
{
w ∈ HS : LS(w) = α

}
be

an α-level set of the training loss LS(w). Let ∆∗α := infw∈Wα ∆(w) be the minimum estimation
error within the α-level setWα. Under the same conditions as Theorems 1 and 2, if b < n

2 − o (1),
then there exists k1 and k2 such that with high probability:
• The output of (SGD) with moderate LR (2) satisfies ∆(wsgd) < (1 + ε) · ∆∗α, where α is the

training loss of wsgd, and ε = o (1) is a small constant;
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• The output of (GD) with moderate or small LR (4) satisfies ∆(wgd) > M · ∆∗α, where α is the
training loss of wgd, and M = γ1/γn − o (1) > 1 is a constant;

• The output of (SGD) with small LR (6) satisfies ∆(wsgd) > M ·∆∗α, where α is the training loss
of wsgd, and M = γ1/γn − o (1) > 1 is a constant.

Remark 4 In practice it is usually intractable and unnecessary to achieve the exact global minima
of the training loss; instead we often early stop the algorithm once obtaining a small enough training
loss, i.e., reaching an α-level set. In this case, Theorem 4 guarantees SGD with moderate learning
is nearly optimal in terms of estimation error, but GD and SGD with small learning rate is only
suboptimal.

4. Conclusion

We characterize a distinct directional regularization effect of SGD with moderate learning rate,
where SGD converges along the large eigenvalue directions of the data matrix. In contrast, neither
GD nor SGD with small learning rate can achieve this effect. Moreover, we show this directional
bias benefits generalization when early stopping is adopted.
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Appendix A. Preliminary for Appendix

A.1. Additional notations

We adopt the notations and settings in main text. In addition we make the following notations.
For a vector x ∈ Rd, denote its direction as x̄ := x

‖x‖2
. For simplicity assume the training data

{x1, . . . , xn} are linear independent. For training data xi, i ∈ [n], we denote λi = ‖xi‖22, then by
construction we have λi ∈ (0, 1]. Without loss of generality let λ1 ≥ · · · ≥ λn. We define

X := (x1, . . . , xn) ∈ Rd×n,
X−1 := (x2, x3, . . . , xn) ∈ Rd×(n−1).

Then based on the above definitions, we define the following two projection operators

P = X(X>X)−1X>,

P⊥ = I − P.

Clearly for any v ∈ Rd, Pv projects v onto subspace span {x1, . . . , xn}, while P⊥v projects v onto
the orthogonal complement of span {x1, . . . , xn}. Furthermore we introduce two more projection
operators

P−1 = X−1(X>−1X−1)−1X>−1,

P1 = P − P−1 = I − P⊥ − P−1.

For any v ∈ Rd, P−1v projects v onto subspace span {x2, . . . , xn}, while P1v projects v into the
orthogonal complement of span {x2, . . . , xn} with respect to span {x1, . . . , xn}. In the following,
we often write the column space of P , which refers to

{
Pv : v ∈ Rd

}
, similarly for P−1, P1 and

P⊥ as well. Clearly the column space of P is also span {x1, . . . , xn}; the column space of P−1 is
also the data manifold span {x2, . . . , xn}. We highlight that the total space Rd can be decomposed
as the direct sum of the column space of P−1, P1 and P⊥, i.e., I = P−1 + P1 + P⊥. By definition,
it is easy to verify that

P⊥X = 0,

PX = X,

P1X = (P1x1, 0, . . . , 0) ,

P−1X = (P−1x1, x2, . . . , xn) .

Then we define the following matrices which will be repeatedly used in the subsequent proof.

H := XX>,

H−1 := (P−1X)(P−1X)>,

H1 := (P1X)(P1X)>,

Hc := (P−1x1)(P1x1)> + (P1x1)(P−1x1)>.

Based on the above definitions, it is easy to show that

H = (P1X + P−1X)(P1X + P−1X)>

= (P−1X)(P−1X)> + (P1X)(P1X)> + (P1X)(P−1X)> + (P−1X)(P1X)>

= H−1 +H1 +Hc.

9



THE DIRECTIONAL BIAS OF SGD

A.2. Lemmas

We present the following theorems and lemmas as preparation for our analysis.

Theorem [Gershgorin circle theorem, restated for symmetric matrix] Let A ∈ Rn×n be a symmet-
ric matrix. Let Aij be the entry in the i-th row and the j-th column. Let

Ri(A) :=
∑
j 6=i
|Aij | , i = 1, . . . , n.

Consider n Gershgorin discs

Di(A) := {z ∈ R, |z −Aii| ≤ Ri(A)} , i = 1, . . . , n.

The eigenvalues of A are in the union of Gershgorin discs

G(A) :=
n⋃
i=1

Di(A).

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that is disjoint
from the remaining n−k discs, thenGk(A) contains exactly k eigenvalues ofA, counted according
to their algebraic multiplicities.

Proof See, e.g., Horn and Johnson [14], Chap 6.1, Theorem 6.1.1.

Theorem [Hoffman-Wielandt theorem, restated for symmetric matrix] Let A,E ∈ Rn×n be sym-
metric. Let λ1, . . . , λn be the eigenvalues of A, arranged in decreasing order. Let λ̂1, . . . , λ̂n be the
eigenvalues of A+ E, arranged in decreasing order. Then

n∑
i=1

∣∣λ̂i − λi∣∣2 ≤ ‖E‖2F .
Proof See, e.g., Horn and Johnson [14], Chapter 6.3, Theorem 6.3.5 and Corollary 6.3.8.

Lemma 1 Let d ≥ 4 log(2n2/δ) for some δ ∈ (0, 1). Then with probability at least 1− δ, we have

|〈x̄i, x̄j〉| < ι := Õ
(

1√
d

)
, i 6= j.

Proof See Section C.1.

By Lemma 1 we can assume d ≥ poly (n) such that nι is sufficiently small depends on require-
ments.

The following two lemmas characterize the projected components of each training data onto the
column space of P1, P−1, and P⊥.

Lemma 2 For xj 6= x1, we have

10
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• P−1xj = xj ;

• P1xj = 0;

• P⊥xj = 0.

Proof These are by the construction of the projection operators.

Lemma 3 Assume
√
nι ≤ 1/4. With probability at least 1− δ, we have

• 0 ≤ ‖P−1x̄1‖2 ≤ 2
√
nι;

•
√

1− 4nι2 ≤ ‖P1x̄1‖2 ≤ 1;

• P⊥x1 = 0.

Proof See Section C.2.

The following four lemmas characterize the spectrum of the matrices H , H−1, H1 and Hc.

Lemma 4 Let γ1, . . . , γn be the n non-zero eigenvalues of H := XX> in decreasing order. then

λn − nι ≤ γ1, . . . , γn ≤ λ1 + nι.

Furthermore, if there exist λr and λr+1 such that λr > λr+1 + 2nι, then

λn − nι ≤ γr+1, . . . , γn ≤ λr+1 + nι < λr − nι ≤ γ1, . . . , γr ≤ λ1 + nι.

Proof See Section C.3.

Lemma 5 Assume λn ≥ 3nι. Consider the symmetric matrix H−1 := P−1X(P−1X)> ∈ Rd×d.

• 0 is an eigenvalue of H−1 with algebraic multiplicity being d − n + 1, and its corresponding
eigenspace is the column space of P1 + P⊥.

• Restricted in the column space of P−1, the n− 1 eigenvalues of H−1 belong to

(λn − nι, λ2 + nι).

Proof See Section C.4.

Lemma 6 Consider matrix H1 := P1X(P1X)> ∈ Rd×d. We have H1 has only one non-zero
eigenvalue, which belongs to

[λ1

(
1− 4nι2

)
, λ1].

Moreover, the corresponding eigenspace is the column space of P1, which is 1-dim.

11
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Proof Clearly H1 is rank-1 since the column space of P1 is 1-dim. Thus it has only one non-zero
eigenvalue, which is given by

tr(H1) =

n∑
i=1

‖P1xi‖22 = ‖P1x1‖22 ∈ [λ1

(
1− 4nι2

)
, λ1],

where the last equality follows from Lemma 3.

Lemma 7 Consider matrix Hc := (P−1x1)(P1x1)> + (P1x1)(P−1x1)> ∈ Rd×d.

‖Hc‖2 ≤ 2λ1 ‖P−1x̄1‖2 ≤ 4
√
nι.

Proof
‖Hc‖2 ≤ 2 ‖P−1x1‖2 · ‖P1x1‖2 ≤ 2λ1 ‖P−1x̄1‖2 ≤ 4

√
nι,

where the last equality follows from Lemma 3 and λ1 ≤ 1.

Appendix B. Missing Proofs for the Theorems in Main Text

B.1. The directional bias of SGD with moderate learning rate

Reloading notations Let πk :=
{
Bk1 , . . . ,Bkm

}
be a randomly chosen uniform m-partition of [n],

where n = mb. Then the SGD iterates at the k-th epoch can be formulated as:

wk,j+1 = wk,j −
2ηk
b

∑
i∈Bkj

xix
>
i (wk,j − w∗), j = 1, . . . ,m,

where we assume that the learning rate is fixed within each epoch. Note here πk is independently
and randomly chosen at each epoch. For simplicity we often ignore the epoch-indicator k, and write
the uniform partition as π := {B1, . . . ,Bm} . It is clear from context that π is random over epochs.
For a mini-batch Bj ∈ π, we denote H(Bj) :=

∑
i∈Bj xix

>
i .

Considering translating the variable by

v = w − w∗,

then we can reformulate the SGD update rule as

vk,j+1 = vk,j −
2ηk
b
H(Bj)vk,j =

(
I − 2ηk

b
H(Bj)

)
vk,j , j = 1, . . . ,m. (7)

Let

Mπ :=

m∏
j=1

(
I − 2ηk

b
H(Bj)

)

:=

(
I − 2ηk

b
H(Bm)

)
·
(
I − 2ηk

b
H(Bm−1)

)
· · ·
(
I − 2ηk

b
H(B1)

)
.

12
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Here the matrix production over a sequence of matrices
{
Mi ∈ Rd×d

}m
j=1

is defined from the left
to right with descending index,

m∏
j=1

Mj := Mm ×Mm−1 × · · · ×M1.

Let vk+1 = vk,m+1 and vk = vk,1. Then we can further reformulate Eq. (7) and obtain the epoch-
wise update of SGD as

vk+1 =

(
I − 2ηk

b
H(Bm)

)
·
(
I − 2ηk

b
H(Bm−1)

)
· · ·
(
I − 2ηk

b
H(B1)

)
· vk =Mπvk. (8)

In light of the notion of v, the following lemma restates the related notations of loss functions,
hypothesis class, level set, and estimation error defined in Section 2 and 3.

Lemma 8 (Reloading SGD notations) Regarding repramaterization v = w − w∗, we can reload
the following related notations:

• Empirical loss and population loss are

LS(v) =
1

n
(P1v)>H1(P1v) +

1

n
(P−1v)>H−1(P−1v) +

1

n
(Pv)>Hc(Pv),

LD(v) = µ ‖v‖22 .

• The hypothesis class is
HS =

{
v ∈ Rd : P⊥v = P⊥v0

}
.

• The α-level set is
V =

{
v ∈ HS : LS(v) = α

}
.

• For v ∈ HS , the estimation error is

∆(v) = µ ‖Pv‖22 .

Moreover,
∆∗ = inf

v∈V
∆(v) =

µnα

γ1
.

Proof See Section C.5.

Based on the above definitions, the following lemma characterizes the one-step update of SGD.

Lemma 9 (One step SGD update) Consider the j-th SGD update at the k-th epoch as given by
Eq. (7). Set the learning rate be constant η during that epoch. Then for j = 1, . . . ,m we have(

P1vk,j+1

P−1vk,j+1

)
=

(
I − 2η

b P1H(Bj)P1 −2η
b P1H(Bj)P−1

−2η
b P−1H(Bj)P1 I − 2η

b P−1H(Bj)P−1

)
·
(
P1vk,j
P−1vk,j

)
Moreover, if 1 /∈ Bj , i.e., x1 is not used in the j-the step, then(

P1vk,j+1

P−1vk,j+1

)
=

(
I 0

0 I − 2η
b P−1H(Bj)P−1

)
·
(
P1vk,j
P−1vk,j

)

13
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Proof See Section C.6.

Eq. (8) indicates the key to analyze the convergence of vk+1 is to characterize the spectrum of
the matrixMπ. In particular the following lemma bounds the spectrum ofMπ when projected onto
the column space of P−1.

Lemma 10 Suppose 3nι < λn. Suppose 0 < η < b
λ2+3nι . Let π := {B1, . . . ,Bm} be a uniform

m partition of index set [n], where n = mb. Consider the following d× d matrix

M−1 :=
m∏
j=1

(
I − 2η

b
P−1H(Bj)P−1

)
∈ Rd×d.

Then for the spectrum ofM>−1M−1 we have:

• 1 is an eigenvalue ofM>−1M−1 with multiplicity being d− n+ 1; moreover, the corresponding
eigenspace is the column space of P1 + P⊥.

• Restricted in the column space of P−1, the eigenvalues of M>−1M−1 are upper bounded by
(q−1(η))2 < 1, where

q−1(η) := max

{∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+
3nηι

b
,

∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+
3nηι

b

}
< 1.

Proof See Section C.7.

Consider the projections of vk onto the column space of P−1 and P1. For simplicity let

Ak := ‖P−1vk‖2 , Bk := ‖P1vk‖2 .

The following lemma controls the update of Ak and Bk.

Lemma 11 (Update rules for Ak and Bk) Suppose 3nι < λn. Suppose 0 < η < b
λ2+3nι . Con-

sider the k-th epoch of SGD iterates given by Eq. (8). Set the learning rate in this epoch to be
constant η. Denote

ξ(η) :=
4η
√
nι

b
,

q1(η) :=

∣∣∣∣1− 2ηλ1

b
‖P1x̄1‖22

∣∣∣∣ ,
q−1(η) := max

{∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+
3nηι

b
,

∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+
3nηι

b

}
< 1.

Then we have the following:

• Ak+1 ≤ q−1(η) ·Ak + ξ(η) ·Bk.

• Bk+1 ≤ q1(η) ·Bk + ξ(η) ·Ak.

• Bk+1 ≥ q1(η) ·Bk − ξ(η) ·Ak.

14
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Proof See Section C.8.

Note we can rephrase the update rules for Ak and Bk as(
Ak+1

Bk+1

)
≤
(
q−1(η) ξ(η)
ξ(η) q1(η)

)
·
(
Ak
Bk

)
,

where “≤” means “entry-wisely smaller than”.
The following two lemmas characterize the long run behaviors of Ak and Bk with different

learning rate.

Lemma 12 (The long run behavior of SGD with moderate LR) Suppose 3nι < λn, and λ2 +
4nι < λ1. Suppose v0 is far away from 0. Consider the first k1 epochs of SGD iterates given by
Eq. (8). Set the learning rate during this stage to be constant, i.e., ηk = η for 0 ≤ k < k1. Suppose

b

λ1 − 3
√
nι

< η <
b

λ2 + 3nι
.

Then for 0 < ε < 1 and 0 < β < β0 < B0 satisfying
√
nι ≤ poly (εβ) , there exists k1 ≥

O
(

log 1
εβ

)
such that

• Ak1 ≤ ε · β.

• Bk1 ≤ ‖Pv0‖2 · ρ
k1
1 + ε

2 · β = poly
(

1
εβ

)
.

• For all k = 0, 1, . . . , k1, Bk > β0.

Proof See Section C.9.

Lemma 13 (The long run behavior of SGD with small LR) Suppose 3nι < λn, and λ2 +4nι <
λ1. Suppose v0 is far away from 0. Consider another k2−k1 epochs of SGD iterates given by Eq. (8).
Set the learning rate to be constant during the updates, i.e., ηk = η′ for k1 ≤ k < k2. Suppose

0 < η′ <
b

2λ1
.

Consider the ε and β given in Lemma 12. Then for k ≥ k1, we have

• Ak ≤ ε · β.

• Bk ≤

{
q ·Bk−1, Bk−1 > β,

β, Bk−1 < β.
where q ∈ (0, 1) is a constant.

Proof See Section C.10.
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Theorem 5 (Theorem 1, formal version) Suppose 3nι < λn and λ2 + 4nι < λ1. Suppose v0 is
away from 0. Consider the SGD iterates given by Eq. (8) with the following moderate learning rate
scheme

ηk =

η ∈
(

b
λ1−3

√
nι
, b
λ2+3nι

)
, k = 1, . . . , k1;

η′ ∈
(

0, b
2λ1

)
, k = k1 + 1, . . . , k2.

Then for 0 < ε < 1 such that
√
nι ≤ poly (ε) , there exist k1 > O

(
log 1

ε

)
and k2 such that

(1− ε) · γ1 ≤
v>k2Hvk2

‖Pvk2‖
2
2

≤ γ1.

Proof We choose k1 and k2 as in Lemma 12 and Lemma 13 with β set as a small constant, then we
are guaranteed to have

Ak2 ≤ ε · β ≤ ε ·Bk2 ,

from where we have
‖P1vk2‖

2
2

‖Pvk2‖
2
2

=
B2
k2

A2
k2

+B2
k2

≥ 1

1 + ε2
≥ 1− ε2.

Then we have

v>k2Hvk2

‖Pvk2‖
2
2

=
(P1vk2)>H1(P1vk2)

‖Pvk2‖
2
2

+
(P−1vk2)>H−1(P−1vk2)

‖Pvk2‖
2
2

+
(Pvk2)>Hc(Pvk2)

‖Pvk2‖
2
2

≥ λ1

(
1− 4nι2

)
·
‖P1vk2‖

2
2

‖Pvk2‖
2
2

+ 0− 4
√
nι

≥ λ1(1− 4nι2) · (1− ε2)− 4
√
nι

≥ (γ1 − nι)(1− 4nι2) · (1− ε2)− 4
√
nι (since γ1 ≤ λ1 + nι by Lemma 4)

= γ1(1− 4nι2)(1− ε2)− nι(1− 4nι2)(1− ε2)− 4
√
nι

≥ γ1(1− 0.5ε)− 0.5γ1ε (since
√
nι ≤ poly (ε))

= γ1(1− ε).

Theorem 6 (Theorem 4 first part, formal version) Suppose 3nι < λn and λ2 + 4nι < λ1. Sup-
pose v0 is away from 0. Consider the SGD iterates given by Eq. (8) with the following moderate
learning rate schedule

ηk =

η ∈
(

b
λ1−3

√
nι
, b
λ2+3nι

)
, k = 1, . . . , k1;

η′ ∈
(

0, b
2λ1

)
, k = k1 + 1, . . . , k2.

Then for 0 < ε < 1 satisfying
√
nι ≤ poly (ε) , there exist k1 and k2 such that SGD outputs an

ε-optimal solution.
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Proof We set

β =

√
nα

γ1
, (9)

β0 =

√
nα

γn
> β, (10)

and apply Lemma 12 to choose a k1 such that

‖P−1vk1‖2 ≤ ε · β = ε ·
√
nα

γ1
; (11)

‖P1vk‖2 ≥ β0 =

√
nα

γn
, ∀ 0 ≤ k ≤ k1. (12)

Thus for all 0 ≤ k ≤ k1,

LS(vk) =
1

n
(Pvk)

>XX>(Pvk)

≥ γn
n
‖Pvk‖22 (γn is the smallest eigenvalue of XX> in the column space of P )

≥ γn
n
‖P1vk‖22

> α, (by Eq. (12))

which implies SGD cannot reach the α-level set during the iteration of first stage, i.e., SGD does
not terminate in this stage.

We thus consider the second stage. From Lemma 13 we know ‖P1vkn‖2 will keep decreasing
before being smaller than β, and ‖P−1vk‖2 stays small during this period, i.e., SGD fits P1v while
in the same time does not mess up P−1v. Mathematically speaking, there exists k2 and α such that

Ak2 := ‖P−1vk2‖2 ≤ ε · β = ε ·
√
nα

γ1
,

LS(vk2) = α,

which implies SGD terminates at the k2-th epoch. Then by Lemmas 3 and 8, we have

nα = nLS(vk2)

= (P1vk2)>H1(P1vk2) + (P−1vk2)>H2(P−1vk2) + (Pvk2)>Hc(Pvk2)

≥ (P1vk2n)>H1(P1vk2n)− ‖P−1x̄1‖22 · ‖Pvk2n‖
2
2

≥ (λ1 − nι)B2
k2 − 4nι2(A2

k2 +B2
k2)

≥ (γ1 − 3nι)B2
k2 − 4nι2A2

k2 ,

which yields

B2
k2 ≤

nα+ 4nι2A2
k2

γ1 − 3nι
≤
(

1 +
ε

2

)
· nα
γ1
.
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Then we can bound the estimation error as

∆(vk2) = µ ‖Pvk2‖
2
2

= µ(B2
k2 +A2

k2)

≤
(

1 +
ε

2

)
· µnα
γ1

+ ε2 · µnα
γ1

≤ (1 + ε) · µnα
γ1

= (1 + ε) ·∆∗,

where we use the fact that ∆∗ = µnα/γ1 from Lemma 8. Hence SGD is ε-near optimal.

B.2. The directional bias of GD with moderate or small learning rate

Reloading notations Denote the eigenvalue decomposition of XX> as

XX> = GΓG>, Γ := diag (γ1, . . . , γn, 0, . . . , 0) , G = (g1, . . . , gn, . . . , gd) ,

where G ∈ Rd×d is orthonormal, and γ1, . . . , γn are given by Lemma 4.
Clearly, span {g1, . . . , gn} = span {x1, . . . , xn} . Let

G‖ = (g1, . . . , gn) , G⊥ = (gn+1, . . . , gd) ,

then
P = G‖G

>
‖ , P⊥ = G⊥G

>
⊥.

Recall the GD iterates at the k-th epoch:

wk+1 = wk −
2ηk
n
XX> (wk − w∗) .

Considering translating then rotating the variable as,

u = G>(w − w∗),

then we can reformulate the GD iterates as

uk+1 = uk −
2ηk
n

Γuk =

(
I − 2ηk

n
Γ

)
uk. (13)

We present the following lemma to reload the related notations regarding the parameterization
u = G>(w − w∗).

Lemma 14 (Reloading GD notations) Regarding reparametrization u = G>(w − w∗), we can
reload the following related notations:

• Empirical loss and population loss are

LS(u) =
1

n

n∑
i=1

γi

(
u(i)
)2
, LD(u) = µ ‖u‖22 .

18
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• The hypothesis class is

HS =
{
u ∈ Rd : u(i) = u

(i)
0 , for i = n+ 1, . . . , d

}
.

• The α-level set is
U =

{
u ∈ Hu : LS(u) = α

}
.

• For u ∈ HS , the estimation error is

∆(u) = µ

n∑
i=1

(
u(i)
)2
.

Moreover,
∆∗ =

µnα

γ1
.

Proof See Section C.11.

The following lemma sovles GD iterates in Eq. (13).

Lemma 15 For t = 0, . . . , T ,

u
(i)
k =

{∏k−1
t=0

(
1− 2ηtγi

n

)
· u(i)

0 , 1 ≤ i ≤ n;

u
(i)
0 , n+ 1 ≤ i ≤ d.

Proof This is by directly solving Eq. (13) where Γ is diagonal.

Theorem 7 (Theorem 2, formal version) Suppose λn + 2nι < λn−1. Suppose u0 is away from
0. Consider the GD iterates given by Eq. (13) with learning rate scheme

ηk ∈
(

0,
n

2λ1 + 2nι

)
.

Then for ε ∈ (0, 1), if k ≥ O
(
log 1

ε

)
, then we have

γn ≤
u>k Γuk∑n
i=1

(
u

(i)
k

)2 ≤ (1 + ε) · γn.

Proof For i = 1, . . . , n, denote qi(η) = 1 − 2γi
n · η, where η ∈

(
0, n

2λ1+2nι

)
. Then we have

0 < qi(η) < 1 since
η <

n

2(λ1 + nι)
<

n

2γ1
≤ n

2γi
,

where the second inequality follows from γ1 < λ1 +nι by Lemma 4. Furthermore, since λn+nι <
λn−1 − nι, Lemma 4 gives us

0 < γn < γn−1 ≤ · · · ≤ γ1 < 1, (14)
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which implies
1 > qn(η) > qn−1(η) ≥ · · · ≥ q1(η) > 0. (15)

Moreover,

f(η) :=
qn−1(η)

qn(η)
=

1− 2γn−1

n η

1− 2γn
n η

is increasing, let q = maxη< n
2λ1+2nι

f(η), then q < 1 by our assumption on the learning rate.
From Lemma 15 we have

u
(i)
k =

k−1∏
t=0

qi(ηt) · u(i)
0 , i = 1, . . . , n. (16)

By the assumption that

k >
1

2
·

log
γnε(u

(n)
0 )2

γ1n
∑n
i=1

(
u
(i)
0

)2
log q

= O
(

1

ε

)
, (17)

we have ∑n
i=1

(
u

(i)
k

)2

(u
(n)
k )2

= 1 +
n−1∑
i=1

(u
(i)
k )2

(u
(n)
k )2

= 1 +

n−1∑
i=1

∏k−1
t=0 qi(ηt)

2 · (u(i)
0 )2∏k−1

t=0 qn(ηt)2 · (u(n)
0 )2

(by Eq. (16))

≤ 1 +

∑n
i=1

(
u

(i)
0

)2

(u
(n)
0 )2

·
n−1∑
i=1

k−1∏
t=0

qi(ηt)
2

qn(ηt)2

≤ 1 +

∑n
i=1

(
u

(i)
0

)2

(u
(n)
0 )2

· n ·
k−1∏
t=0

qn−1(ηt)
2

qn(ηt)2
(by Eq. (15))

≤ 1 +

∑n
i=1

(
u

(i)
0

)2

(u
(n)
0 )2

· n · q2k

≤ 1 +
γn
γ1
ε, (by Eq. (17))

which further yields

1 ≥
(u

(n)
k )2∑n

i=1

(
u

(i)
k

)2 ≥
1

1 + γn
γ1
ε
≥ 1− γn

γ1
ε. (18)
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By the above inequalities we have

u>k Γuk∑n
i=1

(
u

(i)
k

)2 =
n∑
i=1

(u
(i)
k )2∑n

i=1

(
u

(i)
k

)2 · γi

=
(u

(n)
k )2∑n

i=1

(
u

(i)
k

)2 · γn +
n−1∑
i=1

(u
(i)
k )2∑n

i=1

(
u

(i)
k

)2 · γi

≤ γn +

n−1∑
i=1

(u
(i)
k )2∑n

i=1

(
u

(i)
k

)2 · γ1 (by Eq. (14))

= γn +

1−
(u

(n)
k )2∑n

i=1

(
u

(i)
k

)2

 · γ1

≤ γn +
γn
γ1
ε · γ1 (by Eq. (18))

= γn · (1 + ε).

Finally we note that u>k Γuk∑n
i=1

(
u
(i)
k

)2 ≥ γn since γn is the smallest in {γi}ni=1.

Theorem 8 (Theorem 4 second part, formal version) Suppose λn + 2nι < λn−1. Suppose u0 is
away from 0. Consider the GD iterates given by Eq. (13) with learning rate scheme

ηk ∈
(

0,
n

2λ1 + 2nι

)
.

Then for ε ∈ (0, 1), if k ≥ O
(
log 1

ε

)
,, then GD outputs an M -suboptimal solution, where M =

γ1
γn

(1− ε) > 1 is a constant.

Proof Consider an α-level set where

α = LS(uk) =
1

n
u>k Γuk. (19)

From Lemma 15 we know LS(uk) is monotonic decreasing thus GD cannot terminate before the
k-epoch, i.e., the output of GD is uk.
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Thus

∆(u)

∆∗
= γ1

∑n
i=1

(
u

(i)
k

)2

nα
(by Lemma 14)

= γ1 ·

∑n
i=1

(
u

(i)
k

)2

u>k Γuk
(by Eq. (19))

≥ γ1 ·
1

(1 + ε)γn
(by Theorem 7)

≥ γ1

γn
(1− ε)

=: M,

where we have M > 1 by letting ε < 1− γn
γ1

.

B.3. The directional bias of SGD with small learning rate

We analyze SGD with small learning rate by repeating the arguments in previous two sections.
Let us denote X−n := (x1, x2, . . . , xn−1) and

P−n = X−n(X>−nX−n)−1X>−n

Pn = P − P−n.

That is, P−n is the projection onto the column space of X−n and Pn is the projection onto the
orthogonal complement of the column space of X−n with respect to the column space of X .

Let us reload

H := XX>,

H−n := (P−nX)(P−nX)>,

Hn := (PnX)(PnX)>,

Hc := (P−nxn)(Pnxn)> + (Pnxn)(P−nxn)>.

Then
H = H−n +Hn +Hc.

Following a routine check we can reload the following lemmas.

Lemma 16 (Variant of Lemma 10) Suppose 3nι < λn. Suppose 0 < η < b
λ1+3nι . Let π :=

{B1, . . . ,Bm} be a uniform m partition of index set [n], where n = mb. Consider the following
d× d matrix

M−n :=
m∏
j=1

(
I − 2η

b
P−nH(Bj)P−n

)
∈ Rd×d.

Then for the spectrum ofM>−nM−n we have:
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• 1 is an eigenvalue ofM>−nM−n with multiplicity being d− n+ 1; moreover, the corresponding
eigenspace is the column space of Pn + P⊥.

• Restricted in the column space of P−n, the eigenvalues of M>−nM−n are upper bounded by
(q−n(η))2 < 1, where

q−n(η) := max

{∣∣∣∣1− 2η

b
(λ1 + nι)

∣∣∣∣+
3nηι

b
,

∣∣∣∣1− 2η

b
(λn−1 − nι)

∣∣∣∣+
3nηι

b

}
< 1.

Proof This is by a routine check of the proof of Lemma 10.

Consider the projections of vk onto the column space of P−n and Pn. For simplicity we reload
the following notations

Ak := ‖P−nvk‖2 , Bk := ‖Pnvk‖2 .

The following lemma controls the update of Ak and Bk.

Lemma 17 (Variant of Lemma 11) Suppose 3nι < λn. Suppose 0 < η < b
λ1+3nι . Consider the

k-th epoch of SGD iterates given by Eq. (8). Set the learning rate in this epoch to be constant η.
Denote

ξ(η) :=
4η
√
nι

b
,

qn(η) :=

∣∣∣∣1− 2ηλn
b
‖Pnx̄n‖22

∣∣∣∣ ,
q−n(η) := max

{∣∣∣∣1− 2η

b
(λ1 + nι)

∣∣∣∣+
3nηι

b
,

∣∣∣∣1− 2η

b
(λn−1 − nι)

∣∣∣∣+
3nηι

b

}
< 1.

Then we have the following:

• Ak+1 ≤ q−n(η) ·Ak + ξ(η) ·Bk.

• Bk+1 ≤ qn(η) ·Bk + ξ(η) ·Ak.

• Bk+1 ≥ qn(η) ·Bk − ξ(η) ·Ak.

Proof This is by a routine check of the proof of Lemma 11.

Lemma 18 (Variant of Lemma 13) Suppose 3nι < λn and λn + 4nι < λn−1. Consider the SGD
iterates given by Eq. (8) with the following small learning rate scheme

ηk = η′ ∈
(

0,
b

2λ1 + 2nι

)
, k = 1, . . . , k2.

Then for 0 < ε < 1 satisfying
√
nι ≤ poly (ε) , if k2 ≥ O

(
log 1

ε

)
, then

Ak2
Bk2
≤ ε.
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Proof From the assumption we have η′ < b
2(λ1+nι) and η′ < b

2λn
, thus

ξ := ξ(η′) =
4η′
√
nι

b
,

qn := qn(η′) =

∣∣∣∣1− 2η′λn
b
‖Pnx̄n‖22

∣∣∣∣
= 1− 2η′λn

b
‖Pnx̄n‖22

≤ 1− 2λn(1− 4nι2)

b
η′, (since ‖Pnx̄n‖22 ≥ 1− 4nι2 by reloading Lemma 3 )

< 1

q−n := q−n(η′) = max

{∣∣∣∣1− 2η′

b
(λ1 + nι)

∣∣∣∣+
3nη′ι

b
,

∣∣∣∣1− 2η′

b
(λn−1 − nι)

∣∣∣∣+
3nη′ι

b

}
= max

{
1− 2η′

b
(λ1 + nι) +

3nη′ι

b
, 1− 2η′

b
(λn−1 − nι) +

3nη′ι

b

}
= 1− 2η′

b
(λn−1 − nι) +

3nη′ι

b

= 1− 2(λn−1 − nι)− 3nι

b
η′ ∈ (0, 1).

Moreover, by the gap assumption λn + 4nι < λn−1 we have

qn − q−n ≥ η′
(

2(λn−1 − nι)− 3nι

b
− 2λn(1− 4nι2)

b

)
≥ 2η′

b
(λn−1 − λn − 3nι)

> 0.

Therefore 0 < q−n < qn < 1. Thus we can set ξ = 4η′
√
nι

b to be small such that

0 < q :=
q−n

qn − ξ ·A0/B0
< 1. (20)

Moreover, since
√
nι ≤ poly (ε) and ξ = 4η′

√
nι

b , we have

ξ

qn − ξ ·A0/B0
≤ (1− q)ε

2
. (21)
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Now we recursively show Ak
Bk
≤ A0

B0
. Clearly it holds for k = 0. Suppose Ak

Bk
≤ A0

B0
, we consider

Ak+1

Bk+1
in the following

Ak+1

Bk+1
≤ q−n ·Ak + ξ ·Bk

qn ·Bk − ξ ·Ak
(by Lemma 17)

=
q−n · AkBk + ξ

qn − ξ · AkBk

≤
q−n

Ak
Bk

+ ξ

qn − ξ ·A0/B0
(by inductive assumption)

=
q−n

qn − ξ ·A0/B0

Ak
Bk

+
ξ

qn − ξ ·A0/B0

≤ q · Ak
Bk

+
(1− q)ε

2
(by Eq. (20) and (21))

≤ q · A0

B0
+

(1− q)ε
2

≤ A0

B0
,

where in the last inequality we assume ε
2 <

A0
B0

.
Moreover, from the above we have

Ak+1

Bk+1
≤ q · Ak

Bk
+

(1− q)ε
2

,

which implies

Ak2
Bk2
≤ qk2 · A0

B0
+

1

1− q
· (1− q)ε

2
,

≤ ε

2
+
ε

2
= ε,

where we set k2 ≥ O
(
log 1

ε

)
.

Next we prove the directional bias of SGD with small learning rate.

Theorem 9 (Theorem 3, formal version) Suppose 3nι < λn and λn + 4nι < λn−1. Suppose v0

is away from 0. Consider the SGD iterates given by Eq. (8) with the following small learning rate
scheme

ηk = η′ ∈
(

0,
b

2λ1 + 2nι

)
, k = 1, . . . , k2.

Then for 0 < ε < 1 satisfying
√
nι ≤ poly (ε) , if k2 ≥ O

(
log 1

ε

)
, then

γn ≤
v>k2Hvk2

‖Pvk2‖
2
2

≤ (1 + ε) · γn.
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Proof First by Lemma 18 we have

B2
k2

A2
k2

+B2
k2

=
1

A2
k2

B2
k2

+ 1
≥ 1

ε2 + 1
≥ 1− ε2. (22)

Next by H = Hn +H−n +Hc we obtain

v>k2Hvk2

‖Pvk2‖
2
2

=
(Pnvk2)>Hn(Pnvk2)

‖Pvk2‖
2
2

+
(P−nvk2)>H−n(P−nvk2)

‖Pvk2‖
2
2

+
(Pvk2)>Hc(Pvk2)

‖Pvk2‖
2
2

≤ λn ·
‖Pnvk2‖

2
2

‖Pvk2‖
2
2

+ (λ1 + nι) ·
‖P−nvk2‖

2
2

‖Pvk2‖
2
2

+ 4
√
nι by reloading Lemma 5, 6, 7

≤ λn + (λ1 + nι) ·
A2
k2

A2
k2

+B2
k2

+ 4
√
nι

≤ γn + nι+ (λ1 + nι) · ε2 + 4
√
nι by reloading Lemma 4 and Eq. (22)

≤ γn + γn · ε. since
√
nι ≤ poly (ε)

Finally, we note
v>k2

Hvk2

‖Pvk2‖
2

2

≥ γn since γn is the smallest eigenvalue of H restricted in the column

space of P .

Theorem 10 (Theorem 4 third part, formal version) Suppose 3nι < λn and λn + 4nι < λn−1.
Suppose v0 is away from 0. Consider the SGD iterates given by Eq. (8) with the following small
learning rate scheme

ηk = η′ ∈
(

0,
b

2λ1 + 2nι

)
, k = 1, . . . , k2.

Then for 0 < ε < 1 such that
√
nι ≤ poly (ε) , if k2 ≥ O

(
log 1

ε

)
, then SGD outputs an M -

suboptimal solution where M = γ1
γn

(1− ε) > 1 is a constant.

Proof From Eq. (8) and η′ < 1
2λ1

we know that restricted in the column space of P , the eigenvalues
ofMπ is smaller than 1, thus vk indeed converges to 0.

Consider an α-level set where

α = LS(vk) =
1

n
v>k2Hvk2 . (23)

Then

∆(u)

∆∗
= γ1

‖Pvk‖22
nα

(by Lemma 8)

= γ1 ·
‖Pvk‖22
v>k Hvk

(by Eq. (23))

≥ γ1 ·
1

(1 + ε)γn
(by Theorem 9)

≥ γ1

γn
(1− ε)

=: M,
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where we have M > 1 by letting ε < 1− γn
γ1

.

Appendix C. Proof of Auxiliary Lemmas in Sections A and B

C.1. Proof of Lemma 1

Proof [Proof of Lemma 1] Note that x̄i follows uniform distribution on the sphere Sd−1. Therefore,
let ξ be a random variable following distribution χ2

d distribution and define zi = ξ · x̄i, we have
zi follows standard normal distribution in the d-dimensional space. Then it suffices to prove that
|〈zi, zj〉|/(‖zi‖2‖zj‖2) ≤ ι for all i 6= j.

First we will bound the inner product 〈zi, zj〉. Note that we have each entry in zi is 1-subgaussian,
it can be direcly deduced that

〈zi, zj〉 =

d∑
k=1

z
(k)
i z

(k)
j =

d∑
k=1

(z(k)
i + z

(k)
j

2

)2

−

(
z

(k)
i − z

(k)
j

2

)2


is d-subexponential, where z(k)
i denotes the k-th of the vector zi. Then if follows that

P (|〈zi, zj〉| ≥ t) ≤ 2 exp

(
− t

2

d

)
.

Next we will lower bound ‖zi‖2. Note that

‖zi‖22 − d =
d∑

k=1

((
z

(k)
i

)2
− 1

)
.

Since z(k)
i is 1-subgaussian, we have ‖zi‖2 − d is d-subexpoential, then

P
(∣∣∣‖zi‖22 − d∣∣∣ ≥ t) ≤ 2 exp

(
− t

2

d

)
.

Finally, applying the union bound for all possible i, j ∈ [n], we have with probability at least 1− δ,
the following holds for all i 6= j,

|〈zi, zj〉| ≤
√
d log

2n2

δ
,

‖zi‖22 ≥ d−
√
d log

2n2

δ
.

Assume d ≥ 4 log(2n2/δ), we have ‖zi‖2 ≥ d/2. Then it follows that

|〈x̄i, x̄j〉| =
|〈zi, zj〉|
‖zi‖2‖zj‖2

< 2

√
1

d
log

2n2

δ
=: ι.

This completes the proof.
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C.2. Proof of Lemma 3

Proof [Proof of Lemma 3] Similar to the proof of Lemma 1, we consider translating x1, . . . , xn
to z1, . . . , zn by introducing χ2

d random variables. Let Z−1 = (z2, . . . , zn) ∈ Rd×(n−1), in which
each entry is i.i.d. generated from Gaussian distribution N (0, 1). Then we have

P−1x̄1 = X−1(X>−1X−1)−1X>−1x̄1 = Z−1(Z>−1Z−1)−1Z>−1x̄1.

Then conditioned on x̄1, we have each entry in Z>−1x̄1 i.i.d. follows N (0, 1). Then it is clear that
‖Z>−1x̄1‖22 follows from χ2

n−1 distribution, implying that with probability at least 1− δ′, we have

‖Z>−1x̄1‖22 ≤ (n− 1) +
√

(n− 1) log(2/δ′).

Then by Corollary 5.35 in Vershynin [33], we know that with probability at least 1− δ′ it holds that
√
d−
√
n− 1−

√
2 log(2/δ′) ≤ σmin(Z−1) ≤ σmax(Z−1) ≤

√
d+
√
n− 1 +

√
2 log(2/δ′).

Therefore, assume
√

(n− 1) +
√

2 log(2/δ′) ≤
√
d/8, we have with probability at least 1− δ′

∥∥∥Z−1(Z>−1Z−1)−1
∥∥∥

2
≤
√
d+
√
n− 1 +

√
2 log(2/δ′)(√

d−
√
n− 1−

√
2 log(2/δ′)

)2

≤ 1√
d

(
1 + 4

(√
n− 1

d
+

√
2 log(2/δ′)

d

))
.

Combining with the upper bound of ‖Z>−1x̄1‖2, set δ′ = δ/2, we have with probability at least 1−δ
that

‖P−1x̄1‖2 ≤
∥∥∥Z−1(Z>−1Z−1)−1

∥∥∥
2
· ‖X>−1x̄1‖2

≤

(
1 + 4

(√
n− 1

d
+

√
2 log(4/δ)

d

))
·

√n− 1

d
+

√√
(n− 1) log(4/δ)

d


≤ (1 + 4

√
nι) ·

√
nι,

where the last inequality follows from the definition of ι. Then assume
√
nι ≤ 1/4, we are able to

completes the proof of the first argument. Note that ‖P1x̄1‖22 + ‖P−1x̄1‖22 = ‖x̄1‖22 = 1, we have

‖P−1x̄1‖2 =
√

1− ‖P1x̄1‖22 ≥
√

1− 4nι2 ≥ 1− 4nι2.

This completes the proof of the second argument. The third argument holds trivially by the con-
struction of P⊥.
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C.3. Proof of Lemma 4

Proof [Proof of Lemma 4] Clearly XX> ∈ Rd×d is of rank n and symmetric, thus XX> has
n real, non-zero (potentially repeated) eigenvalues, denoted as γ1, . . . , γn in non-decreasing order.
Moreover, γ1, . . . , γn are also eigenvalues of X>X ∈ Rn×n, thus it is sufficient to locate the
eigenvalues of X>X , where

(
X>X

)
ij

= x>i xj .
We first calculate the diagonal entry(

X>X
)
ii

= x>i xi = λi.

Then we bound the off diagonal entries. For j 6= i,(
X>X

)
ij

= x>i xj =
√
λiλj〈x̄i, x̄j〉 ∈ (−ι, ι) ,

where we use 0 < λ1, . . . , λn ≤ 1. Thus we have

Ri(X
>X) =

∑
j 6=i

∣∣∣∣(X>X)ij
∣∣∣∣ ≤ nι, i = 1, . . . , n,

Finally our conclusions hold by applying Gershgorin circle theorem.

C.4. Proof of Lemma 5

Proof [Proof of Lemma 5] The first conclusion is clear since by construction, we have P−1P1 =
P−1P⊥ = 0.

Note thatH−1 is a rank n−1 symmetric matrix. Let τ2, . . . , τn be the n−1 non-zero eigenvalues
of H−1. Clearly, τ2, . . . , τn with τ1 := 0 give the spectrum of

H ′−1 := (P−1X)>P−1X ∈ Rn×n.

We then bound τ2, . . . , τn by analyzing H ′−1.
From Lemma 3 we have ‖P−1x̄1‖2 ≤ 2

√
nι. From Lemma 2 we have

P−1X = (P−1x1, P−1x2, . . . , P−1xn) = (P−1x1, x2, . . . , xn) .

Then we calculate the diagonal entries:(
H ′−1

)
ii

=

{
‖P−1x1‖22 ≤ λ1 · 4nι2 ≤ 4nι2, i = 1;

‖xi‖22 = λi, i 6= 1.

Then we bound the off diagonal entries. Let j 6= i. Then at least one of them is not 1. Without loss of
generality let i 6= 1, which yields xi = P−1xi by Lemma (2). Thus 〈xi, P1xj〉 = 〈P−1xi, P1xj〉 =
0. Thus we have (

H ′−1

)
ij

= (P−1xi)
>P−1xj

= x>i P−1xj

= x>i xj − x>i P1xj

= x>i xj

=
√
λiλj · 〈x̄i, x̄j〉

∈ (−ι, ι) .
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Thus we have
Ri(H

′
−1) =

∑
j 6=i

∣∣∣(H ′−1

)
ij

∣∣∣ ≤ nι, i = 1, . . . , n.

Finally, we set 4nι2 + 2nι < λn, so that the first Geoshgorin disc does not intersect with the others,
then Gershgorin circle theorem gives our second conclusion.

C.5. Proof of Lemma 8

Proof [Proof of Lemma 8] For the empirical loss, it is clear that

LS(v) =
1

n
(w − w∗)>XX> (w − w∗) =

1

n
v>XX>v =

1

n
v>Hv

=
1

n
(Pv)>H(Pv)

=
1

n
(Pv)>H1(Pv) +

1

n
(Pv)>H−1(Pv) +

1

n
(Pv)>Hc(Pv)

=
1

n
(P1v)>H1(P1v) +

1

n
(P−1v)>H−1(P−1v) +

1

n
(Pv)>Hc(Pv),

where we use Lemma 4, Lemma 5, and Lemma 6. For the population loss,

LD(v) = µ ‖w − w∗‖22 = µ ‖v‖22 .

For the hypothesis class HS =
{
w ∈ Rd : P⊥w = P⊥w0

}
, applying w − w∗ = v and

w0 − w∗ = v0, we obtain
HS =

{
v ∈ Rd : P⊥v = P⊥v0

}
.

For the α-level set, we note the optimal training loss is L∗S = infv∈HS LS(v) = 0.
As for the estimation error, we note that infv∈HS LD(v) = infP⊥v=P⊥v0 µ ‖v‖

2
2 = µ ‖P⊥v0‖22 .

thus for v ∈ HS , we have

∆(v) = LD(v)− inf
v′∈V

LD(v′) = µ ‖v‖22 − µ ‖P⊥v0‖22 = µ ‖Pv‖22 .

Finally, consider v ∈ V , i.e., nα = v>XX>v, thus

∆∗ = inf
v∈V

∆(v) = inf
nα=v>XX>v

µ ‖Pv‖22 =
µnα

γ1
,

where γ1 is the largest eigenvalue of the matrix XX> and the inferior is attended by setting v
parallel to the first eigenvector of XX>.

C.6. Proof of Lemma 9

Proof [Proof of Lemma 9] From Eq. (7) we have

vk,j+1 =

(
I − 2η

b
H(Bj)

)
vk,j , j = 1, . . . ,m. (24)
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Recall the following property of projection operators:

P1 = P1P1, P−1 = P−1P−1

0 = P1P−1 = P−1P1.

Moreover since x>i P⊥v = 0, we have

H(Bj)P⊥v =
∑
i∈Bj

xix
>
i P⊥v = 0.

Applying P1 to Eq. (24) we have

P1vk,j+1 = P1

(
I − 2η

b
H(Bj)

)
vk,j

= P1

(
I − 2η

b
H(Bj)

)
(P1vk,j + P−1vk,j + P⊥vk,j)

= P1

(
I − 2η

b
H(Bj)

)
P1vk,j + P1

(
I − 2η

b
H(Bj)

)
P−1vk,j

=

(
I − 2η

b
P1H(Bj)P1

)
· P1vk,j −

(
2η

b
P1H(Bj)P−1

)
· P−1vk,j .

Similarly applying P−1 to Eq. (24) we have

P−1vk,j+1 = P−1

(
I − 2η

b
H(Bj)

)
vk,j

= P−1

(
I − 2η

b
H(Bj)

)
(P1vk,j + P−1vk,j + P⊥vk,j)

= P−1

(
I − 2η

b
H(Bj)

)
P1vk,j + P−1

(
I − 2η

b
H(Bj)

)
P−1vk,j

= −
(

2η

b
P−1H(Bj)P1

)
· P1vk,j +

(
I − 2η

b
P−1H(Bj)P−1

)
· P−1vk,j .

To sum up we have(
P1vk,j+1

P−1vk,j+1

)
=

(
I − 2η

b P1H(Bj)P1 −2η
b P1H(Bj)P−1

−2η
b P−1H(Bj)P1 I − 2η

b P−1H(Bj)P−1

)
·
(
P1vk,j
P−1vk,j

)
Notice that if 1 /∈ Bj , i.e., x1 is not used in the j-th step, then we claim

P1H(Bj) = H(Bj)P1 = 0,

sinceH(Bj) =
∑

i∈Bj xix
>
i is composed by the data belonging to the column space of P−1. There-

fore if 1 /∈ Bj we have(
P1vk,j+1

P−1vk,j+1

)
=

(
I 0

0 I − 2η
b P−1H(Bj)P−1

)
·
(
P1vk,j
P−1vk,j

)
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C.7. Proof of Lemma 10

Proof [Proof of Lemma 10] Clearly for each component in the production, the column space of
P1 +P⊥, which is (n− d+ 1)-dimensional, belongs to its eigenspace of eigenvalue 1, which yields
the first claim.

In the following, we restrict ourselves in the column space of P−1. Let us expandM−1:

M−1 =
m∏
j=1

(
I − 2η

b
P−1H(Bj)P−1

)
=
(
I − 2η

b
P−1H(Bm)P−1

)
· · ·
(
I − 2η

b
P−1H(B1)P−1

)
= I − 2η

b

m∑
j=1

P−1H(Bj)P−1︸ ︷︷ ︸
H−1

+

(
2η

b

)2 ∑
1≤i<j≤n

P−1H(Bj)P−1H(Bi)P−1 + . . .

︸ ︷︷ ︸
C

.

We first analyze matrixH−1. SinceH(Bj) =
∑

i∈Bj xix
>
i and π = {B1, . . . ,Bm} is a partition

for index set [n], we have

H−1 =
m∑
j=1

P−1H(Bj)P−1

=
m∑
j=1

P−1

∑
i∈Bj

xix
>
i P−1

= P−1

n∑
i=1

xix
>
i P−1

= P−1XX
>P−1,

which is exactly the matrix we studied in Lemma 5, and from where we have H−1 has eigenvalue
zero (with multiplicity being n−d+1) in the column space of P1 +P⊥, and restricted in the column
space of P−1, the eigenvalues of H−1 belong to (λn − nι, λ2 + nι).

Then we analyze matrix C.

P−1H(Bj)P−1H(Bi)P )−1 =

P−1

∑
i′∈Bi

xi′x
>
i′P−1

P−1

∑
j′∈Bj

xj′x
>
j′P−1


=
∑
i′∈Bi

∑
j′∈Bj

(P−1xi′)〈P−1xi′ , P−1xj′〉(P−1xj′)
>. (25)

Remember that Bi ∩ Bj = ∅ for i 6= j, thus xi′ 6= xj′ for i′ ∈ Bi and j′ ∈ Bj . Then from Lemma 1
we have, ∣∣〈P−1xi′ , P−1xj′〉

∣∣ ≤ ∣∣〈xi′ , xj′〉∣∣ ≤√λi′λj′ · ι ≤ ι.
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Inserting this into Eq. (25) we obtain

‖P−1H(Bj)P−1H(Bi)P )−1‖F ≤ b
2 ·max

∣∣〈P−1xi′ , P−1xj′〉
∣∣2 ≤ b2ι2.

We can bound the Frobenius norm of the higher degree terms in matrix C in a similar manner; in
sum for the Frobenius norm of C, we have

‖C‖F ≤
m∑
s=2

(
2η

b

)s
· bs · ιs ·

(
m

s

)

=
m∑
s=2

(2ηι)s ·
(
n

s

)

=

m∑
s=0

(2ηι)s ·
(
n

s

)
− 1− 2mηι

= (1 + 2ηι)m − 1− 2mηι

≤ 1 +m · 2ηι+
m2√e

2
· (2ηι)2 − 1− 2mηι (for 2ηι <

1

2m
)

≤ 4m2η2ι2,

where for the second to the last inequality we notice that for f(t) = (1 + t)m and t ∈ [0, 1
2n ], we

have f
′′
(t) = m(m−1)(1+t)m−2 ≤ m(m−1)(1+ 1

2m)m−2 ≤ m(m−1) ·
√
e,which implies f(t)

is (m2√e)-smooth for t ∈ [0, 1
2m ]; moreover, by the assumption that 3nι < λn and η < b

λn+3nι ,
we can indeed verify that

2ηι <
2bι

λn + 3nι
≤ 2bι

6nι
≤ 1

2m
. (26)

Now we rephraseM>−1M−1 as

M>−1M−1 =

(
I − 2η

b
H−1 + C>

)
·
(
I − 2η

b
H−1 + C

)
=

(
I − 2η

b
H−1

)2

+ C>
(
I − 2η

b
H−1

)
+

(
I − 2η

b
H−1

)
C + C>C︸ ︷︷ ︸

D

. (27)

Restricting ourselves in the column space ofP−1, the eigenvalues ofH−1 belong to (λn − nι, λ2 + nι),

thus the eigenvalues of
(
I − 2η

b H−1

)2
are upper bounded by

max

{(
1− 2η

b
(λ2 + nι)

)2

,

(
1− 2η

b
(λn − nι)

)2
}
< 1, (28)

where the last inequality is guaranteed by our assumptions on η and ι. For simplicity we defer the
verification to the end of the proof.

Consider the following eigen decomposition I−2ηH−1 = U diag (µ1, . . . , µn−1, 1, . . . , 1)U>,
where µ1, . . . , µn−1 ∈ (−1, 1) by Eq. (28). Then we have

‖(I − ηH−1)C‖F =
∥∥∥diag (µ1, . . . , µn−1, 1, . . . , 1)U>CU

∥∥∥
F

≤
∥∥∥U>CU∥∥∥

F
= ‖C‖F .
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Therefore we can bound the Frobenius norm of D by

‖D‖F ≤ 2 ‖(I − 2ηH−1)C‖F + ‖C‖2F
≤ 2 ‖C‖F + ‖C‖2F
≤ 8m2η2ι2 + 16m4η4ι4

≤ 9m2η2ι2, (29)

where the last inequality follows from 2ηι ≤ 1/(2m) proved in Eq. (26).
Finally, applying Hoffman-Wielandt theorem with Eq. (27), (28) and (29), we conclude that,

restricted in the column space of P−1, the eigenvalues ofM>−1M−1 are upper bounded by

max

{(
1− 2η

b
(λ2 + nι)

)2

+ 9m2η2ι2,

(
1− 2η

b
(λn − nι)

)2

+ 9m2η2ι2

}

≤ max

{(∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+ 3mηι

)2

,

(∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+ 3mηι

)2
}

:= (q−1(η))2 . (30)

At this point we left to verify Eq. (28) and

q−1(η) := max

{∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+
3nηι

b
,

∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+
3nηι

b

}
< 1. (31)

Clearly it suffices to verify Eq. (31).∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+
3nηι

b
< 1

⇔ 3nι

b
η − 1 < 1− 2(λ2 + nι)

b
η < 1− 3nι

b
η

⇔

{
2λ2−nι

b η > 0
2λ2+5nι

b η < 2

⇐


η > 0

2λ2 − nι > 0

η < b
λ2+2.5nι

⇐

{
3nι < λn (since λ2 ≥ λn)
0 < η < b

λ2+3nι
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Similarly, we verify that ∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+
3nηι

b
< 1

⇔ 3nι

b
η − 1 < 1− 2(λn − nι)

b
η < 1− 3nι

b
η

⇔

{
2λn−5nι

b η > 0
2λn+nι

b η < 2

⇐


η > 0

2λn − 5nι > 0

η < b
λn+0.5nι

⇐

{
3nι < λn

0 < η < b
λ2+3nι (since λ2 ≥ λn)

These complete our proof.

C.8. Proof of Lemma 11

Proof [Proof of Lemma 11]
Note that during one epoch of SGD updates, x1 is used for only once. Without loss of generality,

assume SGD uses x1 at the l-th step, i.e., 1 ∈ Bl and 1 /∈ Bj for j 6= l. Recursively applying
Lemma 9, we have(

P1vk,m+1

P−1vk,m+1

)
=

(
I 0

0
∏m
j=l+1

(
I − 2η

b P−1H(Bj)P−1

))×(
I − 2η

b P1H(Bl)P1 −2η
b P1H(Bl)P−1

−2η
b P−1H(Bl)P1 I − 2η

b P−1H(Bj)P−1

)
×(

I 0

0
∏l−1
j=1

(
I − 2η

b P−1H(Bj)P−1

))× ( P1vk,1
P−1vk,1

)
Let vk+1 = vk,m+1, vk = vk,1 and

Ml := I − 2η

b
P−1H(Bl)P−1

M>l :=
m∏

j=l+1

(
I − 2η

b
P−1H(Bj)P−1

)

M<l :=
l−1∏
j=1

(
I − 2η

b
P−1H(Bj)P−1

)

M−1 :=M>l · Ml · M<l =

m∏
j=1

(
I − 2η

b
P−1H(Bj)P−1

)
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then we have(
P1vk+1

P−1vk+1

)
=

(
I 0
0 M>l

)(
I − 2η

b P1H(Bl)P1 −2η
b P1H(Bl)P−1

−2η
b P−1H(Bl)P1 Ml

)(
I 0
0 M<l

)(
P1vk
P−1vk

)

=

 I − 2η
b P1H(Bl)P1 −

(
2η
b P1H(Bl)P−1

)
M<l

−M>l

(
2η
b P−1H(Bl)P1

)
M−1

( P1vk
P−1vk

)
(32)

In the following we bound the norm of each entries in the above coefficient matrix.
According to Lemma 5, we have the eigenvalues of P−1H(Bj)P−1 are upper bounded by λ2 +

nι. Thus the assumption η < b
λ2+2nι yields∥∥∥∥I − 2η

b
P−1H(Bj)P−1

∥∥∥∥
2

≤ 1,

which further yields
‖M>l‖2 ≤ 1, ‖M<l‖2 ≤ 1. (33)

On the other hand notice that P1xi = 0 for i 6= 1, thus

P1H(Bl)P−1 = P1

∑
i∈Bl

xix
>
i P−1 = P1x1x

>
1 P−1,

P−1H(Bl)P1 = P−1

∑
i∈Bl

xix
>
i P1 = P−1x1x

>
1 P1,

which yield

max {‖P1H(Bl)P−1‖2 , ‖P−1H(Bl)P1‖2} ≤ ‖P1x1‖2 · ‖P−1x1‖2 ≤ 2
√
nι, (34)

where the last inequality is from Lemma 3 and λ1 = ‖x1‖2 ≤ 1. Eq. (33) and (34) imply

max

{∥∥∥∥(2η

b
P1H(Bl)P−1

)
M<l

∥∥∥∥
2

,

∥∥∥∥M>l

(
2η

b
P−1H(Bl)P1

)∥∥∥∥
2

}
≤ 4η

√
nι

b
=: ξ(η) (35)

Next, by P1xi = 0 for i 6= 1 we have

P1H(Bl)P1 = P1

∑
i∈Bl

xix
>
i P1 = P1x1x

>
1 P1 = (P1x1)(P1x1)>,

from where we know ‖P1x1‖22 is the only non-zero eigenvalue of the rank-1 matrix P1H(Bl)P1, and
the corresponding eigenspace is the column space of P1. Therefore 1− 2η

b ‖P1x1‖22 is an eigenvalue
of the matrix I− 2η

b P1H(Bl)P1, and the corresponding eigenspace is the column space of P1, which
implies ∥∥∥∥(I − 2η

b
P1H(Bl)P1

)
P1vk

∥∥∥∥
2

=

∥∥∥∥(1− 2η

b
‖P1x1‖22

)
P1vk

∥∥∥∥
=

∣∣∣∣1− 2η

b
‖P1x1‖22

∣∣∣∣ · ‖P1vk‖2

=: q1(η) · ‖P1vk‖2 . (36)
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Finally, according to Lemma 10, we have, restricted in the column space of P−1, the right
eigenvalues ofM−1 is upper bounded by (q−1(η))2 , which implies

‖M−1P−1vk‖2 ≤ q−1(η) · ‖P−1vk‖2 . (37)

Note we have q−1(η) < 1 by Lemma 10.
Combining Eq. (32) with Eq. (35), (36), (37), and letting Bk := ‖P1vk‖2 , Ak := ‖P−1vk‖2,

we obtain

Bk+1 ≤ q1(η) ·Bk + ξ(η) ·Ak
Bk+1 ≥ q1(η) ·Bk − ξ(η) ·Ak
Ak+1 ≤ q−1 · (η)Ak + ξ(η) ·Bk.

C.9. Proof of Lemma 12

Proof [Proof of Lemma 12] Let

ξ := ξ(η) =
4η
√
nι

b
,

q1 := q1(η) =

∣∣∣∣1− 2ηλ1

b
‖P1x̄1‖22

∣∣∣∣ ,
q−1 := q−1(η) = max

{∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+
3nηι

b
,

∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+
3nηι

b

}
.

(38)

Then for 0 < k ≤ k1, Lemma 11 gives us

Bk ≥ q1Bk−1 − ξAk−1, (39)(
Ak
Bk

)
≤
(
q−1 ξ
ξ q1

)
·
(
Ak−1

Bk−1

)
, (40)

where “≤” means “entry-wisely smaller than”.
Let θ, ρ−1, ρ1 determine the eigen decomposition of the coefficient matrix, i.e.,(

q−1 ξ
ξ q1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ρ−1 0
0 ρ1

)(
cos θ − sin θ
sin θ cos θ

)
. (41)
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Then Eq. (40) and Eq. (41) yield(
Ak
Bk

)
≤
(
q−1 ξ
ξ q1

)k
·
(
A0

B0

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ρk−1 0
0 ρk1

)(
cos θ − sin θ
sin θ cos θ

)(
A0

B0

)
=

(
ρk−1 + (ρk1 − ρk−1) sin2 θ (ρk1 − ρk−1) cos θ sin θ
(ρk1 − ρk−1) cos θ sin θ ρk1 − (ρk1 − ρk−1) sin2 θ

)(
A0

B0

)
=

(
A0 · ρk−1 +

(
ρk1 − ρk−1

)
(A0 sin θ +B0 cos θ) sin θ

B0 · ρk1 +
(
ρk1 − ρk−1

)
(A0 cos θ −B0 sin θ) sin θ

)
≤
(
A0 · ρk−1 +

∣∣ρk1 − ρk−1

∣∣√A2
0 +B2

0 sin θ

B0 · ρk1 +
∣∣ρk1 − ρk−1

∣∣√A2
0 +B2

0 sin θ

)
=

(
A0 · ρk−1 +

∣∣ρk1 − ρk−1

∣∣ · ‖Pv0‖2 · sin θ
B0 · ρk1 +

∣∣ρk1 − ρk−1

∣∣ · ‖Pv0‖2 · sin θ

)
. (42)

We claim the following inequalities hold by our assumptions:

0 < ρ−1 < 1 < ρ1 ≤ q1 + ξ (43a)

ρk1−1 ‖Pv0‖2 ≤
ε

2
· β (43b)

ρk11 ‖Pv0‖2 sin θ ≤ ε

2
· β, (43c)

ξ ·
(
A0 +

εβ0

2

)
< (q1 − 1)β0. (43d)

The verification of Eq. (43) is left later. In the following we prove the conclusions using Eq. (43).
We first bound Ak1 using Eq. (42) and Eq. (43):

Ak1 ≤ A0 · ρk1−1 +
∣∣∣ρk11 − ρ

k1
−1

∣∣∣ · ‖Pv0‖2 · sin θ

≤ ‖Pv0‖2 · ρ
k1
−1 + ρk11 · ‖Pv0‖2 · sin θ

≤ ε

2
· β +

ε

2
· β

= ε · β,
which justifies the first conclusion. In addition we can obtain an uniform upper bound for Ak for
k = 0, 1, . . . , k1:

Ak ≤ A0 · ρk−1 +
∣∣∣ρk1 − ρk−1

∣∣∣ · ‖Pv0‖2 · sin θ

≤ A0 + ρk1 · ‖Pv0‖2 · sin θ

≤ A0 +
ε

2
· β. (44)

Next we bound Bk1 using Eq. (42) and Eq. (43):

Bk1 ≤ B0 · ρk11 +
∣∣∣ρk11 − ρ

k1
−1

∣∣∣ · ‖Pv0‖2 · sin θ

≤ ‖Pv0‖2 · ρ
k1
1 + ρk11 · ‖Pv0‖2 · sin θ

≤ ‖Pv0‖2 · ρ
k1
1 +

ε

2
· β,
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which justifies the second conclusion.
We proceed to derive the uniform lower bound for Bk for k = 0, 1, . . . , k1. We do it by induc-

tion. For k = 0, by assumption we have B0 ≥ β0. Suppose Bk−1 ≥ β0, then by Eq. (39), (43) and
(44) we have

Bk ≥ q1 ·Bk−1 − ξ ·Ak−1

≥ q1 · β0 − ξ ·
(
A0 +

ε

2
β
)

≥ q1 · β0 − ξ ·
(
A0 +

ε

2
β0

)
≥ β0,

which justifies the third conclusion.

Verification of Eq. (43)
From Eq. (41) and Gershgorin circle theorem we have

q1 − ξ ≤ ρ1 ≤ q1 + ξ,

q−1 − ξ ≤ ρ−1 ≤ q−1 + ξ.
(45)

Moreover, reformatting Eq. (41) as(
q−1 ξ
ξ q1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ρ−1 0
0 ρ1

)(
cos θ − sin θ
sin θ cos θ

)
=

(
ρ−1 cos2 θ + ρ1 sin2 θ (ρ1 − ρ−1) cos θ sin θ
(ρ1 − ρ−1) cos θ sin θ ρ−1 sin2 θ + ρ1 cos2 θ

)
=

(
ρ−1 + (ρ1 − ρ−1) sin2 θ (ρ1 − ρ−1) cos θ sin θ
(ρ1 − ρ−1) cos θ sin θ ρ1 − (ρ1 − ρ−1) sin2 θ

)
,

we then have
ξ

q1 − q−1
=

(ρ1 − ρ−1) cos θ sin θ

(ρ1 − ρ−1)(1− 2 sin2 θ)
=

1

2
tan 2θ. (46)

For Eq. (43a), using Eq. (45) it suffices to show

0 < q1 − ξ, (47a)

q−1 + ξ < 1, (47b)

1 < q1 − ξ. (47c)

Notice the definitions of q1, q−1 and ξ are given in Eq. (38). Firstly, Eq. (47c) holds trivially when√
n > 4/3. Secondly, for Eq. (47b), noticing that ξ = 4η

√
nι

b ≤ ηnι
b when n ≥ 16, it suffices to
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show

max

{∣∣∣∣1− 2η

b
(λ2 + nι)

∣∣∣∣+
4nηι

b
,

∣∣∣∣1− 2η

b
(λn − nι)

∣∣∣∣+
4nηι

b

}
< 1

⇔

{
4nι
b η − 1 < 1− 2(λ2+nι)

b η < 1− 4nι
b η

4nι
b η − 1 < 1− 2(λn−nι)

b η < 1− 4nι
b η

⇔


2λ2−2nι

b η > 0
2λ2+6nι

b η < 2
2λn−6nι

b η > 0
2λn+2nι

b η < 2

⇐



η > 0

λ2 − nι > 0

λn − 3nι > 0

η < b
λ2+3nι

η < b
λn+nι

⇐

{
3nι < λn

0 < η < b
λ2+3nι

which are given in assumptions. Thirdly, for Eq. (47c) it suffices to show

2ηλ1

b
‖P1x̄1‖22 − 1− 4η

√
nι

b
> 1

⇐ 2λ1(1− 4nι2)

b
η − 4

√
nι

b
η > 2 (by Lemma 3)

⇐ η >
b

λ1(1− 4nι2)− 2
√
nι

⇐ η >
b

λ1 − 3
√
nι
, (since nι < 1)

which are given in assumptions.
For Eq. (43b), it suffices to show set

k1 = 1 +
log 0.5εβ

‖Pv0‖2
log ρ−1

= O
(

log
1

εβ

)
,

as given in assumptions.
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For Eq. (43c), using Eq. (43b) it suffices to show

sin θ ≤
(
ρ−1

ρ1

)k1
=
ρ−1

ρ1
·
(

0.5εβ

‖Pv0‖2

)1− log ρ1
log ρ−1

⇐ sin θ ≤ q−1 − ξ
q1 + ξ

·
(

0.5εβ

‖Pv0‖2

)1− log(q1+ξ)
log(q−1−ξ)

⇐ ξ ≤ 0.9 (q1 − q−1) · q−1 − ξ
q1 + ξ

·
(

0.5εβ

‖Pv0‖2

)1− log(q1+ξ)
log(q−1−ξ)

(by Eq. (46))

⇐
√
nι ≤ poly (εβ) . (by Eq. (38))

For Eq. (43c), it suffices to show

ξ ≤ (q1 − 1)β0

A0 + 0.5εβ0

⇐
√
nι ≤ O (1) . (by Eq. (38))

C.10. Proof of Lemma 13

Proof [Proof of Lemma 13] Let

ξ′ := ξ(η′) =
4η′
√
nι

b
,

q′1 := q1(η′) =

∣∣∣∣1− 2η′λ1

b
‖P1x̄1‖22

∣∣∣∣ ,
q′−1 := q−1(η′) = max

{∣∣∣∣1− 2η′

b
(λ2 + nι)

∣∣∣∣+
3nη′ι

b
,

∣∣∣∣1− 2η′

b
(λn − nι)

∣∣∣∣+
3nη′ι

b

}
.

(48)

Then for k1 < k ≤ k2, Lemma 11 gives us(
Ak
Bk

)
≤
(
q′−1 ξ′

ξ′ q′1

)
·
(
Ak−1

Bk−1

)
, (49)

where “≤” means “entry-wisely smaller than”. Denote

B := ‖Pv0‖2 · ρ
k1
1 +

ε

2
· β = poly

(
1

εβ

)
. (50)

We claim the following inequalities hold by our assumptions:

0 < q′1 < q′−1 < 1, (51a)

ξ′ · ε ≤ q′−1 − q′1, (51b)

ξ′ ·B ≤ (1− q′−1) · ε · β. (51c)
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The verification of Eq. (51) is left later. In the following we prove the main conclusions in the
lemma using Eq. (51). We proceed by induction. Clearly the conclusions are true for k = k1.
Suppose for k1, . . . , k − 1, the conclusions are also true. Then the induction assumptions give us

Ak−1 ≤ ε · β, (52)

Bk−1 ≤ Bk1 ≤ B, (53)

where the last inequality is due to B ≥ Bk1 ≥ β0 > β. Then by Eq. (49) we have

Bk ≤ q′1 ·Bk−1 + ξ′ ·Ak−1

≤ q′1 ·Bk−1 + ξ′ · ε · β (by Eq. (52))

≤ q′1 ·Bk−1 + (q′−1 − q′1) · β (by Eq. (51b))

≤

{
q′−1 ·Bk−1, Bk−1 > β,

β, Bk−1 ≤ β.
(by Eq. (51a))

Also by Eq. (49) we have

Ak ≤ q′−1 ·Ak−1 + ξ′ ·Bk
≤ q′−1 · ε · β + ξ′ ·B (by Eq. (52) and (53))

≤ q′−1 · ε · β + (1− q′−1) · ε · β (by Eq. (51c))

= ε · β.

Verification of Eq. (51) Notice the definitions of q′1, q
′
−1 and ξ′ are given in Eq. (38). Recall

q′−1 < 1 is already justified by the choice of learning rate η′ < 1
λ2+3nι (e.g., see Lemma 10), thus

for Eq. (51a), it suffices to show

0 < 1− 2η′λ1

b
‖P1x̄1‖22 < 1− 2η′

b
(λn − nι) +

3nη′ι

b

⇐

{
1− 2η′λ1

b > 0

2λ1(1− 4nι2) > 2(λn − nι) + 3nι
(by Lemma 3)

⇐

{
η′ < b

2λ1

λ1 > λn + 2nι

which are given in assumptions.
For Eq. (51b), it suffices to show

ξ′ ≤ 1

ε
·
(
q′−1 − q′1

)
⇐

√
nι ≤ O

(
1

ε

)
,

which is implied by nι ≤ poly (εβ).
For Eq. (51c), it suffices to show

ξ′ ≤ 1

B
· ε ·

(
1− q′−1

)
β

⇐
√
nι ≤ poly (εβ) . (by Eq. (50))

We complete our proof.
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C.11. Proof of Lemma 14

Proof [Proof of Lemma 14] For the empirical loss,

LS(u) =
1

n
(w − w∗)>XX> (w − w∗) =

1

n
u>G>XX>Gu =

1

n
u>Γu =

1

n

n∑
i=1

γi

(
u(i)
)2
.

For the population loss,

LD(u) = µ ‖w − w∗‖22 = µ ‖Gu‖22 = µ ‖u‖22 .

For the hypothesis classHS =
{
w ∈ Rd : P⊥w = P⊥w0

}
,NoteP⊥G = diag (0, . . . , 0, 1, . . . , 1).

Apply w − w∗ = Gu and notice w0 − w∗ = Gu0, then we obtain

HS =
{
u ∈ Rd : P⊥Gu = P⊥Gu0

}
=
{
u ∈ Rd : u(i) = u

(i)
0 , for i = n+ 1, . . . , d

}
.

For the level set, we only need to note that L∗S = infu∈HS LS(u) = 0.
As for the estimation error, we note that

inf
u∈U

LD(u) = µ

d∑
i=n+1

(
u

(i)
0

)2
,

thus for u ∈ U , we have

∆(u) = L(u)− inf
u′∈U

L(u′) = µ ‖u‖22 − µ
d∑

i=n+1

(
u

(i)
0

)2

= µ
n∑
i=1

(
u(i)
)2

+ µ
d∑

i=n+1

(
u(i)
)2
− µ

d∑
i=n+1

(
u

(i)
0

)2

= µ
n∑
i=1

(
u(i)
)2
.

Now consider u ∈ U , i.e., 1
n

∑n
i=1 γi

(
u(i)
)2

= α, then

∆∗ = inf
u∈U

∆(u) = inf
nα=

∑n
i=1 γi(u(i))

2
µ

n∑
i=1

(
u(i)
)2

=
µnα

γ1
,

where the inferior is attended when, e.g., u(1) = ±
√

nα
γ1

and u(2) = · · · = u(n) = 0.
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