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Abstract
We present a theoretical framework recasting data augmentation as stochastic optimization for a
sequence of time-varying proxy losses. This provides a unified language for understanding tech-
niques commonly thought of as data augmentation, including synthetic noise and label-preserving
transformations, as well as more traditional ideas in stochastic optimization such as learning rate
and batch size scheduling. We then specialize our framework to study arbitrary augmentations in
the context of a simple model (overparameterized linear regression). We extend in this setting the
classical Monro-Robbins theorem to include augmentation and obtain rates of convergence, giving
conditions on the learning rate and augmentation schedule under which augmented gradient de-
scent converges. Special cases give provably good schedules for augmentation with additive noise,
minibatch SGD, and minibatch SGD with noise.

1. Introduction

Implementing gradient-based optimization in practice requires many choices. These include set-
ting hyperparameters such as learning rate and batch size as well as specifying a data augmentation
scheme, a popular set of techniques in which data is augmented (i.e. modified) at every step of opti-
mization. Trained model quality is highly sensitive to these choices. In practice they are made using
methods ranging from a simple grid search to Bayesian optimization and reinforcement learning
[7, 8, 15]. Such approaches, while effective, are often ad-hoc and computationally expensive due
to the need to handle scheduling, in which optimization hyperparameters and augmentation choices
and strengths are chosen to change over the course of optimization.

These empirical results stand in contrast to theoretically grounded approaches to stochastic op-
timization which provide both provable guarantees and reliable intuitions. The most extensive work
in this direction builds on the seminal article [23], which gives provably optimal learning rate sched-
ules for stochastic optimization of strongly convex objectives. While rigorous, these approaches are
typically are not sufficiently flexible to address the myriad augmentation types and hyperparameter
choices beyond learning rates necessary in practice.

This article is a step towards bridging this gap. We provide in §2 a rigorous framework for
re-interpreting gradient descent with arbitrary data augmentation as stochastic gradient descent on a
time-varying sequence of objectives. This provides a unified language to study traditional stochastic
optimization methods such as minibatch SGD together with widely used augmentations such as
additive noise [13], CutOut [11], Mixup [31] and label-preserving transformations (e.g. color jitter,
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geometric transformations [24]). It also opens the door to studying how to schedule and evaluate
arbitrary augmentations, an important topic given the recent interest in learned augmentation [7].

Quantitative results in our framework are difficult to obtain in full generality due to the complex
interaction between models and augmentations. To illustrate the utility of our approach and better
understand specific augmentations, we present in §2 and §4 results about arbitrary augmentations
for overparameterized linear regression and specialize to additive noise and minibatch SGD in §3
and §5. While our results apply directly only to simple quadratic losses, they treat very general
augmentations. Treating more complex models is left to future work. Our main contributions are:

• In Theorem 2, we give sufficient conditions under which gradient descent under any aug-
mentation scheme converges in the setting of overparameterized linear regression. Our result
extends classical results of Monro-Robbins type and covers schedules for both learning rate
and data augmentation scheme.

• We complement the asymptotic results of Theorem 2 with quantitative rates of convergence
furnished in Theorem 3. These rates depend only on the first few moments of the augmented
data distribution, underscoring the flexibility of our framework.

• In §3, we analyze additive input noise, a popular augmentation strategy for increasing model
robustness. We recover the known fact that it is equivalent to stochastic optimization with
`2-regularization and find criteria in Theorem 1 for jointly scheduling the learning rate and
noise level to provably recover the minimal norm solution.

• In §5, we analyze minibatch SGD, recovering known results about rates of convergence for
SGD (Theorem 4) and novel results about SGD with noise (Theorem 5).

2. Data Augmentation as Stochastic Optimization

A common task in modern machine learning is the optimization of an empirical risk L(W ;D) =
1
|D|
∑

(xj ,yj)∈D `(f(xj ;W ), yj), for a model f(x;W ), a dataset D of input-response pairs (x, y)

and a per-sample loss `. Gradient descent on W gives the update Wt+1 = Wt − ηt∇WL(Wt;D).
In this context, we define a data augmentation scheme to be any procedure that consists, at every

step of optimization, of replacing the dataset D by a randomly augmented variant, which we will
denote byDt. A data augmentation scheme therefore corresponds to the augmented update equation
Wt+1 = Wt − ηt∇WL(Wt;Dt). Since Dt is a stochastic function of D, it is natural to view the
augmented update rule as a form of stochastic optimization for the proxy loss at time t Lt(W ) :=
EDt [L(W ;Dt)]. The augmented update corresponds precisely to stochastic optimization for the
time-varying objective Lt(W ) in which the unbiased estimate of its gradient is the gradient of
L(W ;Dt) evaluated on a single sample Dt drawn from the augmented distribution.

Despite being mathematically straightforward, reformulating data augmentation as stochastic
optimization provides a unified language for questions about learning rate schedules and gen-
eral augmentation schemes including SGD. In general, such questions can be challenging to an-
swer. While we plan to return to more general setups in future work, we will henceforth ana-
lyze very general augmentation schemes in the simple case of overparameterized linear regres-
sion. Specifically, we optimize the entries of a weight matrix W ∈ Rp×n by gradient descent on
L(W ;D) = 1

N ||Y −WX||2F , where our datasetD is summarized by data matricesX ∈ Rn×N and
Y ∈ Rp×N , whose N < n columns consist of inputs xi ∈ Rn and associated labels yi ∈ Rp. In this
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notation, a data augmentation scheme is specified by prescribing at step t an augmented dataset Dt
consisting of modified data matrices Xt, Yt, whose columns we denote by xi,t ∈ Rn and yi,t ∈ Rp.
We now give examples of some commonly used augmentations our framework can address.

• Additive Gaussian noise: This is implemented by setting Xt = X + σt ·G and Yt = Y for
σt > 0 and G a matrix of i.i.d. standard Gaussians. We analyze this in §3.

• Mini-batch SGD: To implement mini-batch SGD with batch sizeBt, we can takeXt = XAt
and Yt = Y At whereAt ∈ RN×Bt has i.i.d. columns containing a single non-zero entry equal
to 1 chosen uniformly at random. We analyze this in detail in §5.

• Random projection: This is implemented by Xt = ΠtX and Yt = Y , where Πt is an
orthogonal projection onto a random subspace. For γt = Tr(Πt)/n, the proxy loss is

Lt(W ) = ‖Y − γtWX‖2F + γt(1− γt)n−1 Tr(XXT)‖W‖2F +O(n−1),

which adds a data-dependent `2 penalty and applies a Stein shrinkage on input data.

• Label-preserving transformations: For a 2-D image viewed as a vector x ∈ Rn, geometric
transforms (with pixel interpolation) or other label-preserving transforms such as color jitter
take the form of linear transforms Rn → Rn. We may implement such augmentations in our
framework by Xt = AtX and Yt = Y for some random transform matrix At.

Our main technical results, Theorems 2 and 3, give sufficient conditions for a learning rate schedule
ηt and a schedule for the statistics of Xt, Yt under which optimization with augmented gradient de-
scent will provably converge. We state these general results in §4. Before doing so, we demonstrate
the utility of our framework and the flavor of our results for additive Gaussian noise.

3. Augmentation With Additive Gaussian Noise

We now demonstrate the utility of our framework for additive Gaussian noise. This popular class of
augmentations injects input noise as a regularizer, meaning Dt = {(xi,t, yi,t), i = 1, . . . , N} for
xi,t = xi + σtgi,t and yi,t = yi, where gi,t are i.i.d. standard Gaussian vectors and σt is a strength
parameter. The corresponding proxy loss Lt(W ) = Lσt(W ) := L(W ;D)+σ2t ||W ||

2
F corresponds

to adding an `2-penalty. What is the optimal relationship of learning rate ηt and noise strength σt?
To get a sense of what optimal might mean in this context, observe that for σt = 0, the gradient

descent update is Wt+1 = Wt + 2ηt
N · (Y −WtX)XT, so the increment Wt+1−Wt has columns in

the column span of the model Hessian XXT. The component Wt,⊥ of Wt in the orthogonal com-
plement of V‖ := column span of XXT thus remains frozen to its initialized value. Geometrically,
this means there are some directions (the orthogonal complement to V‖) which gradient descent
“cannot see.”

Optimization with appropriate step sizes therefore yields limt→∞Wt = W0,⊥ +Wmin, where
Wmin := Y XT(XXT)+ is the minimum norm solution of Y = WX . The original motivation for
introducing the `2-regularized losses Lσ is that they provide a mechanism to eliminate the compo-
nent W0,⊥. For σ > 0, the loss Lσ is strictly convex on Rn and therefore has unique minimum
W ∗σ := Y XT

(
XXT + σ2N · Idn×n

)−1 that yields the minimal norm solution in the weak reg-
ularization limit limσ→0W

∗
σ = Wmin. To understand this geometrically, note that the `2-penalty
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yields non-trivial gradient updates Wt+1,⊥ = Wt,⊥ − ηtσ2Wt,⊥ = (1 − ηtσ2)Wt,⊥ =
∏t
s=1(1 −

ηsσ
2)W0,⊥, which drive this perpendicular component ofWt to zero provided

∑∞
t=1 ηt =∞. How-

ever, for each positive value of σ, the `2-penalty also modifies the gradient descent updates forWt,‖,
ultimately causing Wt to converge to W ∗σ , which is not a minimizer of the original loss L.

This downside of ridge regression motivates jointly scheduling the step size ηt and the noise
strength σt. We hope that driving σt to 0 at an appropriate rate can guarantee convergence of Wt to
Wmin. Namely, we want to retain the regularizing effects of `2-noise that force Wt,⊥ to zero while
mitigating its adverse effects which prevent W ∗σ from minimizing L. We prove this is possible in
Theorem 1, which also has an analogue for arbitrary additive noise with bounded moments.

Theorem 1 (Special case of Theorem 2) Suppose we have σ2t , ηt → 0 with σ2t non-increasing and∑∞
t=0 ηtσ

2
t =∞ and

∑∞
t=0 η

2
t σ

2
t <∞. Then Wt

p→ Wmin. If ηt = Θ(t−x) and σ2t = Θ(t−y) with
x, y > 0, x+y < 1, and 2x+y > 1, then for any ε > 0, we have tmin{y, 1

2
x}−ε‖Wt−Wmin‖F

p→ 0.

That convergence in probability Wt
p→ Wmin follows from the conditions of Theorem 1 is a

result of Monro-Robbins type [23]. Inspecting the GD updates, the condition
∑∞

t=0 ηtσ
2
t = ∞

guarantees the effective learning rate ηtσ2t in the orthogonal complement to V‖ is large enough that
the corresponding componentWt,⊥ of Wt tends to 0, making the result of optimization independent
of W0. The condition

∑∞
t=0 η

2
t σ

2
t < ∞ guarantees summability of the variance of the gradients,

which at time t scales like η2t σ
2
t . As in the usual Monro-Robbins setup, this means only a finite

amount of noise appears in the optimization, allowing the trajectory to have a prescribed limit.
Optimizing over x, y, the fastest rate of convergence O(t−1/3+ε) guaranteed by Theorem 1 is

obtained by setting ηt = t−2/3+ε, σ2t = t−1/3. It is not evident that this is best possible, however.

4. Time-varying Monro-Robbins for linear models under augmentation

This section presents Theorems 2 and 3, providing sufficient conditions for jointly scheduling learn-
ing rates and general augmentation schemes to guarantee convergence of augmented GD in an over-
parameterized linear model. Given an augmentation scheme with augmented dataset Dt = (Xt, Yt)
at time t, the time t gradient update with learning rate ηt is Wt+1 := Wt + 2ηt

N · (Yt −WtXt)X
T
t .

The corresponding proxy loss Lt has minimum norm optimum W ∗t := E[YtX
T
t ]E[XtX

T
t ]+, where

E[XtX
T
t ]+ denotes the Moore-Penrose pseudo-inverse.

In analogy with the Gaussian noise case, Wt+1 −Wt is contained in the column span of the
HessianXtX

T
t of the augmented loss and almost surely belongs to V‖ := column span of E[XtX

T
t ].

Denoting the projection onto V‖ by Q‖, step t of gradient descent leaves the projection onto the
orthogonal complement of V‖ unchanged. In contrast, WtQ‖ moves closer to W ∗t at rate governed
by the smallest eigenvalue λmin,V‖(E[XtX

T
t ]) of the restriction of E[XtX

T
t ] to V‖. Moreover, the

convergence ofWtQ‖ depends on Ξ∗t := W ∗t+1−W ∗t , whose norm measures compatibility between
proxy losses at different times. Theorem 2 gives conditions for convergence of WtQ‖ when V‖ is
independent of t. This assumption holds for Gaussian noise, SGD, and all examples in the present
work; as explained in Remark 15, it can be removed and merely facilitates a simpler statement.

Theorem 2 Suppose that V‖ is independent of t, that the learning rate satisfies ηt → 0, that the
proxy optima satisfy

∞∑
t=0

‖Ξ∗t ‖F <∞, (4.1)
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ensuring the existence of a limit W ∗∞ := limt→∞W
∗
t , and that

∞∑
t=0

ηtλmin,V‖(E[XtX
T
t ]) =∞. (4.2)

If either
∑∞

t=0 η
2
tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
<∞ or

∞∑
t=0

η2tE
[
‖XtX

T
t −E[XtX

T
t ]‖2F +‖(E[Wt]Xt−Yt)XT

t −E[(E[Wt]Xt−Yt)XT
t ]‖2F

]
<∞ (4.3)

hold, then for any initialization W0 we have WtQ‖
p→W ∗∞.

When the augmentation procedure is static in t, Theorem 2 reduces to a standard Monro-
Robbins theorem [23] for the (static) proxy loss Lt(W ). As in that setting, condition (4.2) enforces
that the learning trajectory travels far enough to reach an optimum. The second summand in (4.3) is
precisely the variance of the gradient of the augmented loss L(W ;Dt), and (4.3) therefore encodes
the usual statement that the variance of the stochastic gradients is summable. Condition (4.1) is
new and enforces that the minimizers W ∗t of the proxy losses Lt(W ) change slowly enough that
the augmented optimization procedure can keep pace. A precise analysis of the proof of Theorem 2
gives rates of convergence of WtQ‖ to the limiting optimum W ∗∞ in Theorem 3.

Theorem 3 (informal - Special case of Theorem 17) If V‖ is independent of t, the learning rate
satisfies ηt → 0, and for some 0 < α < 1 < β1, β2 and γ > α we have ηtλmin,V‖(E[XtX

T
t ]) =

Ω(t−α), ‖Ξ∗t ‖F = O(t−β1), η2tE[‖XtX
T
t − E[XtX

T
t ]‖22] = O(t−γ), and η2tE

[
‖E[Wt](XtX

T
t −

E[XtX
T
t ])− (YtX

T
t − E[YtX

T
t ])‖2F

]
= O(t−β2), then for any initialization W0 and any ε > 0 we

have tmin{β1−1,β2−α2
}−ε‖WtQ‖ −W ∗∞‖F

p→ 0.

5. Implications for mini-batch stochastic gradient descent (SGD)

We now apply our framework to mini-batch stochastic gradient descent (SGD) with the potential
presence of additive noise. Though SGD is not often considered a form of data augmentation, we
will see that our framework handles it uniformly with other augmentations.

In mini-batch SGD, Dt is obtained by choosing a random subset Bt of D of prescribed batch
size Bt = |Bt|. Each datapoint in Bt is chosen uniformly with replacement, and the resulting
data matrices Xt and Yt are scaled so that Lt(W ) = L(W ;D). This means Xt = ctXAt and
Yt = ctY At, where ct :=

√
N/Bt and At ∈ RN×Bt has i.i.d. columns At,i with a single non-zero

entry equal to 1 chosen uniformly at random. The minimum norm optima for each t all coincide with
the minimum norm optimum W ∗t = W ∗∞ = Y XT(XXT)+ for the unaugmented loss. Applying
our framework in Theorem 4 recovers the known exponential convergence of SGD [20].

Theorem 4 (Proof in Appendix F.1) If the learning rate satisfies ηt → 0 and
∑∞

t=0 ηt = ∞,
then for any initialization W0, we have WtQ‖

p→ W ∗∞. If further we have that ηt = Θ(t−x) with

0 < x < 1, then for some C > 0 we have eCt
1−x‖WtQ‖ −W ∗∞‖F

p→ 0.
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In addition to handling additive noise and SGD separately, our results also cover mini-batch
SGD with batch size Bt and additive noise at level σt. Here, we have Xt = ct(XAt + σtGt) and
Yt = ctY At, where ct and At are as before and Gt ∈ Rn×Bt has i.i.d. Gaussian entries. The proxy
loss is Lt(W ) = 1

N ‖Y −WX‖2F + σ2t ‖W‖2F , with ridge minimizer W ∗t = Y XT(XXT + σ2tN ·
Idn×n)−1. Like additive noise but unlike noiseless SGD, the optima W ∗t converge to the minimal
norm interpolant Wmin = Y XT(XXT)+.

Theorem 5 (Proof in Appendix F.2) Suppose σ2t → 0 is decreasing, ηt → 0, and for any C > 0

we have
∑∞

t=0(ηtσ
2
t − Cη2t ) =∞ and

∑∞
t=0 η

2
t σ

2
t <∞. Then we have Wt

p→ Wmin. If we further
have ηt = Θ(t−x) and σ2t = Θ(t−y) with x, y > 0 and 0 < x+ y < 1 < 2x+ y, we have for any
ε > 0 that tmin{y, 1

2
x}−ε‖Wt −Wmin‖F

p→ 0.

Theorem 5 provides an example where our framework can handle the composition of two augmen-
tations, namely additive noise and SGD. It reveals a qualitative difference between SGD with and
without additive noise. For polynomially decaying ηt, the convergence of noiseless SGD in Theo-
rem 4 is exponential in t, while the bound from Theorem 5 is polynomial in t. This is unavoidable
since convergence of components of Wt orthogonal to data span V|| requires that

∑∞
t=0 ηtσ

2
t =∞,

which is only possible if σt and hence ||W ∗t −Wmin||F have power law decay.

6. Discussion

We have presented a theoretical framework to rigorously analyze the effect of data augmentation.
Our framework applies to completely general augmentations and relies only on the first few mo-
ments of the augmented dataset. This allows us to handle augmentations as diverse as additive noise
and mini-batch SGD as well as their composition in a uniform manner. We have analyzed some rep-
resentative examples in detail in this work, but many other commonly used augmentations may be
handled similarly: label-preserving transformations (e.g. color jitter, geometric transformations),
random projections [11, 21], and Mixup [31], among many others. Another line of investigation
left to future work is to compare different methods of combining augmentations such as mixing,
alternating, or composing, which often improve performance in the empirical literature [14].

Though our results provide a rigorous baseline to compare to more complex settings, the re-
striction of the present work to linear models is of course a significant constraint. In future work,
we hope to extend our analysis to models closer to those in practice. Most importantly, we intend
to consider more complex models such as kernels (including the neural tangent kernel) and neural
networks using similar connections to stochastic optimization. In an orthogonal direction, our anal-
ysis currently focuses on the mean square loss, and we aim to extend to other losses such as the
cross-entropy loss. Finally, our work only addresses the effect of data augmentation on optimiza-
tion, and it would be of interest to derive consequences for generalization. We hope our framework
can provide theoretical underpinnings for a more principled understanding of data augmentation.

Acknowledgments

It is a pleasure to thank Daniel Park, Ethan Dyer, Edgar Dobriban, and Pokey Rule for a number
of insightful conversations about data augmentation. B.H. was partially supported by NSF Grant
DMS-1855684 and ONR MURI “Theoretical Foundations of Deep Learning”. Y. S. was partially
supported by NSF Grant DMS-1701654/2039183.

6



DATA AUGMENTATION AS STOCHASTIC OPTIMIZATION

References

[1] Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate o (1/n). In Advances in neural information processing systems, pages 773–
781, 2013.
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Appendix A. Related Work

In addition to the extensive empirical work on data augmentation cited elsewhere in this article,
we briefly catalog other theoretical work on data augmentation and learning rate schedules. The
latter were first considered in the seminal work [23]. This spawned a vast literature on rates of
convergence for GD, SGD, and their variants. We mention only the relatively recent articles [1,
4, 10, 20, 26] and the references therein. The last of these, namely [20], finds optimal choices of
learning rate and batch size for SGD in the overparametrized linear setting.

A number of articles have also pointed out in various regimes that data augmentation and more
general transformations such as feature dropout correspond in part to `2-type regularization on
model parameters, features, gradients, and Hessians. The first article of this kind of which we
are aware is [3], which treats the case of additive Gaussian noise (see §3). More recent work in this
direction includes [5, 17, 19, 27]. There are also several articles investigating optimal choices of
`2-regularization for linear models (cf e.g. [2, 28, 29]). These articles focus directly on the general-
ization effects of ridge-regularized minima but not on the dynamics of optimization. We also point
the reader to [18], which considers optimal choices for the weight decay coefficient empirically in
neural networks and analytically in simple models.

We also refer the reader to a number of recent attempts to characterize the benefits of data aug-
mentation. In [22], for example, the authors quantify how much augmented data, produced via
additive noise, is needed to learn positive margin classifiers. [6], in contrast, focuses on the case of
data invariant under the action of a group. Using the group action to generate label-preserving aug-
mentations, the authors prove that the variance of any function depending only on the trained model
will decrease. This applies in particular to estimators for the trainable parameters themselves. [9]
shows augmented k-NN classification reduces to a kernel method for augmentations transforming
each datapoint to a finite orbit of possibilities. It also gives a second order expansion for the proxy
loss of a kernel method under such augmentations and interprets how each term affects generaliza-
tion. Finally, the article [30] considers both label preserving and noising augmentations, pointing
out the conceptually distinct roles such augmentations play.

Appendix B. Analytic lemmas

In this section, we present several basic lemmas concerning convergence for certain matrix-valued
recursions that will be needed to establish our main results. For clarity, we first collect some matrix
notations used in this section and throughout the paper.

B.1. Matrix notations

Let M ∈ Rm×n be a matrix. We denote its Frobenius norm by ‖M‖F and its spectral norm by
‖M‖2. Ifm = n so thatM is square, we denote by diag(M) the diagonal matrix with diag(M)ii =
Mii. For matrices A,B,C of the appropriate shapes, define

A ◦ (B ⊗ C) := BAC (B.1)

and
Var(A) := E[AT ⊗A]− E[AT]⊗ E[A]. (B.2)

Notice in particular that
Tr[Id ◦Var(A)] = E[‖A− E[A]‖2F ].

10
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B.2. One- and two-sided decay

Definition 6 Let At ∈ Rn×n be a sequence of independent random non-negative definite matrices
with

sup
t
||At|| ≤ 2 almost surely,

let Bt ∈ Rp×n be a sequence of arbitrary matrices, and let Ct ∈ Rn×n be a sequence of non-
negative definite matrices. We say that the sequence of matrices Xt ∈ Rp×n has one-sided decay of
type ({At}, {Bt}) if it satisfies

Xt+1 = Xt(Id−E[At]) +Bt. (B.3)

We say that a sequence of non-negative definite matrices Zt ∈ Rn×n has two-sided decay of type
({At}, {Ct}) if it satisfies

Zt+1 = E[(Id−At)Zt(Id−At)] + Ct. (B.4)

Intuitively, if a sequence of matrices Xt (resp. Zt) satisfies one decay of type ({At}, {Bt}) (resp.
two-sided decay of type ({At}, {Ct})), then in those directions u ∈ Rn for which ||Atu|| does not
decay too quickly in t we expect that Xt (resp. Zt) will converge to 0 provided Bt (resp. Ct) are
not too large. More formally, let us define

V‖ :=
∞⋂
t=0

ker

[ ∞∏
s=t

(Id−E[As])

]
=

{
u ∈ Rn

∣∣∣∣ lim
T→∞

T∏
s=t

(Id−E[As])u = 0, ∀t ≥ 1

}
,

and let Q‖ be the orthogonal projection onto V‖. It is on the space V‖ that that we expect Xt, Zt to
tend to zero if they satisfy one or two-side decay, and the precise results follows.

B.3. Lemmas on Convergence for Matrices with One and Two-Sided Decay

We state here several results that underpin the proofs of our main results. We begin by giving
in Lemmas 7 and 8 two slight variations of the same simple argument that matrices with one or
two-sided decay converge to zero.

Lemma 7 If a sequence {Xt} has one-sided decay of type ({At}, {Bt}) with

∞∑
t=0

‖Bt‖F <∞, (B.5)

then limt→∞XtQ‖ = 0.

Proof For any ε > 0, choose T1 so that
∑∞

t=T1
‖Bt‖F < ε

2 and T2 so that for t > T2 we have∥∥∥∥∥∥
( t∏
s=T1

(Id−E[As])
)
Q‖

∥∥∥∥∥∥
2

<
ε

2

1

‖X0‖F +
∑T1−1

s=0 ‖Bs‖F
.

By (B.3), we find that

Xt+1 = X0

t∏
s=0

(Id−E[As]) +

t∑
s=0

Bs

t∏
r=s+1

(Id−E[Ar]),

11
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which implies for t > T2 that

‖Xt+1Q‖‖F ≤ ‖X0‖F

∥∥∥∥∥(
t∏

s=0

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

+
t∑

s=0

‖Bs‖F

∥∥∥∥∥(
t∏

r=s+1

(Id−E[Ar])
)
Q‖

∥∥∥∥∥
2

.

(B.6)

Our assumption that ||At|| ≤ 2 almost surely implies that for any T ≤ t∥∥∥∥∥(
t∏

s=0

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

≤

∥∥∥∥∥(
T∏
s=0

(Id−E[As])
)
Q‖

∥∥∥∥∥
2

since each term in the product is non-negative-definite. Thus, we find

‖Xt+1Q‖‖F ≤

[
‖X0‖F +

T1−1∑
s=0

‖Bs‖F

]∥∥∥∥∥∥
( t∏
s=T1

(Id−E[As])
)
Q‖

∥∥∥∥∥∥
2

+

t∑
s=T1

‖Bs‖F < ε.

Taking t→∞ and then ε→ 0 implies that limt→∞XtQ‖ = 0, as desired.

Lemma 8 If a sequence {Zt} has two-sided decay of type ({At}, {Ct}) with

lim
T→∞

E

∥∥∥∥∥(
T∏
s=t

(Id−As)
)
Q‖

∥∥∥∥∥
2

2

 = 0 for all t ≥ 0 (B.7)

and
∞∑
t=0

Tr(Ct) <∞, (B.8)

then limt→∞Q
T
‖ZtQ‖ = 0.

Proof The proof is essentially identical to that of Lemma 7. That is, for ε > 0, choose T1 so that∑∞
t=T1

Tr(Ct) <
ε
2 and choose T2 by (B.7) so that for t > T2 we have

E

∥∥∥∥∥∥
( t∏
s=T1

(Id−As)
)
Q‖

∥∥∥∥∥∥
2

2

 < ε

2

1

Tr(Z0) +
∑T1−1

s=0 Tr(Cs)
.

Conjugating (B.4) by Q‖, we have that

QT
‖Zt+1Q‖ = E

[
QT
‖

( t∏
s=0

(Id−As)
)T
Z0

( t∏
s=0

(Id−As)
)
Q‖

]

+
t∑

s=0

E

[
QT
‖

( t∏
r=s+1

(Id−Ar)
)T
Cs

( t∏
r=s+1

(Id−Ar)
)
Q‖

]
.

12
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Our assumption that ||At|| ≤ 2 almost surely implies that for any T ≤ t∥∥∥∥∥(
t∏

s=0

(Id−As)
)
Q

∥∥∥∥∥
2

≤

∥∥∥∥∥(
T∏
s=0

(Id−As)
)
Q

∥∥∥∥∥
2

.

For t > T2, this implies by taking trace of both sides that

Tr(QT
‖Zt+1Q‖) ≤ Tr(Z0)E

∥∥∥∥∥(
t∏

s=0

(Id−As)
)
Q‖

∥∥∥∥∥
2

2

+

t∑
s=0

Tr(Cs)E

∥∥∥∥∥(
t∏

r=s+1

(Id−Ar)
)
Q‖

∥∥∥∥∥
2

2


(B.9)

≤

[
Tr(Z0) +

T1−1∑
s=0

Tr(Cs)

]
E

∥∥∥∥∥∥
( t∏
s=T1

(Id−As)
)
Q‖

∥∥∥∥∥∥
2

2

+

t∑
s=T1

Tr(Cs)

< ε,

which implies that limt→∞Q
T
‖ZtQ‖ = 0.

The preceding Lemmas will be used to provide sufficient conditions for augmented gradient
descent to converge as in Theorem 14 below. Since we are also interested in obtaining rates of
convergence, we record here two quantitative refinements of the Lemmas above that will be used in
the proof of Theorem 17.

Lemma 9 Suppose {Xt} has one-sided decay of type ({At}, {Bt}). Assume also that for some
X ≥ 0 and C > 0, we have

log

∥∥∥∥∥(
t∏

r=s

(Id−E[Ar])
)
Q‖

∥∥∥∥∥
2

< X − C
∫ t+1

s
r−αdr

and ‖Bt‖F = O(t−β) for some 0 < α < 1 < β. Then, ‖XtQ‖‖F = O(tα−β).

Proof Denote γs,t :=
∫ t
s r
−αdr. By (B.6), we have for some constants C1, C2 > 0 that

‖Xt+1Q‖‖F < C1e
−Cγ1,t+1 + C2e

X
t∑

s=1

(1 + s)−βe−Cγs+1,t+1 . (B.10)

The first term on the right hand side is exponentially decaying in t since γ1,t+1 grows polynomially
in t. To bound the second term, observe that the function

f(s) := Cγs+1,t+1 − β log(s+ 1)

satisfies

f ′(s) ≥ 0 ⇔ C(s+ 1)−α − β

1 + s
≥ 0 ⇔ s ≥

(
β

C

)1/(1−α)
=: K.

13
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Hence, the summands are monotonically increasing for s greater than a fixed constant K depending
only on α, β, C. Note that

K∑
s=1

(1 + s)−βe−Cγs+1,t+1 ≤ Ke−CγK+1,t+1 ≤ Ke−C′t1−α

for some C ′ depending only on α and K, and hence sum is exponentially decaying in t. Further,
using an integral comparison, we find

t∑
s=K+1

(1 + s)−βe−Cγs+1,t+1 ≤
∫ t

K
(1 + s)−βe−

C
1−α((t+1)1−α−(s+1)1−α)ds. (B.11)

Changing variables using u = (1 + s)1−α/(1− α), the last integral has the form

e−Cgt(1− α)−ξ
∫ gt

gK

u−ξeCudu, gx :=
(1 + x)1−α

1− α
, ξ :=

β − α
1− α

. (B.12)

Integrating by parts, we have∫ gt

gK

u−ξeudu = C−1ξ

∫ gt

gK

u−ξ−1eCudu+ (u−ξeCu)|gtgK

Further, since on the range gK ≤ u ≤ gt the integrand is increasing, we have

e−Cgtξ

∫ gt

gK

u−ξ−1eCudu ≤ ξg−ξt .

Hence, e−Cgt times the integral in (B.12) is bounded above by

O(g−ξt ) + e−Cgt(u−ξeCu)|gtgK = O(g−ξt ).

Using (B.11) and substituting the previous line into (B.12) yields the estimate

t∑
s=K+1

(1 + s)−βe−Cγs+1,t+1 ≤ (1 + t)−β+α,

which completes the proof.

Lemma 10 Suppose {Zt} has two-sided decay of type ({At}, {Ct}). Assume also that for some
X ≥ 0 and C > 0, we have

logE

∥∥∥∥∥(
t∏

r=s

(Id−Ar)
)
Q‖

∥∥∥∥∥
2

2

 < X − C
∫ t+1

s
r−αdr

as well as Tr(Ct) = O(t−β) for some 0 < α < 1 < β. Then Tr(QT‖ ZtQ‖) = O(tα−β).

14
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Proof This argument is identical to the proof of Lemma 9. Indeed, using (B.9) we have that

Tr
(
QT‖ ZtQ‖

)
≤ C1e

−Cγ1,t+1 + C2e
X

t∑
s=1

(1 + s)−βe−Cγs+1,t+1 .

The right hand side of this inequality coincides with the expression on the right hand side of (B.10),
which we already bounded by O(tβ−α) in the proof of Lemma 9.

In what follows, we will use a concentration result for products of matrices from [16]. Let
Y1, . . . , Yn ∈ RN×N be independent random matrices. Suppose that

‖E[Yi]‖2 ≤ ai and E
[
‖Yi − E[Yi]‖22

]
≤ b2i a2i

for some a1, . . . , an and b1, . . . , bn. We will use the following result, which is a specialization of
[16, Theorem 5.1] for p = q = 2.

Theorem 11 ([16, Theorem 5.1]) For Z0 ∈ RN×n, the product Zn = YnYn−1 · · ·Y1Z0 satisfies

E
[
‖Zn‖22

]
≤ e

∑n
i=1 b

2
i

n∏
i=1

a2i · ‖Z0‖22

E
[
‖Zn − E[Zn]‖22

]
≤
(
e
∑n
i=1 b

2
i − 1

)
a2i · ‖Z0‖22.

Finally, we collect two simple analytic lemmas for later use.

Lemma 12 For any matrix M ∈ Rm×n, we have that

E[‖M‖22] ≥ ‖E[M ]‖22.

Proof We find by Cauchy-Schwartz and the convexity of the spectral norm that

E[‖M‖22] ≥ E[‖M‖2]2 ≥ ‖E[M ]‖22,

which yields the desired.

Lemma 13 For bounded at ≥ 0, if we have
∑∞

t=0 at =∞, then for any C > 0 we have

∞∑
t=0

ate
−C

∑t
s=0 as <∞.

Proof Define bt :=
∑t

s=0 as so that

S :=
∞∑
t=0

ate
−C

∑t
s=0 as =

∞∑
t=0

(bt − bt−1)e−Cbt ≤
∫ ∞
0

e−Cxdx <∞,

where we use
∫∞
0 e−Cxdx to upper bound its right Riemann sum.
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Appendix C. Analysis of data augmentation as stochastic optimization

In this section, we prove generalizations of our main theoretical results Theorems 2 and 3 giving
Monro-Robbins type conditions for convergence and rates for augmented gradient descent in the
linear setting.

C.1. Monro-Robbins type results

To state our general Monro-Robbins type convergence results, let us briefly recall the notation. We
consider overparameterized linear regression with loss

L(W ;D) =
1

N
||WX − Y ||2F ,

where the dataset D of size N consists of data matrices X,Y that each have N columns xi ∈
Rn, yi ∈ Rp with n > N. We optimize L(W ;D) by augmented gradient descent, which means that
at each time t we replace D = (X,Y ) by a random dataset Dt = (Xt, Yt). We then take a step

Wt+1 = Wt − ηt∇WL(Wt;Dt)

of gradient descent on the resulting randomly augmented loss L(W ;Dt) with learning rate ηt. Re-
call that we set

V‖ := column span of E[XtX
T
t ] (C.1)

and denoted by Q‖ the orthogonal projection onto V‖. As noted in §4, on V‖ the proxy loss

Lt = E [L(W ;Dt)]

is strictly convex and has a unique minimum, which is

W ∗t = E
[
YtX

T
t

]
(Q||E

[
XtX

T
t

]
Q||)

−1.

The change from one step of augmented GD to the next in these proxy optima is captured by

Ξ∗t := W ∗t+1 −W ∗t .

With this notation, we are ready to state Theorems 14, which gives two different sets of time-varying
Monro-Robbins type conditions under which the optimization trajectory Wt converges for large t.
In Theorem 17, we refine the analysis to additionally give rates of convergence.

Theorem 14 Suppose that V‖ is independent of t, that the learning rate satisfies ηt → 0, that the
proxy optima satisfy

∞∑
t=0

‖Ξ∗t ‖F <∞, (C.2)

ensuring the existence of a limit W ∗∞ := limt→∞W
∗
t and that

∞∑
t=0

ηtλmin,V‖(E[XtX
T
t ]) =∞. (C.3)
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Then if either

∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
<∞ (C.4)

or

∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F

+
∥∥∥E[Wt](XtX

T
t − E[XtX

T
t ])− (YtX

T
t − E[YtX

T
t ])
∥∥∥2
F

]
<∞ (C.5)

hold, then for any initialization W0, we have WtQ‖
p→W ∗∞.

Remark 15 In the general case, the column span V|| of E[XtX
T
t ] may vary with t. This means that

some directions in Rn may only have non-zero overlap with colspan(E[XtX
T
t ]) for some positive

but finite collection of values of t. In this case, only finitely many steps of the optimization would
moveWt in this direction, meaning that we must define a smaller space for convergence. The correct
definition of this subspace turns out to be the following

V‖ :=
∞⋂
t=0

ker

[ ∞∏
s=t

(
Id−2ηs

N
E[XsX

T
s ]
)]

(C.6)

=
∞⋂
t=0

{
u ∈ Rn

∣∣∣∣ lim
T→∞

T∏
s=t

(
Id−2ηs

N
E[XsX

T
s ]
)
u = 0

}
.

With this re-definition of V|| and with Q‖ still denoting the orthogonal projection to V‖, Theorem 14
holds verbatim and with the same proof. Note that if ηt → 0, V||colspan(E[XtX

T
t ]) is fixed in t,

and (C.3) holds, this definition of V‖ reduces to that defined in (C.1).

Remark 16 The condition (C.5) can be written in a more conceptual way as

∞∑
t=0

[
‖XtX

T
t − E[XtX

T
t ]‖2F + η2t Tr

[
Id ◦Var

(
(E[Wt]Xt − Yt)XT

t

)]]
<∞,

where we recognize that (E[Wt]Xt − Yt)XT
t is precisely the stochastic gradient estimate at time

t for the proxy loss Lt, evaluated at E [Wt], which is the location at time t for vanilla GD on Lt
since taking expectations in the GD update equation coincides with GD for Lt. Moreover, condition
(C.5) actually implies condition (C.4) (see (C.13) below). The reason we state Theorem 14 with
both conditions, however, is that (C.5) makes explicit reference to the average E [Wt] of the aug-
mented trajectory. Thus, when applying Theorem 14 with this weaker condition, one must separately
estimate the behavior of this quantity.

Theorem 14 gave conditions on joint learning rate and data augmentation schedules under which
augmented optimization is guaranteed to converge. Our next result proves rates for this convergence.
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Theorem 17 Suppose that ηt → 0 and that for some 0 < α < 1 < β1, β2 and C1, C2 > 0, we
have

logE

∥∥∥∥∥(
t∏

r=s

(
Id−2ηr

N
XrX

T
r

))
Q‖

∥∥∥∥∥
2

2

 < C1 − C2

∫ t+1

s
r−αdr (C.7)

as well as
‖Ξ∗t ‖F = O(t−β1) (C.8)

and
η2t Tr

[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t

)]
= O(t−β2). (C.9)

Then, for any initialization W0, we have for any ε > 0 that

tmin{β1−1,β2−α2
}−ε‖WtQ‖ −W ∗∞‖F

p→ 0.

Remark 18 To reduce Theorem 3 to Theorem 17, we notice that the conditions imply that Theorem
11 applies to Yt = Id−2ηt

XtXT
t

N with at = 1−Ω(t−α) and and b2t = O(t−γ), thus implying (C.7).

The first step in proving both Theorem 14 and Theorem 17 is to obtain recursions for the mean
and variance of the difference Wt − W ∗t between the time t proxy optimum and the augmented
optimization trajectory at time t. We will then complete the proof of Theorem 14 in §C.3 and the
proof of Theorem 17 in §C.4.

C.2. Recursion relations for parameter moments

The following proposition shows that difference between the mean augmented dynamics E[Wt] and
the time−t optimumW ∗t satisfies, in the sense of Definition 6, one-sided decay of type ({At}, {Bt})
with

At =
2ηt
N
XtX

T
t , Bt = −Ξ∗t .

It also shows that the variance of this difference, which is non-negative definite, satisfies two-sided
decay of type ({At}, {Ct}) with At as before and

Ct =
4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

In terms of the notations of Appendix B.1, we have the following recursions.

Lemma 19 The quantity E[Wt]−W ∗t satisfies

E[Wt+1]−W ∗t+1 = (E[Wt]−W ∗t )
(

Id−2ηt
N

E[XtX
T
t ]
)
− Ξ∗t (C.10)

and Zt := E[(Wt − E[Wt])
T(Wt − E[Wt])] satisfies

Zt+1 = E
[
(Id−2ηt

N
XtX

T
t )Zt(Id−

2ηt
N
XtX

T
t )

]
+

4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

(C.11)
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Proof Notice that E[XtX
T
t ]u = 0 if and only if XT

t u = 0 almost surely, which implies that

W ∗t E[XtX
T
t ] = E[YtX

T
t ]E[XtX

T
t ]+E[XtX

T
t ] = E[YtX

T
t ].

Thus, the learning dynamics yield

E[Wt+1] = E[Wt]−
2ηt
N

(
E[Wt]E[XtX

T
t ]− E[YtX

T
t ]
)

= E[Wt]−
2ηt
N

(E[Wt]−W ∗t )E[XtX
T
t ].

SubtractingW ∗t+1 from both sides yields (C.10). We now analyze the fluctuations. Writing Sym(A) :=
A+AT, we have

E[Wt+1]
TE[Wt+1] = E[Wt]

TE[Wt] +
2ηt
N

Sym
(
E[Wt]

TE[YtX
T
t ]− E[Wt]

TE[Wt]E[XtX
T
t ]
)

+
4η2t
N2

(
E[XtX

T
t ]E[Wt]

TE[Wt]E[XtX
T
t ]+E[XtY

T
t ]E[YtX

T
t ]−Sym(E[XtX

T
t ]E[Wt]

TE[YtX
T
t ])
)
.

Similarly, we have that

E[WT
t+1Wt+1] = E[WT

t Wt] +
2ηt
N

Sym(E[WT
t YtX

T
t −WT

t WtXtX
T
t ])

+
4η2t
N2

E[XtX
T
t W

T
t WtXtX

T
t − Sym(XtX

T
t W

T
t YtX

T
t ) +XtY

T
t YtX

T
t ].

Noting that Xt and Yt are independent of Wt and subtracting yields the desired.

C.3. Proof of Theorem 14

First, by Lemma 19, we see that E[Wt]−W ∗t has one-sided decay with

At = 2ηt
XtX

T
t

N
and Bt = −Ξ∗t .

Thus, by Lemma 7 and (C.2), we find that

lim
t→∞

(E[Wt]Q‖ −W ∗t ) = 0, (C.12)

which gives convergence in expectation.
For the second moment, by Lemma 19, we see that Zt has two-sided decay with

At = 2ηt
XtX

T
t

N
and Ct =

4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

We now verify (B.7) and (B.8) in order to apply Lemma 8.
For (B.7), for any ε > 0, notice that

E[‖As − E[As]‖2F ] = η2sE[‖XsX
T
s − E[XsX

T
s ]‖2F ]
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so by either (C.4) or (C.5) we may choose T1 > t so that
∑∞

s=T1
E[‖As − E[As]‖2F ] < ε

2 . Now
choose T2 > T1 so that for T > T2, we have∥∥∥∥∥∥

( T∏
r=T1

E[Id−Ar]
)
Q‖

∥∥∥∥∥∥
2

2

<
ε

2

1

‖
∏T1−1
s=t E[Id−As]‖2F +

∑T1−1
s=t E[‖As − E[As]‖2F ]

.

For T > T2, we then have

E

∥∥∥∥∥(
T∏
s=t

(Id−As)
)
Q‖

∥∥∥∥∥
2

2


≤

∥∥∥∥∥(
T∏
s=t

E[Id−As]
)
Q‖

∥∥∥∥∥
2

+
T∑
s=t

E

∥∥∥∥∥
s∏
r=t

(Id−Ar)
T∏

r=s+1

(Id−E[Ar])Q‖

∥∥∥∥∥
2

F

−

∥∥∥∥∥
s−1∏
r=t

(Id−Ar)
T∏
r=s

(Id−E[Ar])Q‖

∥∥∥∥∥
2

F


=

∥∥∥∥∥(
T∏
s=t

E[Id−As]
)
Q‖

∥∥∥∥∥
2

F

+
T∑
s=t

E

∥∥∥∥∥
s−1∏
r=t

(Id−Ar)(As − E[As])
T∏

r=s+1

(Id−E[Ar])Q‖

∥∥∥∥∥
2

F


≤

∥∥∥∥∥
T1−1∏
s=t

E[Id−As]

∥∥∥∥∥
2
∥∥∥∥∥∥F
( T∏
r=T1

E[Id−Ar]
)
Q‖

∥∥∥∥∥∥
2

2

+
T∑
s=t

E[‖As − E[As]‖2F ]

∥∥∥∥∥(
T∏

r=s+1

E[Id−Ar]
)
Q‖

∥∥∥∥∥
2

2

≤
(∥∥∥∥∥

T1−1∏
s=t

E[Id−As]

∥∥∥∥∥
2

F

+

T1−1∑
s=t

E[‖As − E[As]‖2F ]
)∥∥∥∥∥∥
( T∏
r=T1

E[Id−Ar]
)
Q‖

∥∥∥∥∥∥
2

2

+

T∑
s=T1

E[‖As − E[As]‖2F ]

< ε,

which implies (B.7). Condition (B.8) follows from either (C.5) or (C.4) and the bounds

Tr(Ct) ≤
8η2t
N2

(
‖E[Wt](XtX

T
t − E[XtX

T
t ])‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

)
(C.13)

≤ 8η2t
N2

(
‖E[Wt]‖2‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

)
,

where in the first inequality we use the fact that ‖M1−M2‖2F ≤ 2(‖M1‖2F +‖M2‖2F ). Furthermore,
iterating (C.10) yields ‖E[Wt] −W ∗t ‖F ≤ ‖W0 −W ∗0 ‖F +

∑∞
t=0 ‖Ξ∗t ‖F , which combined with

(C.13) and either (C.4) or (C.5) therefore implies (B.8). We conclude by Lemma 8 that

lim
t→∞

QT
‖ZtQ‖ = lim

t→∞
E[QT

‖ (Wt − E[Wt])
T(Wt − E[Wt])Q‖] = 0. (C.14)

Together, (C.12) and (C.14) imply that WtQ‖ −W ∗t
p→ 0. The conclusion then follows from the

fact that limt→0W
∗
t = W ∗∞. This complete the proof of Theorem 14. �

C.4. Proof of Theorem 17

By Lemma 19, E[Wt]−W ∗t has one-sided decay with

At =
2ηt
N
XtX

T
t , Bt = −Ξ∗t .
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By Lemma 12 and (C.7), E[At] satisfies

log

∥∥∥∥∥
t∏

r=s

(
Id−2ηr

1

N
E[XrX

T
r ]
)
Q‖

∥∥∥∥∥
2

≤ 1

2
logE

∥∥∥∥∥(
t∏

r=s

(
Id−2ηr

XrX
T
r

N

))
Q‖

∥∥∥∥∥
2

2


<
C1

2
− C2

2

∫ t+1

s
r−αdr.

Applying Lemma 9 using this bound and (C.8), we find that

‖E[Wt]Q‖ −W ∗t ‖F = O(tα−β1).

Moreover, because ‖Ξ∗t ‖F = O(t−β1), we also find that ‖W ∗t −W ∗∞‖F = O(t−β1+1), and hence

‖E[Wt]Q‖ −W ∗∞‖F = O(t−β1+1).

Further, by Lemma 19, E[(Wt − E[Wt])
T(Wt − E[Wt])] has two-sided decay with

At =
2ηt
N
XtX

T
t , Ct =

4η2t
N2

[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
.

Applying Lemma 10 with (C.7) and (C.9), we find that

E
[
‖(Wt − E[Wt])Q‖‖2F

]
= O(tα−β2).

By Chebyshev’s inequality, for any x > 0 we have

P
(
‖WtQ‖ −W ∗∞‖F ≥ O(t−β1+1) + x ·O(t

α−β2
2 )
)
≤ x−2.

For any ε > 0, choosing x = tδ for small 0 < δ < ε we find as desired that

tmin{β1−1,β2−α2
}−ε‖WtQ‖ −W ∗∞‖F

p→ 0,

thus completing the proof of Theorem 17. �

Appendix D. Measuring convergence using intrinsic time

In this section, we introduce the concept of intrinsic time, which gives natural units in which to
interpret the progress of optimization.

D.1. Definition of intrinsic time

Theorem 3 measures rates in terms of optimization steps t, but a different measurement of time
called the intrinsic time of the optimization will be more suitable for measuring the behavior of
optimization quantities. This was introduced for SGD in [25, 26], and we now generalize it to our
broader setting. Define the intrinsic time by

τ(t) :=

t−1∑
s=0

2ηs
N
λmin,V‖(E[XsX

T
s ]) (D.1)
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so that a gradient descent step on a quadratic loss L with Hessian H increments intrinsic time by
ηλmin(H). Notice that intrinsic time of augmented optimization for the sequence of proxy losses
Ls appears in Theorems 2 and 3, which require via condition (4.2) that the intrinsic time tends to
infinity as the number of optimization steps grows.

Intrinsic time will be a sensible variable in which to measure the behavior of quantities such as
the fluctuations of the optimization path f(t) := E[‖(Wt−E[Wt])Q‖‖2F ]. In the proofs of Theorems
2 and 3, we show that the fluctuations satisfy an inequality of the form

f(t+ 1) ≤ f(t)(1− a(t))2 + b(t) (D.2)

for a(t) := 2ηt
1
N λmin,V‖(E[XtX

T
t ]) and b(t) := Var[||ηt∇WL(Wt)||F ] so that τ(t) =

∑t−1
s=0 a(s).

Iterating the recursion (D.2) shows that

f(t) ≤ f(0)
t−1∏
s=0

(1− a(s))2 +
t−1∑
s=0

b(s)
t−1∏

r=s+1

(1− a(r))2

≤ e−2τ(t)f(0) +

t−1∑
s=0

b(s)

a(s)
e2τ(s+1)−2τ(t)(τ(s+ 1)− τ(s)).

For τ := τ(t) and changes of variable A(τ), B(τ), and F (τ) such that A(τ(t)) = a(t), B(τ(t)) =
b(t), and F (τ(t)) = f(t), we find by replacing a right Riemann sum by an integral that

F (τ) - e−2τ
[
F (0) +

∫ τ

0

B(σ)

A(σ)
e2σdσ

]
. (D.3)

In order for the result of optimization to be independent of the starting point, by (D.3) we must have
τ → ∞ to remove the dependence on F (0); this provides one explanation for the appearance of τ
in condition (4.2). Further, (D.3) implies that the fluctuations at an intrinsic time are bounded by an
integral against the function B(σ)

A(σ) which depends only on the ratio of A(σ) and B(σ). In the case
of minibatch SGD, we compute this ratio in (D.4) and recover the commonly used “linear scaling”
rule for learning rate.

D.2. Intrinsic time for SGD

Our proof of Theorem 4 shows the intrinsic time is τ(t) =
∑t−1

s=0 2ηs
1
N λmin,V‖(XX

T) and the ratio
b(t)
a(t) in (D.3) is by (F.4) bounded uniformly for a constant C > 0 by

b(t)

a(t)
≤ C · ηt

Bt
. (D.4)

Thus, keeping b(t)
a(t) fixed as a function of τ suggests the “linear scaling” ηt ∝ Bt used empirically

in [12] and proposed via an heuristic SDE limit in [26].

Appendix E. Analysis of Noising Augmentations

In this section, we give a full analysis of the noising augmentations presented in Section 3. Let us
briefly recall the notation. As before, we consider overparameterized linear regression with loss

L(W ;D) =
1

N
||WX − Y ||2F ,

22



DATA AUGMENTATION AS STOCHASTIC OPTIMIZATION

where the dataset D of size N consists of data matrices X,Y that each have N columns xi ∈
Rn, yi ∈ Rp with n > N. We optimize L(W ;D) by augmented gradient descent with additive
Gaussian noise, which means that at each time t we replace D = (X,Y ) by a random dataset
Dt = (Xt, Y ), where the columns xi,t of Xt are

xi,t = xi + σtGi, Gi ∼ N (0, 1) i.i.d.

We then take a step
Wt+1 = Wt − ηt∇WL(Wt;Dt)

of gradient descent on the resulting randomly augmented loss L(W ;Dt) with learning rate ηt. A
direct computation shows that the proxy loss

Lt = E [L(W ;Dt)] = L(W ;D) + σ2tN ||W ||
2
F ,

which is strictly convex. Thus, the space

V‖ := column span of E[XtX
T
t ]

is simply all of Rn. Moreover, the proxy loss has a unique minimum, which is

W ∗t = Y XT (σ2tN Idn×n +XXT )−1.

E.1. Proof of Theorem 1

We first show convergence. For this, we seek to show that if σ2t , ηt → 0 with σ2t non-increasing and

∞∑
t=0

ηtσ
2
t =∞ and

∞∑
t=0

η2t σ
2
t <∞, (E.1)

then, Wt
p→Wmin. We will do this by applying Theorem 2, so we check that our assumptions imply

the hypotheses of these theorems. For Theorem 2, we directly compute

E[YtX
T
t ] = Y XT and E[XtX

T
t ] = XXT + σ2tN · Idn×n

and

E[XtX
T
t Xt] = XXTX + σ2t (N + n+ 1)X

E[XtX
T
t XtX

T
t ] = XXTXXT + σ2t

(
(2N + n+ 2)XXT + Tr(XXT) Idn×n

)
+ σ4tN(N + n+ 1) Idn×n .

We also find that

‖Ξ∗t ‖F = |σ2t − σ2t+1|N
∥∥∥∥Y XT

(
XXT + σ2tN · Idn×n

)−1(
XXT + σ2t+1N · Idn×n

)−1∥∥∥∥
F

≤ |σ2t − σ2t+1|N‖Y XT[(XXT)+]2‖F .
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Thus, because σ2t is decreasing, we see that the hypothesis (4.1) of Theorem 2 indeed holds. Further,
we note that

∞∑
t=0

η2tE
[
‖XtX

T
t − E[XtX

T
t ]‖2F + ‖YtXT

t − E[YtX
T
t ]‖2F

]
=

∞∑
t=0

η2t σ
2
t

(
2(n+ 1)‖X‖2F +N‖Y ‖2F + σ2tNn(n+ 1)

)
= O

( ∞∑
t=0

η2t σ
2
t

)
,

which by (E.1) implies (C.4). Theorem 2 and the fact that limt→∞W
∗
t = Wmin therefore yield that

Wt
p→Wmin.

For the rate of convergence, we aim to show that if ηt = Θ(t−x) and σ2t = Θ(t−y) with
x, y > 0, x+ y < 1, and 2x+ y > 1, then for any ε > 0, we have that

tmin{β, 1
2
α}−ε‖Wt −Wmin‖F

p→ 0.

We now check the hypotheses for and apply Theorem 17. For (C.7), notice that Yr = Id−2ηr
XrXT

r
N

satisfies the hypotheses of Theorem 11 with ar = 1 − 2ηrσ
2
r and b2r = η2rσ

2
r

a2r

(
2(n + 1)‖X‖2F +

σ2rNn(n+ 1)
)

. Thus, by Theorem 11 and the fact that ηt = Θ(t−x) and σ2t = Θ(t−y), we find for
some C1, C2 > 0 that

logE

∥∥∥∥∥
t∏

r=s

(Id−2ηr
XrX

T
r

N
)

∥∥∥∥∥
2

2

 ≤ t∑
r=s

b2r + 2

t∑
r=s

log(1− 2ηrσ
2
r )

≤ C1 − C2

∫ t+1

s
r−x−ydr.

For (C.8), we find that

‖Ξ∗t ‖F ≤ |σ2t − σ2t+1|N‖Y XT[(XXT)+]2‖F = O(t−y−1).

Finally, for (C.9), we find that

η2t Tr
[
Id ◦Var

(
E[Wt]XtX

T
t − YtXT

t

)]
= O(t−2x−y).

Noting finally that ‖W ∗t −Wmin‖F = O(σ2t ) = O(t−y), we apply Theorem 17 with α = x + y,
β1 = y + 1, and β2 = 2x+ y to obtain the desired estimates. This concludes the proof of Theorem
1. �

E.2. Noising augmentations for nonlinear models

Although we leave systemic study of augmentation in non-linear models to future work, our frame-
work can be applied beyond linear models and quadratic losses. To see this, consider additive noise
for small σt. For any sufficiently smooth function g, Taylor expansion reveals

E [g(x+ σtG)] = g(x) +
σ2t
2

∆g(x) +O(σ4t ),
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where ∆ =
∑

i ∂
2
i is the Laplacian and G is a standard Gaussian vector. For a general empirical

loss, we have

Lt(W ) = L(W ;D) +
σ2t

2|D|
∑

(x,y∈D)

Tr
[
(∇xf)T (Hf `)∇xf

]
+ (∇f `)T ∆xf +O(σ4t ),

where we have written Hf ` for the Hessian of some convex per-sample loss ` with respect to f and
∇x,∇f for the gradients with respect to x, f, respectively. If σt is small, then the proxy loss Lt
will differ significantly from the unaugmented loss L only near the end of training, when we expect
∇f ` to be small and Hf ` to be positive semi-definite. Hence, we find heuristically that, neglecting
higher order terms in σt, additive noise with small σt corresponds to an `2-regularizer

Tr

[
σ2t
2

(∇xf)T (HfL)∇xf
]

=:
σ2t
2
||∇xf ||2HfL

for the gradients of f with respect to the natural inner product determined by the Hessian of the loss.
This is intuitive since penalizing the gradients of f is the same as requiring that f is approximately
constant in a neighborhood of every datapoint. However, although the input noise was originally
isotropic, the `2-penalty is aligned with loss Hessian and hence need not be.

Appendix F. Analysis of SGD

This section gives the full analysis of the results for stochastic gradient descent with and without
additive synthetic noise presented in Section 5. Let us briefly recall the notation. As before, we
consider overparameterized linear regression with loss

L(W ;D) =
1

N
||WX − Y ||2F ,

where the dataset D of size N consists of data matrices X,Y that each have N columns xi ∈
Rn, yi ∈ Rp with n > N.We optimize L(W ;D) by augmented SGD either with or without additive
Gaussian noise. In the former case, this means that at each time t we replace D = (X,Y ) by a
random batch Bt = (Xt, Yt) given by a prescribed batch size Bt = |Bt| in which each datapoint
in Bt is chosen uniformly with replacement from D, and the resulting data matrices Xt and Yt
are scaled so that Lt(W ) = L(W ;D). Concretely, this means that for the normalizing factor
ct :=

√
N/Bt we have

Xt = ctXAt and Yt = ctY At, (F.1)

whereAt ∈ RN×Bt has i.i.d. columnsAt,i with a single non-zero entry equal to 1 chosen uniformly
at random. In this setting the minimum norm optimum for each t are the same and given by

W ∗t = W ∗∞ = Y XT(XXT)+,

which coincides with the minimum norm optimum for the unaugmented loss.
In the setting of SGD with additive noise at level σt, we take instead

Xt = ct(XAt + σtGt) and Yt = ctY At,
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where ct and At are as before and Gt ∈ Rn×Bt has i.i.d. Gaussian entries. In this setting, the proxy
loss is

Lt(W ) :=
1

N
E
[
‖ctY At − ctWXAt − ctσtWGt‖2F

]
=

1

N
‖Y −WX‖2F + σ2t ‖W‖2F ,

which has ridge minimizer W ∗t = Y XT(XXT + σ2tN · Idn×n)−1.
We begin in §F.1 by treating the case of noiseless SGD. We then do the analysis in the presence

of noise in §F.2.

F.1. Proof of Theorem 4

In order to apply Theorems 14 and 17, we begin by computing the moments ofAt as follows. Recall
the notation diag(M) from Appendix B.1.

Lemma 20 For any Z ∈ RN×N , we have that

E[AtA
T
t ] =

Bt
N

IdN×N and E[AtA
T
t ZAtA

T
t ] =

Bt
N

diag(Z) +
Bt(Bt − 1)

N2
Z.

Proof We have that

E[AtA
T
t ] =

Bt∑
i=1

E[Ai,tA
T
i,t] =

Bt
N

IdN×N .

Similarly, we find that

E[AtA
T
t ZAtA

T
t ] =

Bt∑
i,j=1

E[Ai,tA
T
i,tZAj,tA

T
j,t]

=

Bt∑
i=1

E[Ai,tA
T
i,tZAi,tA

T
i,t] + 2

∑
1≤i<j≤Bt

E[Ai,tA
T
i,tZAj,tA

T
j,t]

=
Bt
N

diag(Z) +
Bt(Bt − 1)

N2
Z,

which completes the proof.

Let us first check convergence in mean:

E[Wt]Q‖ →W ∗∞.

To see this, note that Lemma 20 implies

E[YtX
T
t ] = Y XT E[XtX

T
t ] = XXT,

which yields that
W ∗t = Y XT[XXT]+ = W ∗∞ (F.2)

for all t. We now prove convergence. Since all W ∗t are equal to W ∗∞, we find that Ξ∗t = 0. By
(C.10) and Lemma 20 we have

E[Wt+1]−W ∗∞ = (E[Wt]−W ∗∞)
(

Id−2ηt
N
XXT

)
,
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which implies since 2ηt
N < λmax(XXT)−1 for large t that for some C > 0 we have

‖E[Wt]Q‖ −W ∗∞‖F ≤ ‖W0Q‖ −W ∗∞‖F
t−1∏
s=0

∥∥∥∥Q‖ − 2ηs
N
XXT

∥∥∥∥
2

≤ C‖W0Q‖ −W ∗∞‖F exp
(
−

t−1∑
s=0

2ηs
N
λmin,V‖(XX

T)
)
. (F.3)

From this we readily conclude using the fact that
∑∞

t=0 ηt = ∞ the desired convergence in mean
E[Wt]Q‖ →W ∗∞.

Let us now prove that the variance tends to zero. By Lemma 19, we find that Zt = E[(Wt −
E[Wt])

T(Wt − E[Wt])] has two-sided decay of type ({At}, {Ct}) with

At =
2ηt
N
XtX

T
t , Ct =

4η2t
N2

[
Id ◦Var((E[Wt]Xt − Yt)XT

t )
]
.

To understand the resulting rating of convergence, let us first obtain a bound on Tr(Ct). To do this,
note that for any matrix A, we have

Tr (Id ◦Var[A]) = Tr
(
E
[
ATA

]
− E [A]T E [A]

)
.

Moreover, using the definition (F.1) of the matrix At and writing

Mt := E [Wt]X − Y,

we find (
(E [Wt]Xt − Yt)XT

t

)T
(E [Wt]Xt − Yt)XT

t = XAtA
T
t M

T
t MtAtA

T
t X

T

as well as

E
[(

(E[Wt]Xt − Yt)XT
t

)]T
E
[
(E[Wt]Xt − Yt)XT

t

]
= XE

[
AtA

T
t

]
MT
t MtE

[
AtA

T
t

]
XT.

Hence, using the expression from Lemma 20 for the moments of At and recalling the scaling factor
ct = (N/Bt)

1/2, we find

Tr(Ct) =
4η2t
Bt

Tr

(
X

{
diag

(
MT
t Mt

)
− 1

N
MT
t Mt

}
XT

)
.

Next, writing
∆t := E[Wt]−W ∗∞

and recalling (F.2), we see that
Mt = ∆tX.

Thus, applying the estimates (F.3) about exponential convergence of the mean, we obtain

Tr(Ct) ≤
8η2t
Bt

∣∣∣∣∆tQ||
∣∣∣∣2
2

∣∣∣∣XXT
∣∣∣∣2
2

≤ C 8η2t
Bt

∣∣∣∣XXT
∣∣∣∣2
2
‖∆0Q‖‖2F exp

(
−

t−1∑
s=0

4ηs
N
λmin,V‖(XX

T)
)
. (F.4)
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Notice now that Yr = Q‖−Ar satisfies the conditions of Theorem 11 with ar = 1−2ηr
1
N λmin,V‖(XX

T)

and b2r = 4η2r
Bra2rN

Tr
(
X diag(XTX)X − 1

NXX
TXXT

)
. By Theorem 11 we then obtain for any

t > s > 0 that

E

∥∥∥∥∥
t∏

r=s+1

(Q‖ −Ar)

∥∥∥∥∥
2

2

 ≤ e∑t
r=s+1 b

2
r

t∏
r=s+1

(
1− 2ηr

1

N
λmin,V‖(XX

T)
)2
. (F.5)

By two-sided decay of Zt, we find by (F.4), (F.5), and (B.9) that

E[‖WtQ‖ − E[Wt]Q‖‖2F ] = Tr(Q‖ZtQ‖)

≤ e−
4
N
λmin,V‖ (XX

T)
∑t−1
s=0 ηs ‖XXT‖22

N2
‖∆0Q‖‖2FC

t−1∑
s=0

8η2s
Bs/N

e
4ηs
N
λmin,V‖ (XX

T)+
∑t
r=s+1 b

2
r . (F.6)

Since ηs → 0, we find that ηs NBs e
4ηs
N
λmin,V‖ (XX

T) is uniformly bounded and that b2r ≤ 4
N λmin,V‖(XX

T)ηr
for sufficiently large r. We therefore find that for some C ′ > 0,

E[‖WtQ‖ − E[Wt]Q‖‖2F ] ≤ C ′
t−1∑
s=0

ηse
− 4
N
λmin,V‖ (XX

T)
∑s
r=0 ηr ,

hence limt→∞ E[‖WtQ‖−E[Wt]Q‖‖2F ] = 0 by Lemma 13. Combined with the fact that E[Wt]Q‖ →
W ∗∞, this implies that WtQ‖

p→W ∗∞.
To obtain a rate of convergence, observe that by (F.3) and the fact that ηt = Θ(t−x), for some

C1, C2 > 0 we have
‖E[Wt]Q‖ −W ∗∞‖F ≤ C1 exp

(
− C2t

1−x
)
. (F.7)

Similarly, by (F.6) and the fact that ηs
Bs/N

<∞ uniformly, for some C3, C4, C5 > 0 we have

E[‖WtQ‖ − E[Wt]Q‖‖2F ] ≤ C3 exp
(
− C4t

1−x
)
t1−x

We conclude by Chebyshev’s inequality that for any a > 0 we have

P
(
‖WtQ‖ −W ∗∞‖F ≥ C1 exp

(
− C2t

1−x
)

+ a ·
√
C3t

1
2
−x

2 e−C4t1−x/2
)
≤ a−2.

Taking a = t, we conclude as desired that for some C > 0, we have

eCt
1−x‖WtQ‖ −W ∗∞‖F

p→ 0.

This completes the proof of Theorem 4. �

F.2. Proof of Theorem 5

We now complete our analysis of SGD with Gaussian noise. We will directly check that the op-
timization trajectory Wt converges at large t to the minimal norm interpolant W ∗∞ with the rates
claimed in Theorem 5. We will deduce this from Theorem 17. To check the hypotheses of this
theorem, we will need expressions for its moments, which we record in the following lemma.
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Lemma 21 We have

E[YtX
T
t ] = Y XT and E[XtX

T
t ] = XXT + σ2tN Idn×n . (F.8)

Moreover,

E[YtX
T
t XtY

T
t ] = c4tE[Y AtA

T
t X

TXAtA
T
t Y

T + σ2t Y AtG
T
t GtA

T
t Y

T]

=
N

Bt
Y diag(XTX)Y T +

Bt − 1

Bt
Y XTXY T + σ2tNY Y

T

E[YtX
T
t XtX

T
t ] = c4tE[Y AtA

T
t X

TXAtA
T
t X

T + σ2t Y AtG
T
t GtA

T
t X

T

+ σ2t Y AtG
T
t XAtG

T
t + σ2t Y AtA

T
t X

TGtG
T
t ]

=
N

Bt
Y diag(XTX)XT +

Bt − 1

Bt
Y XTXXT + σ2t (N +

n+ 1

Bt/N
)Y XT

E[XtX
T
t XtX

T
t ] = c4tE[XAtA

T
t X

TXAtA
T
t X

T + σ2tGtG
T
t XAtA

T
t X

T + σ2tXAtG
T
t GtA

T
t X

T

+ σ2tXAtA
T
t X

TGtG
T
t + σ2tGtA

T
t X

TGtA
T
t X

T + σ2tXAtG
T
t XAtG

T
t

+ σ2tGtA
T
t X

TXAtG
T
t + σ4tGtG

T
t GtG

T
t ]

=
N

Bt
X diag(XTX)XT +

Bt − 1

Bt
XXTXXT + σ2t (2N +

n+ 2

Bt/N
)XXT

+ σ2t
N

Bt
Tr(XXT) Idn×n +σ4tN(N +

n+ 1

Bt/N
) Idn×n .

Proof All these formulas are obtained by direct, if slightly tedious, computation.

With these expressions in hand, we can readily check the of conditions Theorem 17. First, we find
using the Sherman-Morrison-Woodbury matrix inversion formula that

‖Ξ∗t ‖F = |σ2tN − σ2t+1N |
∥∥∥Y XT(XXT + σ2tN · Idn×n)−1(XXT + σ2t+1N · Idn×n)−1

∥∥∥
F

(F.9)

≤ N |σ2t − σ2t+1|
∥∥∥Y XT[(XXT)+]2

∥∥∥
F
.

Hence, assuming that σ2t = Θ(t−y), we see that condition (C.8) of Theorem 17 holds with

β1 = −y − 1.

Next, let us verify that the condition (C.7) holds for an appropriate α. For this, we need to bound

logE

∣∣∣∣∣
∣∣∣∣∣
t∏

r=s

(
Id−2ηr

N
XrX

T
r

)∣∣∣∣∣
∣∣∣∣∣
2

2

,

which we will do using Theorem 11. In order to apply this result, we find by direct inspection of
the formula

E[XrX
T
r ] = XXT + σ2rN Idn×n

that ∣∣∣∣∣∣∣∣E [Id−2ηr
N
XrX

T
r

]∣∣∣∣∣∣∣∣
2

= 1− 2ηrσ
2
r := ar.
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Moreover, we have

E

[∣∣∣∣∣∣∣∣Id−2ηr
N
XrX

T
r − E

[
Id−2ηr

N
XrX

T
r

]∣∣∣∣∣∣∣∣2
2

]
=

4η2r
N2

E
[∣∣∣∣∣∣XrX

T
r − E

[
XrX

T
r

]∣∣∣∣∣∣2
2

]
.

Using the exact expressions for the resulting moments from Lemma 21, we find

4η2r
N2

E
[∣∣∣∣∣∣XrX

T
r − E

[
XrX

T
r

]∣∣∣∣∣∣2
2

]
=

4η2r
N2

[
1

Bt
Tr
(
X(N diag(XTX)−XTX)XT

)
+ 2σ2t

n+ 1

Bt/N
Tr(XXT) + σ4t

Nn(n+ 1)

Bt/N

]
≤ Cη2r .

Thus, applying Theorem 11, we find that

logE

∣∣∣∣∣
∣∣∣∣∣
t∏

r=s

(
Id−2ηr

N
XrX

T
r

)∣∣∣∣∣
∣∣∣∣∣
2

2

≤
t∑

r=s

Cη2r log

(
t∏

r=s

(
1− 2ηrσ

2
r

))
≤

t∑
r=s

Cη2r − 2ηrσ
2
r .

Recall that, in the notation of Theorem 5, we have

ηr = Θ(r−x), σ2r = Θ(r−y).

Hence, since under out hypotheses we have x < 2y, we conclude that condition (C.7) holds with
α = x+ y. Moreover, exactly as in Lemma 19, we have

∆′t+1 = ∆′t

(
Id−2ηt

N
E
[
XtX

T
t

])
+

2

N
Ξ∗t , ∆′t := E [Wt −W ∗t ] .

Since
||Ξ∗t ||F = O(t−y−1)

and we already saw that ∣∣∣∣∣∣∣∣Id−2ηt
N

E
[
XtX

T
t

]∣∣∣∣∣∣∣∣
2

= 1− 2ηtσ
2
t ,

we may use the single sided decay estimates Lemma 9 to conclude that∣∣∣∣∆′t∣∣∣∣F = O(tx−1).

Finally, it remains to bound

η2t Tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t

)]
.

A direct computation using Lemma 21 shows

E
[
‖YtXT

t − E[YtX
T
t ]‖2F

]
=

1

Bt
Tr
(
Y (N diag(XTX)−XTX)Y T

)
+ σ2tN Tr(Y Y T).
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Hence, again using 21, we find

η2t Tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t )
]

= η2t Tr
( 1

Bt
E[Wt]X(N diag(XTX)−XTX)XTE[Wt]

T

+ 2σ2t
n+ 1

Bt/N
E[Wt]XX

TE[Wt]
T + (σ2t

N

Bt
Tr(XXT) + σ4tN

n+ 1

Bt/N
)E[Wt]E[Wt]

T
)

− 2η2t Tr
( 1

Bt
Y (N diag(XTX)−XTX)XTE[Wt]

T + σ2t
n+ 1

Bt/N
Y XTE[Wt]

T
)

+ η2t Tr
( 1

Bt
Y (N diag(XTX)−XTX)Y T + σ2tNY Y

T
)
.

To make sense of this term, note that
W ∗∞X = Y.

Hence, we find after some rearrangement that

η2t Tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t )
]
≤ Cη2t (σ2t + ||∆t||2F ),

where we set
∆t := E [Wt −W ∗∞] .

Finally, we have

∆t ≤ ∆′t + ||W ∗t −W ∗∞||F = O(tx−1) + Θ(t−y) = Θ(t−y)

since we assumed that x+ y < 1. Therefore, we obtain

η2t Tr
[
Id ◦Var(E[Wt]XtX

T
t − YtXT

t )
]
≤ Cη2t σ2t = Θ(t−2x−y),

showing that condition (C.9) holds with β2 = 2x + y. Applying Theorem 17 completes the proof.
�
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