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Abstract
When scaling distributed training, the communication overhead is often the bottleneck. In this paper,
we propose a novel SGD variant with reduced communication and adaptive learning rates. We prove
the convergence of the proposed algorithm for smooth but non-convex problems. Empirical results
show that the proposed algorithm significantly reduces the communication overhead, which, in turn,
reduces the training time by up to 30% for the 1B word dataset.

1. Introduction

Stochastic Gradient Descent (SGD) and its variants are commonly used for training deep neural
networks. We can distribute the workload across multiple workers, which results in distributed
SGD with data parallelism [8, 34–36]. A larger number of workers accelerates the training, but also
increases the overall communication cost. In the worst case, it saturates the network interconnections.
In this paper, we reduce the communication overhead by skipping communication rounds, and
periodically averaging the models across the workers. Such an approach is called local SGD [17, 25,
30, 37, 38]. There are other approaches to reduce the communication overhead of distributed SGD,
such as quantization [3, 4, 12, 22, 27, 32, 42] and sparsification [2, 10, 26, 33].

Adaptive learning rate methods adapt coordinate-wise dynamic learning rates by accumulating
the historical gradients. Examples include AdaGrad [6, 18], RMSProp [28], AdaDelta [39], and
Adam [13]. Along similar lines, recent research has shown that AdaGrad can converge without
explicitly decreasing the learning rate [31, 44]. We note that these methods were not designed for local
SGD. Nevertheless, in distributed SGD, it remains unclear how to use infrequent synchronization to
reduce the communication overhead in SGD with adaptive learning rates. In this paper, we answer
this question by introducing staleness to the updates of the adaptive learning rates. To be more
specific, the update of the adaptive variables is delayed until the communication round.

We propose a novel SGD variant based on AdaGrad, and adopt the concept of local SGD to
reduce the communication. To the best of our knowledge, this paper is the first to theoretically and
empirically study local SGD with adaptive learning rates. The main contributions are as follows:
• We propose Local AdaAlter, a new technique to lazily update the adaptive variables. This enables

communication reduction via periodic synchronization for SGD with adaptive learning rates.
• We prove the convergence of the proposed algorithm for non-convex problems.
∗ The work was done when Cong Xie was a (part-time) intern in Amazon Web Services.
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• We show empirically that Local AdaAlter significantly reduces the communication overhead, thus
also cutting training time by up to 30% for the 1B word.

2. Related work

In this paper, we consider a centralized server-worker architecture, also known as the Parameter
Server (PS) [9, 15, 16, 21]. A common alternative is the AllReduce algorithm [23, 29]. Most of the
existing deep-learning frameworks, such as Tensorflow [1], and PyTorch [24] support either of them.
Similar to local SGD, there are other SGD variants that also reduce the communication overhead
by skipping synchronization rounds, such as federated learning [14, 19] and EASGD [40]. In this
paper, we focus on synchronous training with homogeneous workers. In contrast, asynchronous
training [20, 41, 43] is faster when there are stragglers, but noisier due to asynchrony [7].

3. Problem formulation

We consider the optimization problem: minx∈Rd F (x), where F (x) = 1
n

∑
i∈[n] Ezi∼Dif(x; zi), for

∀i ∈ [n], zi is sampled from the local dataset Di on the ith worker. We solve this problem in a
distributed manner with n workers. In each iteration, the ith worker will sample a mini-batch of
independent samples from the dataset Di, and compute the stochastic gradient Gi = ∇f(x; zi),∀i ∈
[n], where zi ∼ Di. Note that we assume non-IID workers, i.e., Di 6= Dj , ∀i 6= j.

Table 1: Notations

Notation Description
x ∈ Rd Model parameter
F (x), Fi(x), fi(x) F (x) = 1

n

∑
i∈[n] Fi(x); Fi(x) = E[f(x; zi)], zi ∼ Di; E[fi(x)] = Fi(x)

T, t Total number and index of iterations
Gt, (Gt)j , (∇Ft)j Stochastic gradient E[Gt] = ∇F (xt), (·)j is the jth coordinate, j ∈ [d]
(Gi,t)j The jth coordinate of Gi,t, on the ith worker, i ∈ [n], j ∈ [d]
◦ Hadamard (coordinate-wise) product
B2
t B2

t = b201 + 1
n

∑
i∈[n]
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√
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4. Methodology

First, we introduce two SGD variants that are highly related to our work: AdaGrad and local SGD.
Then, we will propose a new algorithm: local AdaAlter.

4.1. Preliminary

To help understand our proposed algorithm, we first introduce the classic SGD variant with adaptive
learning rate: AdaGrad. The detailed algorithm is shown in Algorithm 1. The general idea is to
accumulate the gradients coordinate-wise as the denominator to normalize the gradients.
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We adopt the concept of local SGD to reduce the communication overhead. The vanilla local
SGD algorithm is shown in Algorithm 2. Local SGD skips the communication rounds, and synchro-
nizes/averages the model parameters for every H iterations. Thus, on average, the communication
overhead is reduced by the factor of H , compared to fully synchronous SGD.

Algorithm 1 Distributed AdaGrad
Initialize x0, ε2, B2

0 = 0
for iteration t ∈ [T ] do

for workers i ∈ [n] in parallel do
Gi,t = ∇f(xt−1; zi,t), zi,t ∼ Di
Gt = 1

n

∑
i∈[n]Gi,t

B2
t ← B2

t−1 +Gt ◦Gt
xt ← xt−1 − η Gt√

B2
t +ε21

Algorithm 2 Local SGD
Initialize x1,0 = . . . = xn,0 = x0

for iteration t ∈ [T ] do
for workers i ∈ [n] in parallel do

Gi,t = ∇f(xi,t−1; zi,t), zi,t ∼ Di
yi,t ← xi,t−1 − ηGi,t
if mod (t,H) 6= 0 then xi,t ← yi,t ;
else xi,t ← 1

n

∑
k∈[n] yk,t ;

4.2. Local AdaAlter

We propose an SGD variant based on AdaGrad, namely, local AdaAlter, which skips synchronization
rounds, and periodically averages the model parameters and the accumulated denominators after
every H iterations. The detailed algorithm is shown in Algorithm 3. Note that in the communication
rounds, AdaAlter has to synchronize not only the model parameters, but also the accumulated
denominators across the workers. Thus, compared to the distributed AdaGrad (Algorithm 1), local
AdaAlter (Algorithm 3) reduces the communication overhead to 2

H on average.

Algorithm 3 Local AdaAlter
Initialize x1,0 = . . . = xn,0 = x0, B2

1,0 = . . . = B2
n,0 = b201, ε2

for iteration t ∈ [T ] do
for workers i ∈ [n] in parallel do

t′ = mod (t− 1, H) + 1
Gi,t = ∇f(xi,t−1; zi,t), zi,t ∼ Di
yi,t ← xi,t−1 − η Gi,t√

B2
i,t−t′+t

′ε21
; A2

i,t ← B2
i,t−1 +Gi,t ◦Gi,t

if mod (t,H) 6= 0 then xi,t ← yi,t; B2
i,t ← A2

i,t ;
else Synchronize: xi,t ← 1

n

∑
k∈[n] yk,t; B

2
i,t ← 1

n

∑
k∈[n]A

2
k,t ;

Lazy update of the denominators: In AdaGrad, a small positive constant ε is added for the
numerical stability, in case that the denominator B2

t is too small. However, in AdaAlter, ε2 acts as a
placeholder for the yet-to-be-added Gi,t ◦Gi,t. Thus, after t′ local steps without synchronization,
such placeholder becomes t′ε2. The denominators B2

i,t are updated in the synchronization rounds
only, which guarantees that the denominators are the same on different workers in the local iterations.
In a nutshell, in AdaAlter, the denominators B2

i,t are lazily updated to enable the infrequent synchro-
nization. The key idea is to use B2

i,t−t′ + t′ε21 as a placeholder before synchronization. Note that
even if we take H = 1, AdaAlter is different from AdaGrad due to the lazy update.

The lazy update of the denominators keeps the adaptive learning rates synchronized across
different workers, thus mitigates the noise caused by the local steps. However, it also incurs staleness
in the adaptivity. In our experiments, we show that such small staleness does not affect the accuracy.
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5. Theoretical analysis

In this section, we prove the convergence of Algorithm 3 for smooth but non-convex problems, with
constant learning rate η. First, we introduce some assumptions for our convergence analysis.

Assumption 1 (Smoothness) We assume that F (x) and Fi(x), ∀i ∈ [n] are L-smooth: Fi(y) −
Fi(x) ≤ 〈∇Fi(x), y − x〉+ L

2 ‖y − x‖2,∀x, y.

Assumption 2 (Bounded gradients) For any stochastic gradient Gi,t = ∇fi(xt), we assume
bounded coordinates (Gi,t)

2
j ≤ ρ2,∀j ∈ [d], or simply ‖Gi,t‖∞ ≤ ρ.

To analyze Algorithm 3, we introduce the following auxiliary variable: x̄t = 1
n

∑
i∈[n] xi,t. We

show that the sequence x̄0, . . . , x̄T converges to a critical point. The detailed proof is in Appendix A.

Theorem 1 (Convergence of local AdaAlter (Algorithm 3)) Taking arbitrary ε > 0, η ≤ 1
L in

Algorithm 3, and b0 ≥ 1, under Assumption 1 and 2, Algorithm 3 converges to a critical point:
E[

∑T
t=1 ‖∇F (x̄t−1)‖2]

T ≤ O
(

1
η
√
T

)
+O

(
η2H2 log(T )√

T

)
+O

(
η log(T )

n
√
T

)
.

With the constant learning rate η, local AdaAlter converges to a critical point when T → +∞.
Increasing the number of workers n reduces the variance. Compared to the fully synchronous
AdaAlter, local AdaAlter has the extra noise proportional to H2 due to the reduced communication.

6. Experiments

In this section, we empirically evaluate the proposed algorithm.

6.1. Multi-GPU experiment on 1B Word

AdaGrad is mostly successful on language models. Thus, we conduct experiments on the 1B Word
benchmark dataset [5]. We train Big LSTM model with 10% dropout (LSTM-2048-512 [11]).

6.1.1. EVALUATION SETUP

Our experiments are conducted on a single machine with 8 GPUs (an AWS P3.16 instance with
8 NVIDIA V100 GPUs, with 16GB memory per GPU). The batch size is 256 per GPU. We tune
the learning rates in the range of [0.2, 0.8] on the training data, and report the best results. Each
experiment is composed of 50 epochs. Each epoch processes 20k× 8× 256 data samples. We repeat
each experiment 5 times and take the average. In all the experiments, we take ε = 1, b0 = 1.

The typical measure used for language models is perplexity (PPL). We evaluate the following
performance metrics to test the reduction of communication overhead and the convergence: i) the
time consumed by one epoch versus different number of GPU workers; ii) the perplexity on the test
dataset versus time; iii) the perplexity on the test dataset versus the number of epochs.

6.2. Practical remarks for AdaAlter on 1B Word

There are some additional remarks for using local AdaAlter in practice.
Warm-up Learning Rates: When using AdaAlter, we observe that it behaves almost the same as
AdaGrad, except at the beginning, the denominator B2

t is too small for AdaAlter. Thus, we add a
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warm-up mechanism for AdaAlter: ηt ← η ×min
(

1, t
warm_up_steps

)
, where warm_up_steps is

a hyperparameter. In the first warm_up_steps iterations, the learning rate will gradually increase
from η

warm_up_steps to η. In our default setting where we use 8 GPU workers with batch size 256, we
take η = 0.5 and warm_up_steps = 600.
Scaling Learning Rates: The original baseline is conducted on 4 GPU with batch size 128 per GPU,
and learning rate 0.2. When the batch size increases by k, it is a common strategy to re-scale the
learning rate by k or

√
k [8, 34–36]. In our experiments, we use 8 GPU with batch size 256 per GPU.

Thus, we tuned η in the range of [0.4, 0.8], and found that η = 0.5 results in the best performance.

6.2.1. EVALUATION RSULTS

Figure 1 illustrates the time consumed by one epoch and the throughput with different numbers of
workers and different algorithms. We vary the synchronization periods H for local AdaAlter. It is
shown that local AdaAlter efficiently reduces the communication overhead.
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Figure 1: Time consumed by one epoch versus
different numbers of workers.

Table 2: Test PPL and time at the end of training,
for LSTM-2048-512 on 1B word dataset.

Method Test PPL Time (hours)
AdaGrad 44.58± 0.02 98.05
Local AdaAlter
H = 1 44.36± 0.01 98.47
H = 4 44.08± 0.05 69.17
H = 8 44.26± 0.10 67.41
H = 12 44.30± 0.11 65.49
H = 16 44.51± 0.08 64.22

The overall overhead can be decomposed into three parts: computation, communication, and
data loading. The baseline “Local AdaAlter, H = +∞” is evaluated by manually removing the
communication, and measures the ideal overhead without communication. The baseline “Ideal
computation-only overhead” is evaluated by manually removing both the communication and the
data-loading. These two baselines illustrate the ideal lower bounds of the training time.

Figure 2 illustrates the perplexity on the test dataset and the loss on the training dataset with
different algorithms. Compared to vanilla distributed AdaGrad, local AdaAlter enjoys equivalent
convergence rate, but takes much less time. To reach the same perplexity, local AdaAlter can reduce
almost 30% of the training time.

In Table 2, we report the perplexity and consumed time at the end of training for different algo-
rithms. We can see that local AdaAlter produces comparable performance to the fully synchronous
AdaGrad and AdaAlter, on the test dataset, with much less training time, and acceptable variance.

6.3. Discussion

We can see that the fully synchronous AdaGrad or AdaAlter (H = 1) are very slow. Local AdaAlter
reduces almost 30% of the training time compared to the fully synchronous AdaGrad or AdaAlter.

As we expected, Figure 2 and Table 2 show that larger H reduces more communication overhead,
but also results in worse perplexity, which validates our theoretical analysis in Theorem 1: when H
increases, the noise in the convergence also increases. Taking H = 4 gives the best trade-off between
the communication overhead and the test perplexity.
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(b) Test perplexity versus epochs
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(c) Training loss versus training time
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(d) Training loss versus epochs

Figure 2: Evaluation of different algorithms, for LSTM-2048-512 on 1B word dataset. We use a
single machine with 8 GPU workers and local batch size 256 on each GPU. For all experiments, we
take the learning rate η = 0.5. For local AdaAlter, we take warm_up_steps = 600 warm-up steps.

Interestingly, as shown in Figure 2(b), local AdaAlter with H > 1 has slightly better perplexity
on the test dataset, compared to the fully synchronous AdaGrad and AdaAlter with H = 1. Although,
our theoretical analysis indicates that local AdaAlter has larger variance compared to the fully
synchronous version, such conclusion only applies to the training loss. In fact, there is previous
work [17] showing that local SGD potentially generalizes better than the fully synchronous SGD.
We also notice that when H is too large, such benefit will be overwhelmed by the large noise.

We also observe that almost all the algorithms do not scale well when scaling from 4 to 8 workers.
The major reason is that all the workers are placed in the same machine, where CPU resources are
limited. When there are too many workers, the data-loading becomes a bottleneck. That is also the
reason why different H does not show much difference when using 8 GPU workers.

7. Conclusion

We propose a novel SGD algorithm: local AdaAlter, which reduces the communication overhead by
skipping the synchronization rounds, and adopts adaptive learning rates. We show that the algorithm
provably converges. Our empirical results also show accelerated training compared to baselines.
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Appendix

Appendix A. Proofs

Lemma 1 ([44], Lemma 15) For any non-negative sequence a0, a1, . . . , aT , we have

T∑
t=1

at

a0 +
∑t

s=1 as
≤ log

(
a0 +

T∑
t=1

at

)
− log(a0).

To analyze Algorithm 3, we introduce the following auxiliary variable:

x̄t =
1

n

∑
i∈[n]

xi,t.

Also, note that in Algorithm 3, Bi,t−t′ is synchronized. Thus, we denote

B̄t−t′ = B1,t−t′ = . . . = Bn,t−t′ .

Theorem 2 Taking arbitrary ε > 0 in Algorithm 3, and b0 ≥ 1. Under Assumption 1 and 2,
Algorithm 3 converges to a critical point: By telescoping and taking total expectation, we have

E
[∑T

t=1 ‖∇F (x̄t−1)‖2
]

T

≤
2
√
b20 + Tε2

p2
E [F (x̄t0)− F (x̄T )]

ηT
+

[
4η2L2H2 +

1

n
Lη

] d log
(
b20 + Tρ2

)√
b20 + Tε2

p2

Tp2

≤ O
(

1

η
√
T

)
+O

(
η2H2 log(T )√

T

)
+O

(
η log(T )

n
√
T

)
.

Proof
For convenience, we write the stochastic gradient ∇f(xi,t−1; zi,t) as ∇fi(xi,t−1), and we have

E[∇fi(xi,t−1)] = ∇Fi(xi,t−1). Using L-smoothness, we have

F (x̄t)− F (x̄t−1)

≤ −η
〈
∇F (x̄t−1),

1

n

∑
i∈[n]

Gi,t√
B2
i,t−t′ + t′ε21

〉
+
Lη2

2

∥∥∥∥∥∥ 1

n

∑
i∈[n]

Gi,t√
B2
i,t−t′ + t′ε21

∥∥∥∥∥∥
2

≤
d∑
j=1

−η 1

n

∑
i∈[n]

(∇F (x̄t−1))j(Gi,t)j√(
B̄t−t′

)2
j

+ t′ε2︸ ︷︷ ︸
1©

+
Lη2

2

d∑
j=1

( 1
n

∑
i∈[n]Gi,t)

2
j(

B̄t−t′
)2
j

+ t′ε2︸ ︷︷ ︸
2©

.
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Conditional on the previous states, taking expectation on both sides, we have

E [ 1©]

= −η
(∇F (x̄t−1))j

(
1
n

∑
i∈[n]∇Fi(xi,t−1)

)
j√(

B̄t−t′
)2
j

+ t′ε2

= −η
2

(∇F (x̄t−1))2
j√(

B̄t−t′
)2
j

+ t′ε2︸ ︷︷ ︸
3©

−η
2

(
1
n

∑
i∈[n]∇Fi(xi,t−1)

)2

j√(
B̄t−t′

)2
j

+ t′ε2︸ ︷︷ ︸
4©

+
η

2

(
∇F (x̄t−1)− 1

n

∑
i∈[n]∇Fi(xi,t−1)

)2

j√(
B̄t−t′

)2
j

+ t′ε2︸ ︷︷ ︸
5©

.

Again, conditional on the previous states, taking expectation on both sides, we have

E [ 2©]

= E


(

1
n

∑
i∈[n]∇fi(xi,t−1)

)2

j(
B̄t−t′

)2
j

+ t′ε2



= E


(

1
n

∑
i∈[n](∇fi(xi,t−1)−∇Fi(xi,t−1) +∇Fi(xi,t−1))

)2

j(
B̄t−t′

)2
j

+ t′ε2



= E


(

1
n

∑
i∈[n](∇fi(xi,t−1)−∇Fi(xi,t−1))

)2

j(
B̄t−t′

)2
j

+ t′ε2


︸ ︷︷ ︸

6©

+ E


(

1
n

∑
i∈[n]∇Fi(xi,t−1)

)2

j(
B̄t−t′

)2
j

+ t′ε2


︸ ︷︷ ︸

7©

In the following steps, we bound the terms 3©- 7©, respectively.
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Taking p = min( ερ , 1) ≤ 1, we have ε ≥ pρ, or ρ ≤ ε
p . Thus, we have

(
B̄t−t′

)2
j

+ t′ε2 ≤
b20 + (t− t′)ρ2 + t′ε2 ≤ b20 + (t− t′) ε2

p2
+ t′ε2 ≤ b20 + t ε

2

p2
≤ b20 + T ε2

p2

d∑
j=1

3© ≤
d∑
j=1

−η
2

(∇F (x̄t−1))2
j√

b20 + T ε2

p2

= −η
2

‖∇F (x̄t−1)‖2√
b20 + T ε2

p2

.

Since
(
B̄t−t′

)2
j

+ t′ε2 ≥ b20 ≥ 1, taking η ≤ 1
L , we have

4©+
Lη2

2
7©

= −η
2

(
1
n

∑
i∈[n]∇Fi(xi,t−1)

)2

j√(
B̄t−t′

)2
j

+ t′ε2
+
Lη2

2

(
1
n

∑
i∈[n]∇Fi(xi,t−1)

)2

j(
B̄t−t′

)2
j

+ t′ε2

≤ −η
2

(
1
n

∑
i∈[n]∇Fi(xi,t−1)

)2

j√(
B̄t−t′

)2
j

+ t′ε2
+
η

2

(
1
n

∑
i∈[n]∇Fi(xi,t−1)

)2

j(
B̄t−t′

)2
j

+ t′ε2

≤ 0.

Using ε ≥ pρ and p ≤ 1, we have

6© = E


(

1
n

∑
i∈[n](∇fi(xi,t−1)−∇Fi(xi,t−1))

)2

j(
B̄t−t′

)2
j

+ t′ε2


=

1

n2
E

∑i∈[n] (∇fi(xi,t−1)−∇Fi(xi,t−1))2
j(

B̄t−t′
)2
j

+ t′ε2


≤ 1

n
E

 1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t−t′

)2
j

+ t′ε2


≤ 1

n
E

 1
n

∑
i∈[n] (∇fi(xi,t−1))2

j

p2
(
B̄t−t′

)2
j

+ t′p2ρ2


≤ 1

np2
E

 1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t
)2
j

 ,
where

(
B̄t
)2
j

= b20 +
∑t

s=1
1
n

∑
i∈[n] (Gi,s)

2
j .

Finally, using smoothness, we have

d∑
j=1

5© =
η

2

d∑
j=1

(
∇F (x̄t−1)− 1

n

∑
i∈[n]∇Fi(xi,t−1)

)2

j√(
B̄t−t′

)2
j

+ t′ε2
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≤ η

2

d∑
j=1

 1

n

∑
i∈[n]

∇Fi(x̄t−1)− 1

n

∑
i∈[n]

∇Fi(xi,t−1)

2

j

≤ η

2

1

n

∑
i∈[n]

‖∇Fi(x̄t−1)−∇Fi(xi,t−1)‖2

≤ ηL2

2n

∑
i∈[n]

‖x̄t−1 − xi,t−1‖2.

Note that x̄t−1 is synchronized across the workers. Thus, we have

x̄t−1 = x̄t−t′ − η
t′−1∑
s=1

1

n

∑
i∈[n]

Gi,t−t′+s
B2
i,t−t′ + sε21

,

xi,t−1 = x̄t−t′ − η
t′−1∑
s=1

Gi,t−t′+s
B2
i,t−t′ + sε21

.

Then, we have

d∑
j=1

5©

≤ ηL2

2n

d∑
j=1

∑
i∈[n]

(x̄t−1 − xi,t−1)2
j

≤ η3L2

2n

d∑
j=1

∑
i∈[n]

t′−1∑
s=1

 1

n

∑
k∈[n]

Gk,t−t′+s
B̄2
t−t′ + sε21

− Gi,t−t′+s
B̄2
t−t′ + sε21

2

j

≤ 2η3L2

n

d∑
j=1

∑
i∈[n]

(
t′−1∑
s=1

Gi,t−t′+s
B̄2
t−t′ + sε21

)2

j

≤ 2η3L2H

n

d∑
j=1

∑
i∈[n]

t′−1∑
s=1

(
Gi,t−t′+s

)2
j(

B̄2
t−t′
)2
j

+ sε2

≤ 2η3L2H

np2

d∑
j=1

∑
i∈[n]

H∑
s=1

(
Gi,t−t′+s

)2
j(

B̄2
t−t′+s

)2
j

.

Now, we combine all the ingredients above:

E [F (x̄t)− F (x̄t−1)]

≤
d∑
j=1

E [ 1©] +
Lη2

2

d∑
j=1

E [ 2©]

≤
d∑
j=1

E [ 3©+ 4©+ 5©] +
Lη2

2

d∑
j=1

E [ 6©+ 7©]
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≤ −η
2

‖∇F (x̄t−1)‖2√
b20 + T ε2

p2

+

d∑
j=1

E

2η3L2H

np2

∑
i∈[n]

H∑
s=1

(
Gi,t−t′+s

)2
j(

B̄2
t−t′+s

)2
j


+

d∑
j=1

E

 Lη2

2np2

1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t
)2
j

 .
By re-arranging the terms, we have

‖∇F (x̄t−1)‖2

≤
2
√
b20 + T ε2

p2
E [F (x̄t−1)− F (x̄t)]

η

+
4η2L2H

√
b20 + T ε2

p2

p2

d∑
j=1

E

 H∑
s=1

1
n

∑
i∈[n]

(
Gi,t−t′+s

)2
j(

B̄2
t−t′+s

)2
j


+
Lη
√
b20 + T ε2

p2

np2

d∑
j=1

E

 1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t
)2
j

 .
By telescoping and taking total expectation, we have

E
[∑T

t=1 ‖∇F (x̄t−1)‖2
]

T

≤
2
√
b20 + T ε2

p2
E [F (x̄t0)− F (x̄T )]

ηT

+
4η2L2H

√
b20 + T ε2

p2

Tp2

d∑
j=1

E

 T∑
t=1

H∑
s=1

1
n

∑
i∈[n]

(
Gi,t−t′+s

)2
j(

B̄2
t−t′+s

)2
j


+
Lη
√
b20 + T ε2

p2

nTp2

d∑
j=1

E

 T∑
t=1

1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t
)2
j


≤

2
√
b20 + T ε2

p2
E [F (x̄t0)− F (x̄T )]

ηT

+
4η2L2H2

√
b20 + T ε2

p2

Tp2

d∑
j=1

E

 T∑
t=1

1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t
)2
j


+
Lη
√
b20 + T ε2

p2

nTp2

d∑
j=1

E

 T∑
t=1

1
n

∑
i∈[n] (∇fi(xi,t−1))2

j(
B̄t
)2
j


≤

2
√
b20 + T ε2

p2
E [F (x̄t0)− F (x̄T )]

ηT
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+
4η2L2H2

√
b20 + T ε2

p2

Tp2
d log

(
b20 + Tρ2

)
+
Lη
√
b20 + T ε2

p2

nTp2
d log

(
b20 + Tρ2

)
.
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