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Abstract
In recent years, the success of deep learning has inspired many researchers to study the optimization
of general smooth non-convex functions. However, recent works have established pessimistic worst-
case complexities for this class functions, which is in stark contrast with their superior performance
in real-world applications (e.g. training deep neural networks). On the other hand, it is found
that many popular non-convex optimization problems enjoy certain structured properties which
bear some similarities to convexity. In this paper, we study the class of quasar-convex functions
to close the gap between theory and practice. We study the convergence of first order methods
in a variety of different settings and under different optimality criterions. We prove complexity
upper bounds that are similar to standard results established for convex functions and much better
that state-of-the-art convergence rates of non-convex functions. Overall, this paper suggests that
quasar-convexity allows efficient optimization procedures, and we are looking forward to seeing
more problems that demonstrate similar properties in practice.

1. Introduction

In this paper we consider the problem of minimizing a given objective function f : Rn → R.
The study of this optimization problem has a long history. Early works mainly focus on the

special case when f is convex, and we have access to the exact gradient at each point [16]. However,
the situation begins to change with the advent of the big data era, and, in particular, the rise of
machine learning. In many machine learning applications ( e.g. deep neural networks [9] ), the
objective function is highly complicated and non-convex. Therefore, the classical theory of convex
optimization can no longer produce meaningful implications in many real-world scenarios.

Motivated by the empirical success of optimization algorithms, in recent years there has been a
flurry of research works that study algorithms in non-convex optimization [4, 7, 8, 12]. Specifically
,these works study efficient algorithms for finding an approximate stationary points for general
smooth non-convex function. A standard result is that the simple Stochastic Gradient Descent(SGD)
algorithm can find an ε-stationary point with a complexity of O

(
ε−4
)
. However, it has been

established recently that this complexity is already optimal among first order methods (i.e. methods
that only use first-order information of the objective function) [2]. This gives a convergence rate
which is considerably slower than the actual convergence rate we observe in practice, thereby
suggesting that there is still a gap between theory and practice.

On the other hand, the study of specific optimization problems suggests that sometimes the
objective function exhibits certain desirable properties. For instance it has been proved that there
is no spurious local minima in a variety of low-rank matrix problems [6], policy optimization in
reinforcement learning satisfies some Polyak-Łojasiewicz-type conditions [5, 14], the landscape

c© J. Jin.
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of neural network exhibits some convex-like properties [13], etc. These observations inspire us to
consider the possibility of more efficient optimization when imposing structural assumptions to the
objective function.

In this paper we study the optimization using first order methods under quasar-convexity, which
is a generalization of the notion of convexity. While several prior works [3, 10, 11] have provided
theoretical treatments of this class of functions in some specific settings, we extend the analysis
of quasar-convex optimization to include a variety of setups that are of practical interest. We also
provide sharper results compared with [10] in some special cases. The main results of this paper are
summarized in Section A.

2. Preliminaries

We first introduce some definitions that will be useful in this paper.

Definition 1 A differentiable function f : Rn → R is said to be L-smooth if its gradient is
L-Lipschitz, i.e. ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

Definition 2 (Quasar-convexity) Suppose that the function f : Rn → R is differentiable and has a
global minimizer x∗, then we say that f is γ-quasar-convex w.r.t. x∗ if 0 ≤ γ ≤ 1 and the following
holds for all x ∈ Rn:

f(x∗) ≥ f(x) +
1

γ
∇f(x)T (x∗ − x) (1)

Further we say that f is (γ, µ)-strongly-quasar-convex if additionally µ ≥ 0 and the following holds
for all x ∈ Rn:

f(x∗) ≥ f(x) +
1

γ
∇f(x)T (x∗ − x) +

µ

2
‖x− x∗‖2 (2)

Throughout this paper we describe the performance of optimization algorithms via providing
their oracle complexities. Roughly speaking, the oracle complexity of an algorithm is the minimum
time it needs to query a certain oracle in order to meet some optimality criterion.

In this paper we consider two classes of oracles:
Deterministic Oracle D(f). The algorithm sends a point x to the oracle and the oracle responds

with a pair (f(x),∇f(x)).
Stochastic Oracle S(f, σ). The algorithm sends a point x to the oracle and the oracle responds

with random vector g(x) such that Eg(x) = f(x) and E‖g(x)−∇f(x)‖2 ≤ σ2. However, note that
our results in this paper can be easily extended to the more general setting with E‖g(x)−∇f(x)‖2 ≤
M‖∇f(x)‖2 + σ2.

For briefness we will refer to the optimization problem equipped with these two oracles as
deterministic setting and stochastic setting, respectively.

We will also consider two types of optimality criterion. Specifically, we consider finding an
ε-optimal point ( i.e. a point x̃ with f(x̃)− infx f(x) ≤ ε ) and finding an ε-stationary point ( i.e. a
point with ‖∇f(x)‖ ≤ ε ).

Formal definitions of related concepts are given in Appendix B due to space limits.
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2.1. Notations

Throughout this paper we let x0 be the starting point of all the algorithms we consider, x∗ be
the global minima of function f , and let R,∆ be upper bounds of the quantities ‖x0 − x∗‖ and
f(x0)− f(x∗) respectively. We use O to hide numerical constants and Õ to hide log terms.

3. Convergence Results for Smooth Quasar-Convex Functions

In this section we study the convergence of first order methods for smooth non-strongly-quasar-
convex functions. We consider the deterministic and stochastic setting separately.

3.1. Deterministic Setting

In Hinder et al. [11] the authors propose a near optimal method for finding ε-optimal points in
this setting. We recall their result below.

Theorem 3 ( [11, Theorem 2] ) There exists an algorithm Ac such that its complexity of finding an

ε-optimal point is O
(√

LR2

γε log
(√

LR2

γε

))
.

A direct application of the inequality ‖∇f(x)‖2 ≤ L (f(x)− f(x∗)) would give a Õ
(
ε−1
)

complexity upper bound for finding approximate stationary point. However, we can improve this
bound by using the GD after AGD trick proposed by Nesterov [15]. The result is summarized in the
following theorem.

Theorem 4 There exists an algorithm such that for L-smooth and γ-quasi convex functions its
complexity of finding ε-stationary point is Õ

(
LR

2
3γ−

1
3 ε−

2
3

)
.

The idea is to run the algorithm Ac in Theorem 3 to reach an ε1-optimal point x1, and then run
the standard Gradient Descent(GD) to reach an ε-stationary point. The complexity is then upper
bounded by combining Theorem 3 and standard results of GD. Finally, choosing ε1 optimally gives
the desired result.

The formal proofs of all results in the main paper are deferred to the Appendix.

3.2. Stochastic Setting

We first recall the vanilla Stochastic Gradient Descent(SGD) algorithm:

Algorithm 1: SGD
(
f, x0, {αk}k≥1 , T

)
Input :Objective function f , initial point x0, parameters γ, L, σ, total iterations T
for t← 1 to T do

xt ← xt−1 − αt∇f(xt−1, ξt−1);
end
Output :x̃ ∈ {x1, x2, · · · , xT } uniformly at random

In the following theorem we establish the convergence rate of SGD for smooth quasar-convex
functions.
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Theorem 5 Suppose that f is an L-smooth, γ-quasar-convex function, and we run SGD for T
iterations with some fixed step size αt = α = min

{
R

2σ
√
T
, 1

2L

}
, where R = ‖x0 − x∗‖. Then, we

have
1

T
E

T∑
t=1

(f(xt)− f(x∗)) ≤ 4

(
Rσ

γ
√
T

+
1

γ

R2L

T

)
(3)

The only existing convergence guarantee in our setting that we are aware of is established in
Gower et al. [10]. We observe that their bound in neither uniformly stronger nor weaker than ours;
see Section E for a detailed discussion.

Corollary 6 For the class of L-smooth, γ-quasar-convex functions the complexity os SGD for
finding ε-optimal point is O

(
R2σ2

γ2ε2
+ R2L

γε

)
Equipped with the above results, we can now establish a complexity upper bound for making

gradient small.

Theorem 7 There exists an algorithm such that for L-smooth and γ-quasi convex functions its

complexity of finding ε-stationary point is O
(
σ2
(
LR
γε4

) 2
3

)
(here we omit the lower order terms for

convenience).

4. Convergence Results for Smooth Strongly-Quasar-Convex Functions

In this section we turn to the optimization of smooth strongly-quasar-convex functions.

4.1. Deterministic Setting

In the deterministic setting, the following result was established in Hinder et al. [11].

Theorem 8 ( [11, Theorem 1] )There exists an algorithm Asc such that for L-smooth and (γ, µ)-
strongly-quasar-convex functions, then the complexity of Asc for finding an ε-suboptimal point is

O
(√

κ
γ2

log
(
κ∆
ε

))
, where κ = L/µ.

An immediate consequence of the above result is the following:

Corollary 9 The complexity of Asc for finding ε-stationary point is O
(√

κ
γ2

log
(
κL∆
ε2

))
. This

also implies a complexity of O
(√

κ
γ2

log
(√

κLR
ε

))
4.2. Stochastic Setting

We have the following convergence result for vanilla SGD:

Theorem 10 The vanilla SGD finds an ε-optimal point with complexityO
(

Lσ2

µ2γ2T

(
1 + log

(
µγR
√
T

σ

)))
.
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Next we refine the analysis and proves a new convergence guarantee which has better dependence
on µ and L.

Theorem 11 Suppose that we run vanilla SGD for T > max
{

3σ2

γ2µ2R2 ,
6L
γ2µ

(
log
(

2LµR2

σ2

)
+ 1
)}

iterations with some fixed step size α = 1
γµT log

(
γ2µ2TR2

σ2

)
, then it can output a random point X

such that

E [f(X)− f(x∗)] ≤ Õ
(

σ2

γ2µT

)
(4)

Corollary 12 The complexity of Algorithm 1 for finding ε-optimal point isO
(

σ2

γ2µε
+ L

γµ log
(
µR2

ε

))
with appropriate choice of step size.

Finally we establish the following complexity upper bound of finding ε-stationary points.

Theorem 13 There exists an algorithm that achieves a complexity ofO
(√

L
µ
σ2

γε2
+ L

µ log
(
γµ
√
LR2

ε2

))
for finding ε-stationary points.

The idea is to use the SGD after SGD approach proposed by Allen-Zhu [1]. Specifically, we first
run SGD to find an ε1-optimal point, then run SGD starting from this point to find a point with small
gradient. This approach is an extension of Nesterov’s GD after AGD approach in the deterministic
setting.

5. Conclusion & Future directions

In this paper we study smooth quasar- and strongly-quasar-convex functions with two different
optimality criterions and in two different settings. However, there are still some interesting questions
that remain unanswered. Firstly, it is unclear whether the dependency of our bounds on γ is optimal.
Indeed the discussion in Section E suggests that they might be improved. Secondly we note that
there exists another trick for finding ε-stationary points for convex functions in existing literature
[1, 15]. The idea is to add a small perturbation to make the function strongly convex, which can be
optimized very efficiently. This approach can yield complexities that match corresponding lower
bounds. Unfortunately it cannot be applied to quasar-convex functions, since we cannot guarantee
that x∗ is still the global minima after perturbation. It is thus unknown whether there exists other
efficient approaches, or whether our approach is already optimal. Finally, we are looking forward to
exploring convergence guarantees for other types of structured non-convex functions in the future.
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Appendix A. Summary of Main Results

We summarize all our complexity results in the table below.

Smooth Quasar-Convex Function
Deterministic Stochastic

Finding Approximate Minima
Õ
(√

LR2

γε

)
O
(
R2σ2

γ2ε2
+ R2L

γε

)
( [11, Theorem 2]) (Corollary 6)

Making Gradient Small
O
(
LR

2
3γ−

1
3 ε−

2
3

)
O
(
σ2
(
LR
γε4

) 2
3

)
(Theorem 4) (Theorem 7)
Smooth Strongly-Quasar-Convex Function
Deterministic Stochastic

Finding Approximate Minima
O
(√

κ
γ2

log
(
κ∆
ε

))
Õ
(

σ2

γ2µε
+ L

γµ log
(
µR2

ε

))
( [11, Theorem 1]) (Corollary 12)

Making Gradient Small
Õ
(√

κ
γ2

log
(√

κLR
ε

))
Õ
(√

L
µ
σ2

γε2

)
(Corollary 9) (Theorem 20)
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Appendix B. Formal descriptions of the setup

In this section we introduce some useful concepts that allow us to rigorously describe the
performance of a specific optimization algorithm.

B.1. Optimization Oracle

In order to describe the optimization process more conveniently, we assume that the optimization
algorithm (only) has access to an oracle which answers successive queries of the algorithm.

In this paper we only consider two most commonly used oracle in the optimization literature.
Deterministic Oracle D(f). The algorithm sends a point x to the oracle and the oracle responds

with a pair (f(x),∇f(x)).
Stochastic Oracle S(f, σ). The algorithm sends a point x to the oracle and the oracle responds

with random vector g(x) such that Eg(x) = f(x) and E‖g(x)−∇f(x)‖2 ≤ σ2.
For briefness we will refer to the optimization problem equipped with these two oracles as

deterministic setting and stochastic setting, respectively.

B.2. Optimization Algorithms

For a given oracle O, we consider the setA (O) consisting of all algorithms that works as follows:
starting from a point x0, it produces a (random) sequence {xt} according the following recursive
relation:

xt = At (r,O0, · · · ,Ot−1) (5)

where Oi is the oracle feedback at xi, r is a random seed and At is a deterministic mapping.

B.3. Complexity Measures

Consider a function class F and oracle class O, let P [F ] be the set of all distributions over F
,then for all ε > 0 we define the complexity for finding approximate stationary point as

sup
O∈O

sup
P∈P[F ]

inf
A∈A(O)

inf
{
T ∈ N

∣∣E‖∇f(xT )‖ ≤ ε
}

and the complexity for finding approximate global minima as

sup
O∈O

sup
P∈P[F ]

inf
A∈A(O)

inf

{
T ∈ N

∣∣∣∣E [f(xT )− inf
x∈Rn

f(x)

]
≤ ε
}

where we omit the dependence of xT on P and A in the above expressions.

B.4. Notations

Throughout this paper we let x0 be the starting point of all the algorithms we consider, x∗ be
the global minima of function f , and let R,∆ be upper bounds of the quantities ‖x0 − x∗‖ and
f(x0)− f(x∗) respectively. We use O to hide numerical constants and Õ to hide log terms.

The following two function classes appear regularly in the main paper:

Fc (γ,R) = {f : Rn → R : f is L-smooth and γ-quasar convex, and ‖x0 − x∗‖ ≤ R}

Fsc (γ, µ,R) = {f : Rn → R : f is L-smooth and (γ, µ)-quasar strongly-convex, and ‖x0 − x∗‖ ≤ R}

9



QUASAR-CONVEX OPTIMIZATION

Appendix C. Proof of Theorems in Section 3

Theorem 14 (Restatement of Theorem 4) There exists an algorithm such that for any L-smooth and
γ-quasi convex function f such that its complexity of finding ε-stationary point is Õ

(
LR

2
3γ−

1
3 ε−

2
3

)
function and gradient evaluations.

Proof The idea is to use Nesterov’s ’GD after AGD’ trick [1], where we replace Nesterov’s AGD
with the algorithm Ac.

Specifically, for a fixed ε1 > 0, we first run Ac for Õ

(√
LR2

γε1

)
iterations and arrive at a point

x̃0 such that f (x̃0)− f(x∗) ≤ ε1. Then, starting from x̃0 we run gradient descent for O
(
Lε1ε

−2
)

iterations. It is well known that we can then find a point x such that ‖∇f(x)‖ ≤ ε.
The complexity of the above procedure is then

Õ

√LR2

γε1
+ Lε1ε

−2


The result follows by choosing ε1 =

(
γ−1R2ε4

) 1
3 .

Theorem 15 (Restatement of Theorem 5) Suppose that f is an L-smooth, γ-quasar-convex function,
and we run SGD for T iterations with some fixed step size αt = α, where R = ‖x0 − x∗‖. Then, we
have

1

T
E

T∑
t=1

(f(xt)− f(x∗)) ≤ 4

(
Rσ

γ
√
T

+
1

γ

R2L

T

)
(6)

Proof First note that

‖xt − x∗‖2 = ‖xt+1 − x∗‖2 + 2 〈xt − xt+1, xt+1 − x∗〉+ ‖xt+1 − xt‖2

= ‖xt+1 − x∗‖2 + ‖xt+1 − xt‖2 + 2α 〈∇f(xt, ξt), xt+1 − x∗〉
(7)

Denote ∆t = E [f(xt)− f∗], then we have

∆t+1 ≤ E
[
f(xt) + 〈∇f(xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2 − f(x∗)

]
≤ E

[
〈∇f(xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2 +

1

γ
〈∇f(xt), xt − x∗〉

]
= E

[〈
∇f(xt), xt+1 +

(
1

γ
− 1

)
xt −

1

γ
x∗
〉

+
L

2
‖xt+1 − xt‖2

]
= E

[
1

γ
〈∇f(xt), xt+1 − x∗〉+

(
1

γ
− 1

)
〈∇f(xt), xt − xt+1〉+

L

2
‖xt+1 − xt‖2

]
(8)
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Now we handle the first and second term in the above expression respectively. First by (7), for
some fixed λ > 0 we have

E [〈∇f(xt), xt+1 − x∗〉]
= E [〈∇f(xt)−∇f(xt, ξt), xt+1 − x∗〉] + E [〈∇f(xt, ξt), xt+1 − x∗〉]
= E [〈∇f(xt)−∇f(xt, ξt), xt+1 − xt〉] + E [〈∇f(xt, ξt), xt+1 − x∗〉]

≤ 1

2λ
E‖∇f(xt)−∇f(xt, ξt)‖2 + E

[
λ

2
‖xt+1 − xt‖2 +

1

2α

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2 − ‖xt+1 − xt‖2

)]
≤ σ2

2λ
+ E

[
1

2α
‖xt − x∗‖2 −

1

2α
‖xt+1 − x∗‖2 −

(
1

2α
− λ

2

)
‖xt+1 − xt‖2

]
(9)

Next, as long as α < 1
2L , by the L-smoothness of f we have

∆t+1 −∆t ≤ −αE‖∇f(xt)‖2 +
L

2
α2
(
E‖∇f(xt)‖2 + σ2

)
≤ −α

2
E‖∇f(xt)‖2 +

L

2
α2σ2

(10)
Therefore

E 〈∇f(xt), xt − xt+1〉 = αE‖∇f(xt)‖2

≤ 2 (∆t −∆t+1) + Lα2σ2
(11)

Now, by plugging (9) and (11) into (8) we have

∆t+1 ≤
σ2

2γλ
+

1

2γα
E
[
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

]
− 1

γ

(
1

2α
− λ

2
− Lγ

2

)
E‖xt+1 − xt‖2

+ 2

(
1

γ
− 1

)
(∆t −∆t+1) +

(
1

γ
− 1

)
Lα2σ2

(12)
Choosing λ = 1

α − Lγ in the RHS and rearranging, we obtain

1

2γα
E
[
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

]
+

σ2α

2γ(1− αLγ)
+

(
1

γ
− 1

)
Lα2σ2 ≥

(
2

γ
− 1

)
∆t+1−

(
2

γ
− 2

)
∆t

(13)
Perform a telescope sum for t = 0, 1, · · · , T − 1 gives(

2

γ
− 1

)
∆T +

T−1∑
t=1

∆t ≤
R2

2γα
+

σ2α

2γ(1− αLγ)
T +

(
1

γ
− 1

)
Lα2σ2T +

(
2

γ
− 2

)
∆0 (14)

Again by L-smoothness we can see that ∆0 ≤ L
2R

2, thus

T∑
t=1

∆t ≤
R2

2γα
+

σ2α

2γ(1− αLγ)
T +

(
1

γ
− 1

)
Lα2σ2T +

(
1

γ
− 1

)
LR2 (15)

Choose α = R
2σ
√
T

, which is smaller than 1
2L when T > R2L2

σ2 , then

1

T

T∑
t=1

∆t ≤
2Rσ

γ
√
T

+ 2

(
1

γ
− 1

)
R2L

T
<

4Rσ

γ
√
T

(16)
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Otherwise if T ≤ R2L2

σ2 , it follows from (15) that

1

T

T∑
t=1

∆t ≤
R2

2γαT
+

σ2α

2γ(1− αLγ)
+

(
1

γ
− 1

)
Lα2σ2 +

(
1

γ
− 1

)
LR2

T
(17)

We choose α = 1
2L in the above inequality, so that by some calculation we have

1

T

T∑
t=1

∆t ≤ 4

(
Rσ

γ
√
T

+
1

γ

R2L

T

)
(18)

Theorem 16 (Restatement of Theorem 7) There exists an algorithm that can output a point x such

that E [f (x)− f(x∗)] ≤ ε with at most O
(
σ2
(
LR
γε4

) 2
3

)
queries to the stochastic oracle.

Proof The idea is to use the SGD after SGD approach proposed by Allen-Zhu [1]. Fixed ε1 > 0,
we first run SGD for O

(
R2σ2

γ2ε21
+ R2L

γε1

)
iterations, then 6 ensures an output X1 ( a random variable )

such that E [f(X1)− f(x∗)] ≤ ε1. Let F1 denote the σ-algebra generated by all the randomness in
this stage.

Next, we run SGD for another O
(
Lε1σ

2ε−4
)

iterations, starting from X1, then, according to
a standard result in non-convex optimization Ghadimi and Lan [7], we can find a point (random

variable) X2 such that E
[
‖∇f(X2)‖

∣∣F1

]
≤ ε

(
f(X1)−f(x∗)

ε1

) 1
4 . This implies that

E‖∇f(X2)‖ ≤ εE

[(
f(X1)− f(x∗)

ε1

) 1
4

]
≤ ε

(
E [f(X1)− f∗]

ε1

) 1
4

≤ ε (19)

The total iterations is then given by O
(
R2σ2

γ2ε21
+
R2L

γε1
+ Lε1σ

2ε−4

)
. Choose ε1 optimally and

omitting lower order terms, we obtain the desired result.

12
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Appendix D. Proof of Theorems in Section 4

Corollary 17 (Restatement of Corollary 9) The complexity of Asc for finding ε-stationary point is

O
(√

κ

γ2
log

(
κL∆

ε2

))
Proof Note that L-smoothness of f implies that ‖∇f(x)‖2 ≤ L (f(x)− f(x∗)). The first statement
follows from Theorem 8. The second statement follows from the inequality f(x0)− f∗ ≤ L

2R
2.

Theorem 18 (Restatement of Theorem 10) The vanilla SGD finds an ε-optimal point with complexity
O
(

Lσ2

µ2γ2T

(
1 + log

(
µγR
√
T

σ

)))
.

Proof According to Gower et al. [10] Theorem D.2, we have

‖xT − x∗‖2 ≤ (1− αµγ)T +
2ασ2

µγ
≤ exp (−αµγT )R2 +

2ασ2

µγ
(20)

Choosing α = 1
µγT log

(
µ2γ2R2T

2σ2

)
minimize the RHS of the above inequality. Thus we have

‖xT − x∗‖2 ≤
Lσ2

µ2γ2T

(
1 + log

(
µγR
√
T

σ

))
(21)

Finally by L-smoothness we have

f(xT )− f(x∗) ≤ L

2
‖xT − x∗‖2 (22)

and the conclusion follows.

Theorem 19 (Restatement of Theorem 12) Suppose that we run vanilla SGD for

T > max

{
3σ2

γ2µ2R2
,

6L

γ2µ

(
log

(
2LµR2

σ2

)
+ 1

)}
iterations with some fixed step size α = 1

γµT log
(
γ2µ2TR2

σ2

)
, then it can output a random point X

such that

E [f(X)− f(x∗)] ≤ Õ
(

σ2

γ2µT

)
(23)

Proof Note that for any x we have

f(x∗) ≤ f(x)− 1

2L
‖∇f(x)‖2

13
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Thus,

E‖xt+1 − x∗‖2 ≤ E
[
‖xt − x∗‖2 − 2α(xt − x∗)T∇f(x) + α2

(
‖∇f(x)‖2 + σ2

)]
≤ E

[
(1− γµα)‖xt − x∗‖2 − 2γα(f(xt)− f(x∗)) + α2

(
‖∇f(x)‖2 + σ2

)]
≤ E

[
(1− γµα)‖xt − x∗‖2 − 2γα(f(xt)− f(x∗)) + 2α2L(f(xt)− f(x∗)) + α2σ2

]
= E

[
(1− γµα)‖xt − x∗‖2 − 2α(γ − αL)(f(xt)− f(x∗)) + α2σ2

]
(24)

Recursively apply the above inequality we have that

2α(γ − αL)
∑
t<T

(1− γµα)T−t−1(f(xt)− f(x∗)) ≤ ασ2

γµ
+ (1− γµα)TR2 (25)

Suppose X is a random variable such that X = xt, t = 0, 1, · · · , T − 1 with probability (1 −
γµα)T−t−1/Z where Z is a normalizing constant, then we have

2(γ − αL)

γµ

(
1− (1− γµα)T

)
E [f(X)− f(x∗)] ≤ ασ2

γµ
+ (1− γµα)TR2 (26)

(
1− (1− γµα)T

)
E [f(X)− f(x∗)] ≤ ασ2

2(γ − αL)
+
γµ(1− γµα)TR2

2(γ − αL)
(27)

We choose α = 1
γµT log

(
γ2µ2TR2

σ2

)
. When T > 3σ2

γ2µ2R2 we have α > 1
γµT , so 1− (1−γµα)T > 1

2 .

On the other hand, if T > 6L
γ2µ

max
{

log
(

2LµR2

σ2

)
, 1
}

, we have γ − αL > 1
2γ. Thus for large T ,

E [f(x)− f(x∗)] = Õ
(

σ2

γ2µT

)
.

Theorem 20 (Restatement of Theorem ) There exists an algorithm that achieves a complexity of
O
(√

L
µ
σ2

γε2
+ L

µ log
(
γµ
√
LR2

ε2

))
for finding ε-stationary points.

Proof We first run SGD for O
(

σ2

γ2µε1
+ L

γµ log
(
µR2

ε1

))
to arrive at a (random) point X1, then

starting from X1 we run SGD for another O
(
Lσ2ε1ε

−4
)

iterations. Then we can output a point with
expected gradient norm smaller than ε. The details are the same as the proof of Theorem 7.

14
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Appendix E. Discussion of Theorem 5

In Gower et al. [10], the authors prove the following result:

Theorem 21 ( [10, Theorem 4.1] ) With appropriately chosen step sizes, SGD for finding ε-optimal
point of L-smooth, γ-quasar-convex functions has complexity O

(
R2+c2σ2

c
√
T

)
, where c ∈

(
0, γL

)
.

When γσ > LR, we can choose c = Θ
(
R
σ

)
in the above result. In this case the complexity

becomes O
(
Rσ√
T

)
, which is better than our bound in Theorem 5 when γ � 1. On the other

hand, if γσ � LR, then the quantity in Theorem 21 attains its minimum at c = γ
L , which gives

a complexity of O
(
LR2

γ
√
T

+ γσ2

L
√
T

)
, which has worse dependence on parameters L,R, σ compared

with the dominating term O
(
Rσ
γ
√
T

)
in Theorem 5.

An interesting special case is γ = 1, in which quasi-convexity is easily seen to be a weaker
condition than convexity. Ghadimi and Lan [7] established that the convergence rate of SGD for
convex functions is O

(
Rσ√
T

+ R2L
T

)
, which is the same as our bound with γ = 1. Therefore our

result can be seen as a generalization of the result of Ghadimi and Lan [7].
Based on the observations above, it is natural to ask whether it is possible to derive an upper

bound such that the dominating O
(

1/
√
T
)

term does not depend on γ. We hope to study this
interesting question in the future.
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