
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Constraint-Based Regularization of Neural Networks

Benedict Leimkuhler B.LEIMKUHLER@ED.AC.UK

Timothée Pouchon TIMOTHEE.POUCHON@ED.AC.UK

Tiffany Vlaar* TIFFANY.VLAAR@ED.AC.UK

Amos Storkey A.STORKEY@ED.AC.UK

University of Edinburgh, UK

Abstract
We propose a method for efficiently incorporating constraints into a stochastic gradient Langevin
framework for the training of deep neural networks. Constraints allow direct control of the pa-
rameter space of the model. Appropriately designed, they reduce the vanishing/exploding gra-
dient problem, control weight magnitudes and stabilize deep neural networks and thus improve
the robustness of training algorithms and generalization capabilities of the trained neural network.
We present examples of constrained training methods motivated by orthogonality preservation for
weight matrices and explicit weight normalizations. We describe the methods in the overdamped
formulation of Langevin dynamics and the underdamped form, in which momenta help to improve
sampling efficiency. Our methods see performance improvements on image classification tasks.
Keywords: Constrained Optimization, Langevin Dynamics, Orthogonality Preservation.

1. Introduction

In this paper we explore stochastic training methods based on Langevin dynamics combined with
algebraic constraints. Our general framework allows for incorporating constraints into standard
training schemes and sampling methods for neural networks (NNs). Constraints provide direct
control of the parameter space of a model and hence afford a means to improve its generalization
performance. Current approaches to enhance the generalization performance of overparameterized
NNs consist of both explicit and implicit regularization techniques [31]. Examples of the former are
L1 [42, 47] and L2 [14] regularization, which modify the loss by adding a parameter norm penalty
term. Batch normalization (BatchNorm) [16] is a technique that causes an implicit regularization
effect. BatchNorm can be viewed as tantamount to a constraint imposed on the network’s parameters
during training. Although BatchNorm is widely used, explanations for the method’s success remain
elusive; claims that it would reduce internal covariance shift [16] or smooth the loss landscape [38]
have been disputed [38, 51]. The reliance on increasingly complex strategies does little to enhance
the explainability of NNs, so robust simplification of all aspects of training is desirable.

In this paper we highlight the potential of constrained stochastic differential equation (SDE)
based algorithms to provide a simpler overall framework for NN training. An example of a con-
straint that can be easily introduced using our general framework is orthogonality of the weight
matrix. We provide a detailed algorithm for this purpose in a Langevin dynamics-based setting.

In NN training one aims to minimize the loss LX(θ) for parameters θ ∈ R|n| and data X . A
popular training scheme is stochastic gradient descent (SGD). SGD may be improved by incorpo-
rating momenta and additive noise, or more generally by embedding the loss gradient in a Langevin

© B. Leimkuhler, T. Pouchon, T. Vlaar* & A. Storkey. *Corresponding author.

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

dynamics (LD) framework [9]. Using low temperatures [24, 46], sampling methods have been found
to enhance exploration and speed the approach to ‘good’ minima, which enhance their generaliza-
tion to nearby data sets. Ergodic properties of the idealized SDEs associated with gradient schemes
may help these methods to ensure robust exploration of a useful range of parameters.

Constraints can be seen as limiting cases of penalty-based regularization which replaces mini-
mization of the loss LX(θ) by that of the augmented loss LcX(θ) = LX(θ) + 1

ε2
g(θ)2, where g(·) is

a suitable smooth function of the parameters. In the limit ε → 0, these penalty terms introduce an
undesirable stiffness and consequent stability restriction in gradient-based training. It is therefore
natural to relate the above system to a constrained optimization task subject to g(θ) = 0.

2. Neural networks with constraints
We suggest to use constraints when training NNs. Imposing good priors on NNs is known to im-
prove performance, e.g. CNNs suit image datasets better than overparameterized fully connected
NNs, despite being a subset of the latter [10]. Using constraints also arises naturally in the control
of vanishing/exploding gradients. Constraints can be used to control the magnitudes of individual
weights and/or to limit the growth of gradients in deep NNs. We present various approaches below.

A L-layer NN has parameters θ ∈ R|n|, with a weight matrix W ` ∈ Rd`×d`−1
and bias vector

b` ∈ Rd` for each layer `. To allow for inequality constraints, we define slack variables vector
ξ ∈ Rnξ and consider as variable q = (θ, ξ) ∈ Rd, where d = |n|+ nξ. The constraint manifold is

Σ = {q ∈ Rd | g(q) = 0}, g : Rd → Rm. (1)

We partition θ = (θu, θc) into unconstrained θu ∈ Rnu and constrained θc ∈ Rnc parameters.
Circle constraints: In a circle constraint, we restrict each parameter in θc as |θci | ≤ ri, where

ri > 0 is given. We thus introduce m = nc = nξ slack variables ξi and define

gi(q) = |θci |2 + |ξi|2 − r2
i 1 ≤ i ≤ m. (2)

Note that if q ∈ Σ then the parameters in θc are bounded as desired.
Sphere constraints: In a similar way, we could opt to restrict the sums of squares of weights

associated to the input channels of any node. This constraint is analogous to max-norm [40, 41] as
used in ad hoc regularization procedures. In our context, introducing such constraints would yield
distinctive training methods, although we omit discussion of these here due to space limitations.

Orthogonality constraints: Orthogonal weight matrices can mitigate the vanishing/exploding
gradient problem in RNNs [1, 32, 45], and are developing a growing following in the CNN literature
[4, 15, 37]. Orthogonal initialization is linked to achieving dynamical isometry [35, 36, 39], which
can accelerate training. Xiao et al. [49] were able to train 10,000 layer vanilla CNNs, without learn-
ing rate decay, BatchNorm or residual connections, by using initial orthogonal convolution kernels.
Methods for enforcing orthogonality during training include the use of ‘soft’ constraints which add
a restraint term to the loss [4, 8, 50] and hard constraints based on optimization over Stiefel mani-
folds [15, 17]. The latter requires repeated singular value decomposition of high-dimensional ma-
trices during training, which is costly. Here we propose a straightforward algorithm to incorporate
orthonormality constraints for rectangular matrices within our NN training framework, with man-
ageable additional cost. We make no empirical claims over other manifold optimization methods,
but rather provide a framework for network optimization that is theoretically sound, flexible enough

2

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

to incorporate new constraints, and demonstrates good properties relative to standard SGD training.
We set θu = b`, and define the orthogonality constraint for layer ` (which has n` parameters) as

g(q) =

{ (
W `
)T
W ` − In`−1 if n`−1 ≤ n`,

W `
(
W `
)T − In` otherwise.

(3)

3. Constrained SDEs and their discretization
We now describe SDE-based methods for constrained NN training. An alternative to our approach
is constrained Hamiltonian Monte Carlo (HMC) methods [12, 28, 52]. Although HMC schemes
have nil sampling bias if fully converged, their acceptance rates depend on stepsize and system size
[5, 7]. SDE-based methods are often preferred in high-dimensional sampling calculations as they
offer greater overall efficiency for a fixed computational budget. In this section we discuss properties
of constrained Langevin Dynamics. For further discussion on (unconstrained) LD see [34]. LD
discretizations are studied in [26, Chap. 3], [11] (overdamped) and [21, 27] (underdamped).

Constrained Langevin: ergodicity and central limit theorem. The NN loss function naturally
extends to the variable q = (θ, ξ) ∈ Rd as V (q) = LX(θ) (note that in particular ∇ξV = 0). The
first continuous training method we consider is the constrained overdamped Langevin system

dqt = −∇V (qt) dt+
√

2τ dWt −∇qg(qt) dλt, 0 = g(qt), (4)

where W is a d-dimensional Wiener process, τ ≥ 0 is the temperature hyperparameter, and λt
is an Rm-valued vector of Lagrange multipliers. Provided the initial configuration q0 satisfies the
constraint, any trajectory qt of (4) remains on the constraint manifold Σ defined in (1). When
β−1 = τ > 0, (4) is equivalent to an underlying ergodic (unconstrained) SDE (see [26, Chap. 3]
and Appx. A.1) with unique invariant measure dνΣ = Z−1e−βV (q) dσΣ, Z =

∫
Σ e
−βV (q) dσΣ,

where σΣ is the surface measure on Σ. Ergodicity ensures that averages of observables with respect
to νΣ can be approximated by time averages of trajectories of (4). To ensure the practical use
of (4) as a training method, we need the convergence to occur in a reasonable time. Thanks to
the reversibility of the underlying SDE (see Appx. A.1), exponential convergence to equilibrium
occurs as a consequence of a Poincaré inequality for νΣ, which holds provided the curvature of the
manifold is well behaved (see Appx. A.2 and A.3). Poincaré inequalities on manifolds and their use
in the analysis of diffusion processes are presented in [3, Chap. 4].

Introducing momenta p leads to constrained underdamped LD, the 2nd order counterpart of (4)

dqt = pt dt, dpt =
(
−∇qV (qt)− γpt

)
dt+

√
2γτ dWt −∇qg(qt) dλt, 0 = g(qt), (5)

where γ is the friction hyperparameter. The constraint induces a cotangency condition: p ∈ T ∗q Σ,
where T ∗q Σ = {p ∈ Rd | ∇T g(q)p = 0} is the cotangent space of the manifold Σ. The correspond-
ing phase space is the cotangent bundle T ∗Σ = {(q, p) | q ∈ Σ, p ∈ T ∗q Σ}. Given an initial pair
(q, p) ∈ T ∗Σ, any trajectory (qt, pt) of (5) stays on T ∗Σ for all time. In case τ > 0, (5) is equivalent
to an underlying ergodic SDE, whose invariant measure is dµ = e−βH(q,p)dσT ∗Σ, with Hamiltonian
H(q, p) = V (q) + 1

2p
T p and σT ∗Σ the Liouville measure of the cotangent bundle [27]. Exponential

convergence also holds here, but the proof is more technical (e.g. based on hypocoercivity [25, 44]).

3

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Discretization of constrained Langevin dynamics. The simplest iteration scheme qn ∈ Σ 7→
qn+1 ∈ Σ for constrained overdamped Langevin dynamics (4) consists of an Euler–Maruyama step
followed by projection onto Σ. The best choice for the projection is constraint-specific. For circle
constraints we suggest orthogonal projection, which is both explicit and robust (see Appx. B.3).
For orthogonality constraints, we derive an efficient quasi-Newton scheme (Appx. B.5). The latter
leads to the following training method (written here for Q = W ` if n` ≤ n`−1 and Q = (W `)T

otherwise, s = min{n`, n`−1}): one training iteration Qn ∈ Σ 7→ Qn+1 ∈ Σ is given by

for k = 0 to K − 1: Q(k+1) = Q(k) − 1
2Qn

(
(Q(k))TQ(k) − Is

)
. (6)

We initializeQ(0) = Qn−h∇QV (Q)+
√

2τhRn, with stepsize h and independent standard random
normal matrix Rn of the same size as Q. After K quasi-Newton iterations we set Qn+1 ≡ Q(K).
For the constrained underdamped Langevin system (5), the ABO splitting strategy from [21] gives

A: dqt = pt dt, dpt = −∇qg(qt) dλt, 0 = g(qt), 0 = ∇qg(qt)pt, (7)

B: dqt = 0, dpt = −∇qV (qt) dt−∇qg(qt) dµt, 0 = g(qt), 0 = ∇qg(qt)pt, (8)

O: dqt = 0, dpt = −γpt dt+
√

2γτ dWt −∇qg(qt) dνt, 0 = g(qt), 0 = ∇qg(qt)pt (9)

We use an OBA sequence, which in the case τ = 0 and by re-scaling the momentum and step size
variables, is equivalent to the standard PyTorch form of SGD with momentum [24, 33]. The B and
O components can be solved exactly (in law) while the A component can be approximated using
a standard scheme for constrained ODEs (e.g. SHAKE or RATTLE [22, Chap. 7]). Importantly,
the A component does not involve the evaluation of the gradient. For circle constraints the A step
can be solved explicitly (see Appx. B.4). For orthogonality constraints (Appx. B.6): for Q ∈ Σ,
the projection onto the cotangent space T ∗QΣ is defined as ΠQ : Rr×s → Rr×s, P̄ 7→ ΠQP̄ =

P̄ − 1
2Q(P̄ TQ+QT P̄). Then the ABO steps (Qn, Pn) ∈ T ∗Σ 7→ (Qn+1, Pn+1) ∈ T ∗Σ are

(A)

{
Q(0) = Qn + hPn, for k = 0:K − 1: Q(k+1) = Q(k) − 1

2Qn
(
(Q(k))TQ(k) − Is

)
,

Qn+1 = Q(K), P̄n+1 = Pn + 1
h

(
Qn+1 −Q(0)

)
, Pn+1 = ΠQn+1P̄n+1,

(B)
{
Qn+1 = Qn, P̄n+1 = Pn − h∇QV (Qn), Pn+1 = ΠQnP̄n+1,

(O)
{
Qn+1 = Qn, P̄n+1 = e−γhPn +

√
τ(1− e−2γh)Rn, Pn+1 = ΠQnP̄n+1,

(10)

4. Numerical Experiments
The use of constraints can enhance generalization performance. We support this claim by comparing
the performance of NN architectures trained using our constrained methods vs. unconstrained SGD.
We set τ = 0 and use equivalent learning rates to present a fair comparison. We denote our cir-
cle and orthogonal Constrained overdamped Langevin Algorithms as c-CoLA-od and o-CoLA-od,
respectively. We compare underdamped variants (CoLA-ud) with SGD with momentum (SGD-m).

Orthogonality Constraints We compare SGD with orthogonality-preserving overdamped Langevin
(Fig. 1). The goal is to train a MLP with p hidden layers on a tightly wound spiral binary classifi-
cation problem (Fig. C5). For SGD we show results for both i) standard PyTorch initialization and
ii) orthogonal initialization. A clear advantage imposing orthogonality appears with more than 3
hidden layers. In Fig. 2 we show that the use of a small temperature perturbation τ = 1e-6 speeds
up training and slightly increases the test accuracy obtained for MLPs trained on the spiral data set.

4

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

2HL
4HL
6HL

8HL
10HL
12HL

SGD (Standard Init.) SGD (Orthog. Init.) o-CoLA-od (Orthog. Pres.)

0 500 1000
Epoch

0 500 1000
Epoch

0 500 1000

Te
st

Ac
cu

ra
cy

 (%
)

40
50
60
70
80
90

100

Epoch

Figure 1: Test acc. of MLPs with p-number of 100-node hidden layers (HL), ReLU activation.
The MLPs are trained on a 4-turn spiral dataset (Fig. C5) using SGD with standard
initialization (left), SGD with orthogonal initialization (middle) and o-CoLA-od with τ =
0 (right). For o-CoLA-od we constrain weights in all layers, apart from input and output
layers. Stepsize h = 0.1 for all methods. Results are averaged over 10 runs. o-CoLA-od
significantly outperforms unconstrained SGD for MLPs with more than 3 hidden layers.

Figure 2: The effect of temperature for the same set-up as for Fig. 1. MLPs with varying numbers
of hidden layers (HL) were trained using o-CoLA-od with h = 0.1 and either τ = 0 (blue
line) or τ = 1e-6 (orange line). Results are averaged over 5 runs. The use of temperature
is shown to speed up training and often slightly increases the obtained test accuracies.

For a ResNet-34 architecture with BatchNorm and learning rate (LR) decay on CIFAR-10 [19]
data our underdamped orthogonal constrained method, o-CoLA-ud without weight decay (WD)
siginificantly outperforms SGD-m without WD (Fig. 3). In future work we will explore the nuances
of combining orthogonality constraints with BatchNorm, residual connections and LR decay. Since
o-CoLA outperforms SGD if no LR decay is used, we expect that with more tuning the use of WD
can be completely removed by using orthogonality constraints (see also Fig. C6).

Circle Constraints We evaluate our circle constrained c-CoLA-ud method on the Fashion-MNIST
data set [48]. We reduce the amount of training data to 10K samples and use the remaining 60K
samples as test data. c-CoLA-ud clearly outperforms SGD-m in terms of both test accuracy and test
loss for a 1000-node single hidden layer perceptron (see Fig. 4). The lower test loss of c-CoLA-ud
is maintained during training and the method shows no signs of overfitting, thus eliminating the
need for early stopping. Even with weight decay, SGD-m is outperformed by its constrained coun-
terpart (see Appx. C.2). We also show that a small transformer [43] with 2 encoder layers (each
with 2-head self-attention and a 200-node feed-forward network) trained using c-CoLA-ud achieves
a lower validation loss on NLP datasets than its unconstrained counterpart, SGD-m (see Table 1).

5

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Tr
ain

ing
 L

os
s

Te
st

Ac
cu

ra
cy

 (%
)

Te
st

Lo
ss

0.0

0.2

0.3

0.4

0.1

0.25

0.75

1.0

1.25

0.5

1.5

1.75

80

90

100

0 50 100
Epoch

150 0 50 100
Epoch

150 0 50 100
Epoch

150

SGD + mom (no WD)
SGD + mom + WD
o-CoLA-ud

Figure 3: Train (left) & test (middle) loss and test acc. (right) averaged over 5 runs of a ResNet-34
with BatchNorm trained using SGD-m vs. o-CoLA-ud with τ = 0 on CIFAR-10. For
SGD we initially use h = 0.1 and decay by a factor 10 every 50 epochs (indicated by
the vertical black dotted lines). We set momentum = 0.9 and present results with and
without WD. o-CoLA-ud (with γ = 0.5) did not use WD. Its learning rate was re-scaled
to match the parameters of SGD-m and used the same LR schedule. The o-CoLA-ud
method without weight decay strongly outperforms SGD-m without weight decay.

0 100 200 300 400
Epoch

Te
st

Lo
ss

0.5

0.7

0.9

1.1
Te

st
Ac

cu
ra

cy
 (%

)
89

85

86

88

87

0 100 200 300 400
Epoch

SGD (h=0.1, mom =0.9)
SGD (h=0.05, mom =0.9)

SGD (h=0.1, mom =0.8)
c-CoLA-ud

Figure 4: Test loss (left) and test acc. (right) averaged over 5 runs of a 1000-node SHLP trained
using SGD-m vs. c-CoLA-ud with τ = 0 on Fashion-MNIST (batchsize 128, # of training
data samples reduced to 10K). Hyperparameters of c-CoLA-ud: h = 0.3, γ = 1, r0 =
0.05, r1 = 0.1. Due to the small training data set size both methods quickly reached
100% training accuracy, but c-CoLA-ud is superior in its test loss and test accuracy.

SGD h = 0.1 SGD h = 0.2
Data sets c-CoLA-ud mom = 0.7 0.8 0.9 mom = 0.7 0.8 0.9

Penn Treebank 4.81 4.87 4.83 4.84 4.83 4.83 4.83
Wikitext-2 5.09 5.13 5.13 5.13 5.13 5.14 5.13

Table 1: Minimum validation loss on Penn Treebank data (batchsize 1024) [29] and Wikitext-2
(batchsize 128) [30] using a transformer trained using c-CoLA-ud (with τ = 0) or SGD-
m. Hyperparameters c-CoLA-ud: h = 0.4, r = 0.5, rL = 0.1, rN = 1, rA = 1, γ = 0.5
(Treebank) and γ = 1 (Wikitext-2), where the subscripts L,N,A represent the radii be-
longing to the linear, norm and self- attention layers respectively. The transformer trained
using o-CoLA-ud obtains lower validation losses on both datasets.

6

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Acknowledgements

The authors wish to thank Gabriel Stoltz and Tony Lelièvre for helpful discussions on constrained
SDEs. Benedict Leimkuhler is a fellow of the Alan Turing Institute which is supported by EPSRC
grant EP/N510129/1. Timothée Pouchon is supported by the Swiss National Science Foundation,
project P2ELP2 188037. Tiffany Vlaar is supported by The Maxwell Institute Graduate School in
Analysis and its Applications, a Centre for Doctoral Training funded by the UK Engineering and
Physical Sciences Research Council (grant EP/L016508/01), the Scottish Funding Council, Heriot-
Watt University and the University of Edinburgh.

References

[1] M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent neural networks. In Inter-
national Conference on Machine Learning, pages 1120–1128, 2016.

[2] D. Bakry and M. Émery. Diffusions hypercontractives. In J. Azéma and M. Yor, editors,
Séminaire de Probabilités XIX 1983/84, pages 177–206, Berlin, Heidelberg, 1985. Springer
Berlin Heidelberg. ISBN 978-3-540-39397-9. doi: 10.1007/BFb0075847.

[3] D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators,
volume 348. Springer Science & Business Media, 2013.

[4] N. Bansal, X. Chen, and Z. Wang. Can we gain more from orthogonality regularizations
in training deep CNNs? In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 4266–4276. Curran Associates Inc., 2018.

[5] A. Beskos, N. Pillai, G. Roberts, J.-M. Sanz-Serna, and A. Stuart. Optimal tuning of the hybrid
Monte Carlo algorithm. Bernoulli, 19(5A):1501–1534, 2013.

[6] R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated loga-
rithm for Markov processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
60(2):185–201, 1982. doi: 10.1007/BF00531822.

[7] N. Bou-Rabee and J.M. Sanz-Serna. Geometric integrators and the Hamiltonian Monte Carlo
method. Acta Numerica, 27:113–206, 2018. doi: 10.1017/S0962492917000101.

[8] A. Brock, T. Lim, J. M. Ritchie, and N. J. Weston. Neural photo editing with introspective
adversarial networks. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[9] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan. Underdamped Langevin MCMC: A
non-asymptotic analysis. arXiv:1707.03663, 2017.

[10] S. d’Ascoli, L. Sagun, J. Bruna, and G. Biroli. Finding the needle in the haystack with convo-
lutions: on the benefits of architectural bias. NeurIPS, 2019.

[11] E. Faou and T. Lelièvre. Conservative stochastic differential equations: Mathematical and
numerical analysis. Mathematics of computation, 78(268):2047–2074, 2009. doi: 10.1090/
S0025-5718-09-02220-0.

7

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

[12] M. Graham and A. Storkey. Asymptotically exact inference in differentiable generative mod-
els. In Proceedings of the 20th International Conference on Artificial Intelligence and Statis-
tics, volume 54, pages 499–508, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on Imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[14] A. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12:55–67, 1970. doi: 10.1080/00401706.1970.10488634.

[15] L. Huang, X. Liu, B. Lang, A. Wei Yu, and B. Li. Orthogonal weight normalization: Solution
to optimization over multiple dependent stiefel manifolds in deep neural networks. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[16] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456,
2015.

[17] K. Jia, S. Li, Y. Wen, T. Liu, and D. Tao. Orthogonal deep neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019. doi: 10.1109/TPAMI.2019.2948352.

[18] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible
Markov processes and applications to simple exclusions. Communications in Mathematical
Physics, 104(1):1–19, 1986. doi: 10.1007/BF01210789.

[19] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

[20] J. M. Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018.

[21] B. Leimkuhler and C. Matthews. Efficient molecular dynamics using geodesic integration
and solvent–solute splitting. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 472(2189):20160138, 2016. doi: 10.1098/rspa.2016.0138.

[22] B. Leimkuhler and S. Reich. Simulating Hamiltonian dynamics, volume 14. Cambridge uni-
versity press, 2004.

[23] B. Leimkuhler, C. Matthews, and G. Stoltz. The computation of averages from equilibrium
and nonequilibrium Langevin molecular dynamics. IMA Journal of Numerical Analysis, 36
(1):13–79, 2016. doi: 10.1093/imanum/dru056.

[24] B. Leimkuhler, C. Matthews, and T. Vlaar. Partitioned integrators for thermodynamic pa-
rameterization of neural networks. Foundations of Data Science, 1(4):457–489, 2019. doi:
10.3934/fods.2019019.

[25] T. Lelièvre and G. Stoltz. Partial differential equations and stochastic methods in molecular
dynamics. Acta Numerica, 25:681–880, 2016. doi: 10.1017/S0962492916000039.

[26] T. Lelièvre, G. Stoltz, and M. Rousset. Free energy computations: A mathematical perspec-
tive. Imperial College Press, 2010. ISBN 9781848162488.

8

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

[27] T. Lelièvre, M. Rousset, and G. Stoltz. Langevin dynamics with constraints and computation
of free energy differences. Mathematics of computation, 81(280):2071–2125, 2012. doi:
10.1090/S0025-5718-2012-02594-4.

[28] T. Lelièvre, G. Stoltz, and W. Zhang. Multiple projection MCMC algorithms on submanifolds.
arXiv:2003.09402, 2020.

[29] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

[30] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[31] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role
of implicit regularization in deep learning. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Workshop Track Proceedings, 2015.

[32] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks.
In International conference on machine learning, pages 1310–1318, 2013.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. 2017.

[34] G. A. Pavliotis. Stochastic processes and applications: diffusion processes, the Fokker-Planck
and Langevin equations, volume 60. Springer, 2014.

[35] J. Pennington, S. Schoenholz, and S. Ganguli. Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. In Advances in Neural Information Pro-
cessing Systems, pages 4785–4795, 2017.

[36] J. Pennington, S. Schoenholz, and S. Ganguli. The emergence of spectral universality in deep
networks. In International Conference on Artificial Intelligence and Statistics, pages 1924–
1932, 2018.

[37] P. Rodrı́guez, J. Gonzàlez, G. Cucurull, J. M. Gonfaus, and X. Roca. Regularizing cnns with
locally constrained decorrelations. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

[38] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization help opti-
mization? In Advances in Neural Information Processing Systems, pages 2483–2493, 2018.

[39] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv:1312.6120, 2013.

[40] N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In International Conference on
Computational Learning Theory, pages 545–560. Springer, 2005. doi: 10.1007/11503415 37.

9

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

[41] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958, 2014.

[42] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996. doi: 10.1111/j.2517-6161.1996.
tb02080.x.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

[44] C. Villani. Hypocoercivity. Memoirs of the American Mathematical Society, 202(950), 2009.

[45] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal. On orthogonality and learning recurrent
networks with long term dependencies. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 3570–3578. JMLR. org, 2017.

[46] F. Wenzel, K. Roth, B. S. Veeling, J. Swiatkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans,
R. Jenatton, and S. Nowozin. How good is the Bayes posterior in deep neural networks really?
arXiv:2002.02405, 2020.

[47] P. Williams. Bayesian regularization and pruning using a laplace prior. Neural computation,
7(1):117–143, 1995. doi: 10.1162/neco.1995.7.1.117.

[48] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, 2017.

[49] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isometry
and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural
networks. In International Conference on Machine Learning, pages 5393–5402, 2018.

[50] D. Xie, J. Xiong, and S. Pu. All you need is beyond a good init: Exploring better solution for
training extremely deep convolutional neural networks with orthonormality and modulation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6176–6185, 2017.

[51] Z. Yao, A. Gholami, K. Keutzer, and M. Mahoney. PyHessian: Neural networks through the
lens of the Hessian. arXiv:1912.07145, 2019.

[52] E. Zappa, M. Holmes-Cerfon, and J. Goodman. Monte Carlo on manifolds: Sampling densities
and integrating functions. Communications on Pure and Applied Mathematics, 71(12):2609–
2647, 2018. doi: 10.1002/cpa.21783.

10

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Overview of the provided supplementary material:

Appendix A: Provides the results necessary to establish exponential convergence to equilibrium
of constrained overdamped Langevin dynamics (4).

Appendix B: Provides discretization schemes and implementation details for our constrained train-
ing algorithms. The discretization schemes for a general constraint are described in Appendix B.1
for overdamped Langevin dynamics and in B.2 for underdamped Langevin dynamics. Our c-CoLA
circle constrained algorithm is discussed in Appendix B.3 (overdamped) and B.4 (underdamped).
Appendix B.5 and B.6 are reserved for our o-CoLA, orthogonality constraint Langevin dynamics,
algorithm (overdamped and underdamped, respectively).

Appendix C: Provides further numerical implementation details and results for our constrained
methods.

11

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Appendix A. Theory of constrained overdamped Langevin dynamics

We present here the details of the theory summarized in Sec. 3. In particular, we provide the key
results and suitable references to establish the exponential convergence to equilibrium of constrained
overdamped Langevin dynamics (4).

In the first part (Sec. A.1), we derive the underlying SDE associated with (4), its generator and
the invariant measure νΣ defined as

dνΣ = Z−1e−βV (q) dσΣ, Z =

∫
Σ
e−βV (q) dσΣ, (11)

where σΣ is the surface measure on Σ. Ergodicity ensures that averages of observables with respect
to νΣ can be approximated by time averages of trajectories of (4): for all test function φ ∈ C∞c (Σ)

lim
T→∞

〈φ〉T = 〈φ〉νΣ for a.e. q0 ∈ Σ, 〈φ〉T :=
1

T

∫ T

0
φ(qt) dt, 〈φ〉νΣ :=

∫
Σ
φ(q) dνΣ(q).

(12)
Next, in Sec. A.2 we present the Poincaré inequality on a manifold, which holds under a

curvature-dimension assumption: there exists ρ > 0 such that

CD(ρ,∞) : Ricg + β∇2
gV ≥ ρg, (13)

in the sense of symmetric matrices. The terms in (13) rely on the structure of Σ as a Riemannian
manifold: g is the Riemannian metric, Ricg is the Ricci curvature tensor and∇2

gV is the Hessian of
V on the manifold. Under (13) the following result holds [3].
Theorem 1 Assume that there exists ρ > 0 and N > n such that CD(ρ,N) holds. Then νΣ

satisfies a Poincaré inequality: there exists a constant L > 0 such that∫
Σ

∣∣φ(q)− 〈φ〉νΣ

∣∣2 dνΣ(q) ≤ 1

2L

∫
Σ

∣∣Π(q)∇qφ(q)
∣∣2 dνΣ(q) ∀φ ∈ H1(νΣ), (14)

where Π(q) is the projection onto the cotangent space T ∗q Σ (18) and H1(νΣ) is the space of func-
tions with square νΣ-integrable gradients (17).

Consequences of Theorem 1 are exponential convergence and a central limit theorem (CLT) for the
convergence in (12).
Corollary 2 If (13) holds then∫

Σ

∣∣E(φ(qt) | q0)− 〈φ〉νΣ

∣∣2 dνΣ(q0) ≤ C(φ)e−2L/βt ∀φ ∈ H1(νΣ), (15)

where C(φ) depends only on φ. Furthermore we have the following convergence in law:
√
T
(
〈φ〉T − 〈φ〉νΣ

)
→ N (0, σ2

φ) as T →∞,

where the asymptotic variance σ2
φ is bounded as σ2

φ ≤
β
L

∫
Σ

∣∣φ− 〈φ〉νΣ

∣∣2 dνΣ.

Appx. A.3 is dedicated to using the Poincaré inequality to proving this.
In Rn, assumption (13) is equivalent to convexity of V , which is known to be too strong a

requirement (a confining assumption is sufficient, see e.g. [25]). Although (13) can certainly be
weakened, the above results ensure that, provided the curvature of the manifold is well behaved,
sampling on Σ has similar properties as on a flat space.

12

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

NOTATION

We collect here additional notation needed for this discussion.
Given a measure µ in a space E ⊂ Rd, we associate the space of square integrable functions

L2(µ) =
{
φ : E → R measurable :

∫
E
|φ|2 dµ <∞

}
.

Equipped with the inner product and associated norm

〈φ, ψ〉µ =

∫
E
φψ dµ, ‖φ‖L2(µ) =

√〈
φ, φ

〉
,

L2(µ) is a Hilbert space. We further define the subspace L2(µ) of functions with zero mean by

L2
0(µ) =

{
φ ∈ L2(µ) : 〈φ〉µ = 0

}
, 〈φ〉µ =

∫
E
φdµ, (16)

as well as the space of functions with square integrable gradient

H1(µ) =
{
φ ∈ L2(µ) : ∂iφ ∈ L2(µ) 1 ≤ i ≤ d

}
. (17)

For the constraint g : Rd → Rm, we denote the Jacobian matrix as G(q) = ∇Tq g(q) and denote
its right pseudo-inverse by G+ = GT (GGT)−1 (GGT is invertible if G has full row rank). We
verify that the map

Π : Rd → Rd×d, q 7→ Π(q) = Id −G+(q)G(q), (18)

defines for each q the orthogonal projection onto the cotangent space T ∗q Σ.

Πq = Π(q) : Rd → Rd, p 7→ Π(q)p.

In particular, for all q we have Πqp ∈ T ∗q Σ and the matrix Πq is symmetric and idempotent: (i.e.,
ΠT
q = Πq and Π2

q = Πq).

A.1. The underlying SDE and the invariant measure

Although presented differently, the results of this section follow closely the treatment of this issue
presented in [26, Chap. 3].

We define the mean curvature of the manifold as the vector valued function

H : Rd → Rd, q 7→
(
H(q)

)
i

= Πjk(q)∂jΠik(q) 1 ≤ i ≤ d, (19)

where Π(q) : Rd → Rd is the projection onto the cotangent space defined in (18). We then establish
the following result (proved below).

Lemma 3 The constrained system (4) can be rewritten as the following SDE in Rd

dqt = −Π(qt)∇V (qt)dt+
√

2β−1 Π(qt)dWt + β−1H(qt) dt. (20)

13

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

The uniqueness of the invariant measure of (20) and the resulting ergodicity result (12) are
proved in [26, Prop. 3.20] (the proof relies on the divergence theorem on manifolds).

The generator associated with (20) is given by

L = −Π(q)∇V (q) · ∇+ β−1H(q) · ∇+ β−1Π(q) : ∇2.

We verify that L can be written in the following symmetric form

Lψ = β−1 divΣ(∇Σψ)−∇ΣV (q) · ∇Σψ = β−1eβV (q) divΣ

(
e−βV (q)∇Σψ

)
, (21)

where we denote ∇Σφ = Π∇φ and divΣ ψ = ∇Σ · ψ =
∑d

i,j=1 Πij∂jψi. This expression directly
implies that L is reversible with respect to νΣ:〈

Lφ, ψ
〉
νΣ

= −β−1
〈
∇Σφ,∇Σψ

〉
νΣ

=
〈
φ,Lψ

〉
νΣ
. (22)

Thanks to this expression, we can prove that the measure νΣ is indeed invariant for (4). Let us
introduce the forward Kolmogorov equation: given a test function φ ∈ C∞c (Σ)

∂tu(t, q) = Lu(t, q) t ≥ 0, q ∈ Σ u(0, q) = φ(q).

The solution to this equation is verified to be u(t, q) = E(φ(qt) | q0 = q) (see the Feynmann–Kac
formula) and is usually denoted as u(t, q) = etLφ(q). The measure νΣ is invariant if for any t ≥ 0∫

Σ u(t, q) dνΣ(q) =
∫

Σ u(0, q) dνΣ(q) = 〈φ〉νΣ . This is easily verified thanks to (22):

d

dt

∫
Σ
u(t, q) dνΣ(q) =

d

dt

∫
Σ
etLφ(q) dνΣ(q) =

∫
Σ
LetLφ(q) dνΣ(q) =

〈
LetLφ,1

〉
νΣ

= 0.

Proof Let us write λt as the Itô process

dλt = µ(qt) dt+ σ(qt) dWt, (23)

where µ : Rd → Rm, σ : Rd → Rm×d and Wt is the same Wiener process as in (4). Using this
expression in (4) brings

dqt =
(
−∇V (qt)−G(qt)

Tµ(qt)
)

dt+
(√

2β−1I −G(qt)
Tσ(qt)

)
dWt,

where we recall the notation for the Jacobian G = ∇Tq g. Using Itô formula we find

0 = dg(qt) = G(qt) dq+ bt dt = G(qt)
(
−∇V (qt) dt+

√
2β−1 dWt−G(qt)

Tdλt
)

+ bt dt, (24)

where bt is the d-dimensional process defined as (omitting the dependence on qt)

(bt)i =
1

2

(√
2β−1I −GTσ

)(√
2β−1I −GTσ

)T
: ∇2gi

= β−1∆gi −
√

2β−1

2

(
GTσ + σTG

)
: ∇2gi +

1

2
GTσσTG : ∇2gi.

(25)

From (24) yields

dλt =
(
G(qt)G(qt)

T
)−1

G(qt)
(
−∇V (qt) dt+

√
2β−1 dWt

)
+
(
G(qt)G(qt)

T
)−1

bt dt. (26)

14

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Identifying with (23) we find σ(q) =
√

2β−1(G+(q))T , which used in (25) yields

(bt)i = β−1
(
∆gi −

(
GT (G+)T +G+G

)
: ∇2gi +GT (G+)TG+G : ∇2gi

)
.

As G+G is symmetric and GG+ = Im, we obtain

(bt)i = β−1
(
∆gi −G+G : ∇2gi

)
= β−1Π : ∇2gi. (27)

Inserting (26) in (4) brings

dqt = −Π(qt)∇V (qt)dt+
√

2β−1 Π(qt)dWt −G+(qt)bt dt. (28)

To conclude the proof we require the following technical relations on the mean curvature vector
((29a) follows from a direct computation; the proof of (29b) is direct but involved and can be found
in [26, Lemma 3.15]).

Lemma 4 The projection Π and the vector H defined in (18) and (19) satisfy the following equal-
ities

H = (I −Π)∇ ·Π, (29a)

Π : ∇2gi = −(GH)i 1 ≤ i ≤ d, (29b)

Equality (29a) ensures that ΠH = 0. Combining (27) and (29b) we can write bt = −β−1GH.
Thanks to these relations and the definition of Π, we obtain

−G+bt = β−1G+GH = β−1(I −Π)H = β−1H.

This equality combined with (28) proves (3) and concludes the proof of Lemma 3.

A.2. Poincaré inequality on a manifold

Poincaré inequalities, also called spectral gap inequalities, form an important family of functional
inequalities in the theory of Markov diffusion processes. They are the simplest inequalities that
provide results on the convergence to equilibrium. Stronger results can be obtained with the family
of log-Sobolev inequalities, which are at the center of the Bakry–Émery theory [2]. We follow here
closely the book [3] on this subject (more specifically §1.16.2 and sections 4.2, 4.8, C.6). For the
necessary terminology of Riemannian manifolds we recommend the introductory textbook [20] (the
literature on this topic is vast and contains many works of high quality).

As presented in [3, Chap. 4], a Poincaré inequality can be obtained as a consequence of a
curvature-dimension condition. For the sake of presentation, we introduce this result in the setting
of a weighted Riemannian manifold. Let (M, g) be an n-dimensional Riemannian manifold, where
g is the Riemannian metric. We consider the diffusion operator

L = ∆g − 〈∇gW,∇g·〉g,

where ∆g denotes the Laplace–Beltrami operator on the manifoldM, ∇g denotes the Levi–Civita
connection (covariant derivative) and 〈·, ·〉g denotes the Riemannian metric (〈X,Y 〉g = g(X,Y)

15

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

for all vector fields X,Y). We verify that the associated invariant measure is dµ = Z−1e−Wdµg,
where dµg is the Riemannian measure [3, §1.11.3]. For N ∈ [n,∞], we define the 2-tensor

RicN (L) = Ricg +∇2
gW −

1

N − n
dW ⊗ dW.

where Ricg is the Ricci curvature 2-tensor and ∇2
g denotes the Hessian operator on M (the case

N = n is considered only if W is constant). In this context, a curvature-dimension condition
CD(ρ,N) for ρ ∈ R and N ≥ n holds if and only if (see [3, C.6])

CD(ρ,N) : RicN (L) ≥ ρg, (30)

in the sense of symmetric (0, 2)-tensors (covariant 2-tensors). In the flat space M = Rn, the
condition CD(ρ,∞) reads ∇2W ≥ ρI , which is nothing but the convexity of the potential W .
Under CD(ρ,N), the measure µ is proved to satisfy a Poincaré inequality (in [3], combine Thm
4.8.4 with the discussion in section C.6).

Theorem 5 [3, Thm 4.8.4] Under the curvature-dimension condition CD(ρ,N) with ρ > 0 and
N ≥ n, N > 1, the measure µ satisfies the Poincaré inequality

Varµ(φ) = ‖φ− 〈φ〉µ‖2L2(µ) ≤ CP ‖∇gφ‖2L2(µ) ∀φ ∈ L2(µ) ∩H1(µ), (31)

with constant CP = N−1
ρN .

As the tensor dW ⊗ dW is positive semi-definite, we verify the monotonicity RicN+M (L) ≥
RicN (L) for any M ≥ 0. This implies in particular that CD(ρ,N) ⇒ CD(ρ,∞) for any N ∈
[n,∞]. Hence, among all choices of N ≥ n, CD(ρ,∞) is the weaker condition.

Let us now consider this result in the context of the constraint manifold Σ in (1). We consider
the space Rd with its Riemannian manifold structure given by the Euclidean metric ḡ(v, w) = v ·w
for all v, w ∈ Rd (for all q ∈ Rd, p ∈ TqRd is identified with Rd through a canonical isomorphism).
Assuming that g is smooth and that ∇Tq g has everywhere full row-rank, Σ is a smooth embedded
submanifold of Rd of dimension n = d−m (see e.g. [20, Cor. A.26]). Furthermore, Σ is equipped
with the metric induced by ḡ: for a local parameterization of ψ : U ⊂ Σ → Rd, ḡ is given locally
on U by

ḡ =

d∑
i=1

n∑
j,k=1

∂ψi

∂xj
∂ψi

∂xk
dxjdxk =

(
∇xψ∇Txψ

)
jk

dxjdxk. (32)

We now define the potential W = βV |Σ, where V |Σ denotes the restriction of V to Σ. Assumption
13 corresponds then to condition CD(ρ,∞) above. Applying Theorem 5 we obtain Poincaré’s
inequality on the constraint manifold Σ. We note that for a function φ defined on Rd, the covariant
derivative in Rd of φ|Σ on the manifold is the orthogonal projection of the directional derivative of φ
(in the ambient manifold Rd) onto the cotangent space: ∇g(φ|Σ)(q) = Π(q)∇qφ(q). Furthermore,
we note that the surface measure σΣ equals the Riemannian measure on the manifold (compare [26,
Rem. 3.4] with [20, Prop. 2.41] and (32)). We thus obtain the result of Theorem 1 with constant
CP = 1

ρ = 1
2L .

16

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

A.3. Exponential convergence to equilibrium and central limit theorem

Let us define the norm of a linear operator A : L2
0(νΣ)→ L2

0(νΣ) as

‖A‖B(L2
0(νΣ)) = sup

φ∈L2
0(νΣ)

‖Aφ‖L2
0(νΣ)

‖φ‖L2
0(νΣ)

.

Denote φ̄ = φ− 〈φ〉νΣ ∈ L2
0(νΣ). The Poincaré inequality (14), rewritten on the subspace L2

0(νΣ),
is as follows:

‖φ̄‖2L2
0(νΣ) ≤

1

2L
‖∇Σφ̄‖2L2

0(νΣ) ∀φ̄ ∈ L2
0(νΣ) ∩H1(νΣ). (33)

Using the reversibility of the measure (22), we can prove the following result (the proof follows the
same lines as [25, Prop. 2.3], see also [3, Thm 4.2.5]).

Lemma 6 The measure νΣ satisfies the Poincaré inequality (33) if and only if

‖etL‖B(L2
0(νΣ)) ≤ e

−2L
β
t
. (34)

Exponential convergence to equilibrium is then directly obtained from Lemma 6:

‖etLφ̄‖L2
0(νΣ) ≤ ‖etL‖B(L2

0(νΣ))‖φ̄‖L2
0(νΣ) ≤ e

−2L
β
t‖φ̄‖L2

0(νΣ). (35)

This inequality implies (15) (note that etL〈φ〉νΣ = 〈φ〉νΣ) and thus proves the first assertion of
Corollary 2.

A consequence of the exponential convergence to equilibrium (35) is the following central limit
theorem for time averages 〈φ〉T = 1

T

∫ T
0 φ(qt) dt (see also [18]).

Theorem 7 [6] If (35) holds, then the following convergence in law is satisfied
√
T
(
〈φ〉T − 〈φ〉νΣ

)
→ N (0, σ2

φ) as T →∞,

where the asymptotic variance σ2
φ is given by the formula σ2

φ = 2〈φ̄,−L−1φ̄〉 with φ̄ = φ− 〈φ〉νΣ .

To quantify the asymptotic variance, we use the following classical result.

Lemma 8 (e.g., [25, Prop. 2.1]) If (34) holds, then the generator L is invertible and the resolvent
can be expressed as −L−1 =

∫∞
0 etL dt and satisfies the bound ‖L−1‖B(L2

0(νΣ)) ≤
β

2L .

Using Lemma 8 and Cauchy–Schwartz inequality, the asymptotic variance in Theorem 7 can
thus be bounded as

σ2
φ = 2

∫
Σ
φ̄(−L−1φ̄) dνΣ ≤ 2‖L−1‖B(L2

0(νΣ))‖φ̄‖2L2
0(νΣ) ≤

β

L
‖φ̄‖2L2

0(νΣ).

This estimate completes the proof of the second assertion of Corollary 2.

17

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

Appendix B. Discretization of constrained Langevin dynamics

We present here the details of the constrained training methods considered in this paper. Both
the overdamped (4) and underdamped (5) Langevin dynamics are discretized for the constraints
presented in Section 2. We emphasize that the initialization of each given method must be done
with care: the constrained parameters, the potential slack variable, as well as their momenta in the
underdamped case, have to satisfy the constraint initially.

Recall the notation introduced in Section 2: θ ∈ R|n| is the vector of all the parameters of the
model, we consider the variable q = (θ, ξ) ∈ Rd, d = |n| + nξ, where ξ ∈ Rnξ is a slack variable
to enforce the potential inequality constraints. The loss is extended q = (θ, ξ) as V (q) = LX(θ)
(in particular ∇ξV = 0) and constraints are given by a map g : Rd → Rm. The parameters are
partitioned as θ = (θu, θc), where θu ∈ Rnu are not involved in any constraint while θc ∈ Rnc are.

B.1. Discretization of constrained overdamped Langevin (general constraint)

Following [26, Chap. 3] a simple discretization of the constrained overdamped Langevin dynamics
(4) is given by the iteration qn ∈ Σ 7→ qn+1 defined as

q̄n+1 = qn −∇qV (qn)h+
√

2β−1hRn, qn+1 = q̄n+1 −∇qg(qn)λn,

where λn ∈ Rm is such that g(qn+1) = 0,
(36)

where Rn ∼ N(0, I) is a vector of iid standard normal random variable. The first step of (36),
q̄n+1, is an Euler–Maruyama step for standard overdamped Langevin. As q̄n+1 in Rd is generally
not on the constrained manifold Σ, the last term is present to project q̄n+1 back onto Σ, ensuring
g(qn+1) = 0. In particular, for the unconstrained parameter we have∇Tθug = 0m×nu which implies
that θun+1 = θ̄un+1 is a standard EM step.

In general, projecting back onto the manifold Σ, i.e., finding λn, can be done using root-finding
algorithms. Nevertheless, for certain constraints g the roots can be found explicitly. This is the
case for the circle constraint (2) (see Section B.3). A potential weakness of method (36) is that the
projection process can be guaranteed only for small enough step size h (i.e. q̄n must be close to Σ).
Indeed, even for the circle constraint if h is too large it might not be possible to project q̄n+1 back
onto the circle following the direction ∇qg(qn). See [28] for some discussion of methods to allow
computation to be performed in the large timestep regime.

An alternative method is given by the iteration qn ∈ Σ 7→ qn+1 ∈ Σ defined as in [26, Chap. 3]

q̄n+1 = qn −∇qV (qn)dt+
√

2β−1hRn, qn+1 = q̄n+1 −∇qg(qn+1)λn,

where λn ∈ Rm is such that g(qn+1) = 0,
(37)

where Rn ∼ N(0, I) is a vector of iid standard normal random variable. The projection used in
method (37) is in general more robust. The circle constraint is a good illustration of this: while
in (36) we project following an oblique direction, in (37) the projection is orthogonal and always
exists (see Section B.3).

B.2. Discretization of constrained underdamped Langevin (general constraint)

We next consider the discretization of the constrained underdamped Langevin dynamics (5) where
we denote by p = (pu, pc, pξ) ∈ Rnu+nc+nξ the momenta associated with the configuration q =

18

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

(θu, θc, ξ). Following [21], the system is split into A,B,O components (7)-(9), where B represents
a projected impulse defined by the loss gradient (restricted to the cotangent space), O represents a
projected stochastic impulse, and A represents evolution along geodesics (i.e., for circle constraints,
these are rotations on the circles).

As in the overdamped case, the equality ∇Tθug = 0m×nu ensures that the unconstrained param-
eters and their momenta (θu, pu) evolve following the A,B,O steps for unconstrained underdamped
Langevin (see [23]). As the B and O components only involve a variation in the momentum pt
and because the constraint only involves qt, they can be solved exactly for any constraint. The A
component involves a variation of the configuration qt and thus cannot be solved exactly (in law)
for any constraint. However, as this part does not include any force evaluation (which would require
back-propagation to compute the gradient), it can be approximated cheaply using a few steps of
standard well-known schemes such as SHAKE or RATTLE (see Section B.6 for orthogonal con-
straints). Furthermore, for simple constraints such as the circle constraint (2) the A component can
be solved explicitly (see Section B.4).

Let us present the details of the B and O steps. For convenience, let us introduce the following
notation for the variables involved in the constraint w = (θc, ξ) ∈ Rnc+nξ and associated momen-
tum pw = (pc, pξ) ∈ Rnc+nξ . The projection onto the cotangent space (18) is then as

Π(q) = Id −
(

0 0
0 Πw(q)

)
, with Πw =

(
gTθcH

−1gθc gTξ H
−1gθc

gTθcH
−1gξ gTξ H

−1gξ

)
, (38)

where we have denoted the partial Jacobians by gθc = ∇Tθcg ∈ Rm×nc , gξ = ∇Tξ g ∈ Rm×nξ and
the matrix H = gθcg

T
θc + gξg

T
ξ ∈ Rm×m.

B component. Given q0, p0 ∈ T ∗Σ and a time t > 0, we have

qt = q0, pt = p0 − t∇qV (q0)−∇qg(q0)(µt − µ0),

where µt is such that pt ∈ T ∗qtΣ (i.e., it satisfies the constraint 0 = ∇qg(qt)pt). Note that as q0, p0

satisfy the constraints we have µ0 = 0. Projecting onto the cotangent space T ∗qtΣ = T ∗q0Σ and using
Π(q0)∇qg(q0) = 0 and p0 = Π(q0)p0, we obtain

pt = Π(qt)pt = Π(q0)
(
p0 − t∇qV (q0)−∇qg(q0)µt

)
= p0 − tΠ(q0)∇qV (q0).

The B step is thus obtained for a chosen stepsize h > 0 as: given qn = (θun, θ
c
n, ξn) ∈ Σ and

pn = (pun, p
c
n, p

ξ
n) ∈ T ∗qnΣ

(B, gen.)

θun+1 = θun, θcn+1 = θcn, ξn+1 = ξn,

pun+1 = pun − h∇θuLX(θn), p̄cn+1 = pcn − h∇θcLX(θn), p̄ξn+1 = pξn,(
pcn+1

pξn+1

)
= Πw(wn)

(
p̄cn+1

p̄ξn+1

)
where wn =

(
θcn
ξn

)
.

(39)
O component. Similarly as for the B part, the O part can be solved exactly in law for any

constraint. Given q0, p0 ∈ T ∗Σ and a time t > 0, we have

qt = q0, pt = p0 − γ
∫ t

0
pt dt+

√
2γτ

∫ t

0
dWt −∇qg(q0)νt,

19

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

where νt ensures that pt ∈ T ∗qtΣ. Projecting to the cotangent space T ∗qtΣ = T ∗q0Σ as before, we
obtain

pt = Π(qt)pt = p0 − γ
∫ t

0
Π(q0)pt dt+

√
2γτΠ(q0)

∫ t

0
dWt.

We thus recognize that pt is an Ornstein–Uhlenbeck process:

pt
law
= Π(q0)

(
e−γtp0 +

√
τ(1− e−2γt)R

)
, with R ∼ N(0, Id),

where the equality holds in law.
The O step is thus obtained for a chosen stepsize h > 0 as: given qn = (θun, θ

c
n, ξn) ∈ Σ and

pn = (pun, p
c
n, p

ξ
n) ∈ T ∗qnΣ

(O, gen.)

θun+1 = θun, θcn+1 = θcn, ξn+1 = ξn,

pun+1 = e−γhpun +
√
τ(1− e−2γh)Ru,

p̄cn+1 = e−γhpcn +
√
τ(1− e−2γh)Rc,

p̄ξn+1 = e−γhpcn +
√
τ(1− e−2γh)Rξ,(

pcn+1

pξn+1

)
= Πw(wn)

(
p̄cn+1

p̄ξn+1

)
where wn =

(
θcn
ξn

)
,

(40)

and Ru, Rc, and Rξ are independent standard normal random variables.

B.3. Circle constraint, overdamped Langevin (c-CoLA-od)

We consider here the circle constraint (2), for which the partial Jacobians are computed as

∇Tq g =
(
∇Tθug,∇Tθcg,∇Tξ g

)
∈ Rm×(nu+nc+m), ∂θuj gi = 0, ∂θcjgi = 2θci δij , ∂ξjgi = 2ξiδij ,

(41)
where δij is the Kronecker delta.

For this constraint, the projection step in (36) can be computed explicitly. Indeed λn can be
found by solving them quadratic equations 0 = gi(q̄n+1−∇qg(qn)λn) 1 ≤ i ≤ m. The (potential)
two roots of each equation corresponds to the (potential) two projections of q̄n+1 onto the circle
following the direction ∇gi(qn) = 2(θcn,i, ξn,i). When two roots are found, we may select the one
closest to the point of origin (θcn,i, ξn,i). However, if the point to project (θ̄cn+1,i, ξ̄n+1,i) is too far
away from the circle, this oblique projection may not be possible (i.e., the quadratic equation has
no real root).

For the circle constraint, method (37) thus leads to a more robust projection process. Indeed, as
∇gi(qn+1) = 2(θcn+1,i, ξn+1,i), the direction of the projection is now orthogonal to the circle. To
find an expression for the orthogonal projection P of a point (θ̄1, ξ̄1) on the circle, it is easier to use
a geometrical approach than to find the Lagrange multipliers:

(θ1, ξ1) = P (θ̄1, ξ̄1) =
(
ri cos(α), ri sin(α)

)
, where α = arctan

(ξ̄1

θ̄1

)
.

20

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

We obtain the following discretization of the overdamped Langevin with circle constraints. We
initialize the parameters of the neural network using standard PyTorch initialization [13, 33], i.e.,
U(−1/

√
Nin, 1/

√
Nin), where Nin is the number of inputs to a layer. The auxiliary variables ξi

corresponding to the constrained parameters θci are initialized to obey the constraint (θci)
2+ξ2

i = r2
i .

For a chosen stepsize h > 0 and given a configuration qn = (θun, θ
c
n, ξn) ∈ Σ, one step of the method

is defined by qn+1 = (θun+1, θ
c
n+1, ξn+1) ∈ Σ as

θun+1,i = θun,i − h∂θui LX(θn) +
√

2β−1hRui ,

θ̄cn+1,i = θcn,i − h∂θciLX(θn) +
√

2β−1hRci ,

ξ̄n+1,i = ξn,i +
√

2β−1hRξi ,

αn,i = arctan

(
ξ̄n+1,i

θ̄cn+1,i

)
,

θcn+1,i = ri cos(αn,i),

ξn+1,i = ri sin(αn,i),

(42)

where Rui , R
c
i , R

ξ
i are independent standard normal random variables.

B.4. Circle constraint, underdamped Langevin (c-CoLA-ud)

We provide here the full discretization of the underdamped Langevin dynamics in the case of the
circle constraint (2).

A component. For the circle constraint we can solve the A step explicitly. First recall that as
∇Tθug = 0, the unconstrained parameters θu are obtained with a standard A step of the unconstrained
underdamped Langevin. Let us then focus on solving the constrained components: we denote
w = (θc, ξ), pw = (pc, pξ). Then for 1 ≤ i ≤ m the A step in (7) corresponds to the constrained
ODEs

ẇi = pwi

ṗwi = −2λiwi

|θci |2 + |ξi|2 = r2
i , θcip

c
i + ξip

ξ
i = 0.

(43)

As these constrained ODEs are uncoupled, let us drop the specification of the index i. By assump-
tion, we are given initial conditions that satisfy the constraint (w0, p

w
0) ∈ T ∗Σ. Solving the second

order ODE ẅ = −2λw, we find that any solution has the form wt = R2λ
t w0, where Rωt is a rotation

matrix with angular speed ω given with its time derivative as

Rωt =

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
, Ṙωt = ω

(
− sin(ωt) cos(ωt)
− cos(ωt) − sin(ωt)

)
.

Computing the momentum pwt = ẇt = Ṙωt w0, and using the properties of Rωt we verify that wt, pwt
satisfy the constraints in (43) (‖.‖ denotes the Euclidean norm in R2 and · the dot product):

‖wt‖2 = ‖Rωt w0‖2 = ‖w0‖2 = r2, wt · pwt = wT0 (Rωt)T Ṙωt w0 = 0.

We still have to find the angular speed ω = 2λ such that the momentum pwt is consistent with its
initial value pw0 (we denote w0 = (θc0, ξ0) and pw0 = (pc0, p

ξ
0)):

pw0 = Ṙω0 u0 ⇔ pc0 = ωξ0 and pξ0 = −ωθc0.

21

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

We thus find that

ξ0p
c
0 − θc0p

ξ
0 = ω

(
|ξ0|2 + |θc0|2

)
= ωr2 ⇔ ω =

1

r2

(
ξ0p

c
0 − θc0p

ξ
0

)
.

We have thus found an explicit expression for the solution of the A component for circle constraints
(43).

To complete the B and O steps given in (39) and (40), we need an explicit expression for the
projection Πw in (38) (using (41), recall that m = nc = nξ):

Πw(w) =

(
Im −D11 −D12

−D12 Im −D22

)
,

where Dkl ∈ Rm×m are the diagonal matrices defined as

D11
ii =

|θci |2

|θci |2 + |ξi|2
, D12

ii =
θci ξi

|θci |2 + |ξi|2
, D22

ii =
|ξi|2

|θci |2 + |ξi|2
.

Assuming that w = (θc, ξ) satisfies the constraint, the projection of (p̄c, p̄ξ) is thus computed as

(
pc

pξ

)
= Πw(w)

(
p̄c

p̄ξ

)
, where

pci = p̄ci −
θci
r2
i

(
θci p̄

c
i + ξip̄

ξ
i

)
1 ≤ i ≤ m,

pξi = p̄ξi −
ξi
r2
i

(
θci p̄

c
i + ξip̄

ξ
i

)
1 ≤ i ≤ m.

Note that in the B step (39), the above expressions can be simplified by combining the simple
definition of (p̄cn, p̄

ξ
n) with the constraint

0 =
(
∇T g(q)p

)
i

= 2
(
θcip

c
i + ξip

ξ
i

)
.

We provide below the explicit updates for the A, B and O components for circle constraints.
We initialize the parameters of the net using standard PyTorch initialization [13, 33]. The auxiliary
variables ξ corresponding to the constrained parameters θc are initialized to obey the constraint
(θc)2 + ξ2 = r2, so that q0 = (θu0 , θ

c
0, ξ0) ∈ Σ. The momenta, pu, pc, and pξ, are generated in the

same manner as for standard SGD with momentum in PyTorch, i.e., as equal to the initial gradients.
Subsequently, the momenta belonging to the constrained variables pc and to the auxiliary variables
pξ are projected using Πw, so that p0 = (pu0 , p

c
0, p

ξ
0) ∈ T ∗q0Σ. For a stepsize h > 0 we obtain

(A step, circle)

θun+1,i = θun,i + hpun,i,

ωi =
1

r2
i

(
ξn,ip

c
n,i − θcn,ip

ξ
n,i

)
,

θcn+1,i = cos(ωih)θcn,i + sin(ωih)ξn,i,

ξn+1,i = − sin(ωih)θcn,i + cos(ωih)ξn,i,

pun+1,i = pun,i,

pcn+1,i = ωi
(
− sin(ωih)θcn,i + cos(ωih)ξn,i

)
,

pξn+1,i = −ωi
(

cos(ωih)θcn,i + sin(ωih)ξn,i
)
,

22

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

(B step, circle)

θun+1 = θun, θcn+1 = θcn, ξn+1 = ξn,

pun+1 = pun − h∇θuLX(θn),

p̄cn+1,i = pcn,i − h
(

1− 1

r2
i

|θcn,i|2
)
∂θciLX(θn),

p̄ξn+1,i = pξn,i + h
1

r2
i

θcn,iξn,i∂θciLX(θn),

(O step, circle)

θun+1 = θun, θcn+1 = θcn, ξn+1 = ξn,

pun+1 = e−γhpun +
√
β−1(1− e−2γh)Ru,

p̄cn+1 = e−γhpcn +
√
β−1(1− e−2γh)Rc,

p̄ξn+1 = e−γhpcn +
√
β−1(1− e−2γh)Rξ,

pcn+1,i =
(

1− 1

r2
i

|θcn,i|2
)
p̄cn+1,i −

1

r2
i

θcn,iξn,ip̄
ξ
n+1,i,

pξn+1,i = − 1

r2
i

θcn,iξn,ip̄
c
n+1,i +

(
1− 1

r2
i

|ξn,i|2
)
p̄ξn+1,i,

where Ru, Rc, and Rξ are vectors of independent standard normal random variables.

B.5. Orthogonality constraint, overdamped Langevin dynamics (o-CoLA-od)

We present here a particular discretization of the constrained overdamped Langevin dynamics (4)
for the orthogonality constraint (3).

For notational convenience, we present the updates for the weight matrix W ` of a given layer `.
The updates for the biases are standard Euler–Maruyama steps such as given for θu in (42).

Referring to (3), we denote

Q = W `, r = n`, s = n`−1 if n`−1 ≤ n`,
Q = (W `)T , r = n`−1, s = n` otherwise.

(44)

so that Q ∈ Rr×s. With this notation, the constraint (3) is g(Q) = 0 where

g : Rr×s → Rs×s, g(Q) = QTQ− Is. (45)

Recall that due to symmetry, the matrix equality g(Q) = 0s corresponds to s(s+ 1)/2 constraints.
We compute the partial derivative

∂Qklgij(Q) = δliQkj + δljQki 1 ≤ i, j, k ≤ s, 1 ≤ l ≤ r. (46)

In particular, if Λ is an s× s symmetric matrix, we verify that

s∑
i,j=1

∂Qklgij(Q)Λij = 2
(
QΛ
)
kl
.

23

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

We thus obtain the natural matrix form of the constrained dynamics (4): Qt : (0,∞)→ Rr×s solves

dQt = −∇QV (Qt) dt+
√

2β−1 dWt −Qt dΛt,

g(Qt) = 0,
(47)

where
(
∇QV

)
ij

= ∂QijV = ∂W `
ij
LX (or ∂W `

ji
LX) and Wt is a Wiener process in Rr×s. Fur-

thermore the process Λt has values in the s × s symmetric matrices and is the Lagrange multiplier
corresponding to the s(s+ 1)/2 constraints.

Applying discretization scheme (36) to (47), we obtain the iteration step Qn ∈ Σ 7→ Qn+1 ∈ Σ
given by

Q̄n+1 = Qn − h∇QV (Q) +
√

2β−1hRn, Qn+1 = Q̄n+1 −QnΛn,

where Λn is a symmetric s× s matrix s.t. g(Qn+1) = 0,
(48)

and Rn ∈ Rr×s is a matrix of independent standard normal random variables.
Note that the projection step in (48) requires to solve a non-linear system. Following a similar

technique as described in [22, Chap. 8], we derive a quasi-Newton scheme for that task. Using the
fact that Qn satisfies the constraint we verify that

Q̄Tn+1Qn = Is − h∇QV (Qn)TQn +
√

2β−1hRTnQn.

The constraint g(Qn+1) = 0 thus reads

0 =
(
Q̄n+1 −QnΛn

)T (
Q̄n+1 −QnΛn

)
− Is =

(
Q̄Tn+1Q̄n+1 − Is

)
− 2Λn +O(

√
h), (49)

where O(
√
h) denotes a matrix whose 2-norm has order

√
h. Solving for Λn, we find

Λn =
1

2

(
Q̄Tn+1Q̄n+1 − Is

)
+O(

√
h).

Neglecting the terms of order
√
h and higher, we obtain the following quasi-Newton scheme: setting

Q(0) = Q̄n+1, repeat the iteration

Q(k+1) = Q(k) −QnΛ(k), where Λ(k) =
1

2

(
(Q(k))TQ(k) − Is

)
, (50)

until the process reaches convergence and set Qn+1 = Q(k+1). To assess whether convergence has
been reached, a tolerance on the 2-norm of Λ(k) can be assigned: ‖Λ(k)‖ ≤ TOL. However in
practice, to ensure that the process ends and to avoid undesirable overhead we typically prefer to
either combine this stopping criterion with a limit for the number K of iterations, or use a fixed
number of iterations K. Note that estimate (49) ensures that a small number of iterations K is
sufficient for the constraint to be satisfied up to a small error.

The initialization for the constrained weights is performed following [39], which is an built-in
option in PyTorch. Other parameters are initialized using the standard PyTorch initialization [13, 33]
unless otherwise indicated. Constraints are applied layer-wise, where for convolutional layers with
weight tensors of the size nl × nl−1 × nh × nw (where nh and nw are the height and width of the
kernel) the weight matrices are reshaped as nl × nl−1nhnw. For CNNs these reshaped matrices
are typically rectangular. If they are thin, but long (i.e., nl > nl−1nhnw) we apply the constraint
W TW = I , but if they have more columns than rows we apply the constraint WW T = I .

24

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

B.6. Orthogonality constraint, underdamped Langevin (o-CoLA-ud)

To discretize the underdamped Langevin constrained dynamics, we need the orthogonal projection
Π onto the cotangent space T ∗QΣ. As the constraint (45) is given in a matrix form, using the formula
(18) is not very convenient so we will rather derive Π from its projection property.

Using (46), we find that for 1 ≤ i, j ≤ s

0 =
s∑

k=1

r∑
l=1

∂Qklgij(Q)Pkl = (P TQ+QTP)ij ,

which leads to the following convenient expression for the cotangent space

T ∗QΣ =
{
P ∈ Rr×s | P TQ+QTP = 0s

}
.

Now, given P̄ ∈ Rr×s we want to find a symmetric s× s matrix Λ such that P = P̄ −QΛ belongs
to T ∗QΣ, i.e.,

0s = P TQ−QTP = P̄ TQ+QT P̄ − ΛQTQ−QTQΛ.

This equation is easily solved forQ ∈ Σ and we find Λ = 1
2(P̄ TQ+QT P̄). We obtain the following

expression for the projection onto the cotangent space:

ΠQ : Rr×s → Rr×s, P̄ 7→ ΠQP̄ = P̄ − 1

2
Q(P̄ TQ+QT P̄).

We then verify that ΠQ is indeed a projection onto the cotangent space T ∗QΣ (i.e., ΠQP̄ ∈ T ∗QΣ

∀P̄ ∈ Rr×s and Π2
Q = ΠQ) and that this projection is orthogonal with respect to the Frobenius

inner product on Rr×s (i.e., 〈P̄ −ΠQP̄ , P 〉 = 0, where 〈A,B〉 = tr(ATB)).

A component. For the orthogonal constraint, the A component in (7) can only be solved approx-
imately. A simple yet efficient discretization of A is the RATTLE scheme (see e.g. [22, Chap.
8]):

Qn+1 = Qn + hPn+1/2,

Pn+1/2 = Pn −QnΛn+1/2 where Λn+1/2 is s.t. QTn+1Qn+1 = Is,

Pn+1 = Pn+1/2 −Qn+1Λn+1 where Λn+1 is s.t. QTn+1Pn+1 + P Tn+1Qn+1 = 0s.

(51)

Denoting Λ̄n+1/2 = hΛn+1/2, P̄n+1 = Pn+1/2 and using the projection operator ΠQ, (51) can be
rewritten as

Q̄n+1 = Qn + hPn,

Qn+1 = Q̄n+1 −QnΛ̄n+1/2 where Λ̄n+1/2 is s.t. QTn+1Qn+1 = Is (use (50)),

P̄n+1 = Pn −
1

h
QnΛ̄n+1/2, Pn+1 = ΠQn+1P̄n+1.

(52)

As in the overdamped case, we may now use the quasi-Newton scheme (50) for the projection step
(to approximate Λ̄n+1/2). UsingK iterations of the quasi-Newton scheme (50) (i.e.,Qn+1 = Q(K)),
we verify that −QnΛ̄n+1/2 satisfies

−QnΛ̄n+1/2 =
K−1∑
k=0

QnΛ(k) =
K−1∑
k=0

Q(k+1) −Q(k) = Q(K) −Q(0) = Qn+1 − Q̄n+1,

25

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

so that P̄n+1 = Pn + 1
h(Qn+1 − Q̄n+1).

We obtain the following full discretization of the underdamped Langevin dynamics with or-
thogonality constraint. The initialization for the constrained weights is performed following [39].
Corresponding momenta are initialized as the initial gradients (equivalently to standard PyTorch
initialization) and subsequently projected using P0 = P̄0− 1

2Q0(P̄ T0 Q0 +QT0 P̄0). The A,B,O steps
are then given as:

(A, OG)

Q̄n+1 = Qn + hPn, Q(0) = Q̄n+1,

for k = 0 : K − 1 Q(k+1) = Q(k) −QnΛ(k), where Λ(k) =
1

2

((
Q(k)

)T
Q(k) − Is

)
,

Qn+1 = Q(K),

P̄n+1 = Pn +
1

h

(
Qn+1 − Q̄n+1

)
,

Pn+1 = ΠQn+1P̄n+1 = P̄n+1 −
1

2
Qn+1

(
P̄ Tn+1Qn+1 +

(
Qn+1

)T
P̄n+1

)
.

(B, OG)

Qn+1 = Qn,

P̄n+1 = Pn − h∇QV (Qn),

Pn+1 = ΠQnPn+1 = P̄n+1 −
1

2
Qn

(
P̄ Tn+1Qn +

(
Qn
)T
P̄n+1

)
,

(O, OG)

Qn+1 = Qn,

P̄n+1 = e−γhPn +
√
β−1(1− e−2γh)Rn,

Pn+1 = ΠQnP̄n+1 = P̄n+1 −
1

2
Qn

(
P̄ Tn+1Qn +

(
Qn
)T
P̄n+1

)
,

where Rn is a matrix of independent standard normal random variables.

Appendix C. Additional Numerical Details and Results

We compare our constrained methods with PyTorch’s [33] SGD with momentum optimiser. Unless
otherwise indicated, we use for SGD h = 0.1 and mom = 0 (to compare with our constrained
overdamped Langevin method) or mom = 0.9 (to compare with our constrained underdamped
Langevin method). We use standard PyTorch initialization for all unconstrained parameters [13, 33].

C.1. Orthogonality Constraints

For our experiments on the spiral data set (see Fig. C5) we use multi-layer perceptrons with ReLU
activation and binary cross entropy loss. In our experiments we vary the number of 100-node hidden
layers of the multi-layer perceptrons. To compare the performance of our o-CoLA-od constrained
method with standard SGD we set the temperature τ = 0 to generate Figure 1. We used a small
temperature perturbation τ = 1e-6 to generate Figure 2. The size of the temperature parameter
was chosen to approximately match observed fluctuations in the loss function. A more precise
parameterization is left for a subsequent work.

26

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

A plot of the planar spiral data set binary classification problem as used to produce Figure 1 and
Figure 2 is provided in Figure C5. The first class of the data set is generated using

x = 2
√
t cos(8

√
tπ) + 0.02N (0, 1),

y = 2
√
t sin(8

√
tπ) + 0.02N (0, 1), (53)

where t is drawn repeatedly from the uniform distribution U(0, 1) to generate data points. The other
class of this dataset is obtained by shifting the argument of the trigonometric functions by π. For
our experiments we used 500 training data points, 1000 test data points and 5% subsampling.

Figure C5: 4-turn spiral data set.

We also applied our orthogonality-constrained methods to the ResNet-34 architecture on CIFAR-
10 image classification data [19]. In this setting, running SGD with orthogonal initialization wors-
ened the generalization performance of the resulting net and hence the standard PyTorch initial-
ization was used for SGD. We train for 150 epochs and use a batchsize of 128. In Figure C6 we
compare the overdamped variant o-CoLA-od (with τ = 0) to its unconstrained counterpart. We
observe that constraining orthogonality gives lower test loss throughout training.

70

75

80

85

90

Tr
ain

ing
 L

os
s

Te
st

Ac
cu

ra
cy

 (%
)

Te
st

Lo
ss

0 50 100
Epoch

150 0 50 100
Epoch

150 0 50 100
Epoch

150
0.3

0.5

0.7

0.9

0.0

0.4

0.6

0.8

1.0

0.2

o-CoLA-od
SGD

Figure C6: Training loss (left), test loss (middle) and test accuracy (right) of a ResNet-34 architec-
ture trained using SGD vs. o-CoLA-od on CIFAR-10 data, h = 0.1 (averaged over 5
runs). The orthogonality constraint provides modestly higher test accuracy and inhibits
overfitting.

C.2. Circle constraints

For our Fashion-MNIST [48] example we reduce the number of training data samples to 10,000 and
we increase the number of test data samples to 60,000. We use a 1000-node single hidden layer

27

CONSTRAINT-BASED REGULARIZATION OF NEURAL NETWORKS

perceptron (SHLP) with ReLU activation, cross entropy loss and batchsize 128. Our main result
with our circle constrained approach is presented in Figure 4. In this section we present extensive
hyperparameter tests for the test accuracy and test loss obtained after 400 epochs (averaged over 5
runs) using SGD-m with and without weight decay (WD).

no WD with WD
SGD with mom Test Acc. Test Loss Test acc. Test Loss

h = 0.2 mom = 0.8 87.18% 1.06 84.05% 0.696
mom = 0.7 87.38% 0.890 87.0% 0.547

h = 0.1 mom = 0.9 86.97% 1.133 85.35% 0.634
mom = 0.8 87.39% 0.824 87.47% 0.531
mom = 0.7 87.39% 0.750 87.25% 0.517

h = 0.05 mom = 0.95 86.67% 1.226 85.63% 0.623
mom = 0.9 87.33% 0.837 86.24% 0.569
mom = 0.8 87.27% 0.719 87.33% 0.511

The results presented in the two right-hand columns are all obtained with weight decay set to
1e-4. We found this value to give the best results for SGD-m during a hyperparameter search.

In comparison our circle constrained net reaches test accuracy 87.61%, with test loss 0.386 without
using weight decay (see Figure 4). Hence it outperforms standard SGD with momentum both with
and without weight decay.

C.3. NLP

We evaluate the performance of a small transformer model [43] on the Penn Treebank data set [29]
and Wikitext-2 data set [30]. The transformer has 2 encoder layers. Each encoder layer consists of
self- attention with 2 heads and a feedforward network with 200 nodes followed by layer norms.
We use batch size 1024 for the Penn Treebank data set and batchsize 128 for the Wikitext-2 dataset.
We present the lowest validation loss obtained in 200 epochs by SGD-m and our circle constrained
method c-CoLA-ud in Table 1 of the main paper.

28

	Introduction
	Neural networks with constraints
	Constrained SDEs and their discretization
	Numerical Experiments
	Theory of constrained overdamped Langevin dynamics
	The underlying SDE and the invariant measure
	Poincaré inequality on a manifold
	Exponential convergence to equilibrium and central limit theorem

	Discretization of constrained Langevin dynamics
	Discretization of constrained overdamped Langevin (general constraint)
	Discretization of constrained underdamped Langevin (general constraint)
	Circle constraint, overdamped Langevin (c-CoLA-od)
	Circle constraint, underdamped Langevin (c-CoLA-ud)
	Orthogonality constraint, overdamped Langevin dynamics (o-CoLA-od)
	Orthogonality constraint, underdamped Langevin (o-CoLA-ud)

	Additional Numerical Details and Results
	Orthogonality Constraints
	Circle constraints
	NLP

