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Abstract
We study training of Convolutional Neural Networks (CNNs) with ReLU activations and introduce
exact convex optimization formulations with a polynomial complexity with respect to the number of
data samples, the number of neurons and data dimension. Particularly, we develop a convex analytic
framework utilizing semi-infinite duality to obtain equivalent convex optimization problems for
two-layer CNNs, where convex problems are regularized by the sum of `2 norms of variables.

1. Introduction

Convolutional Neural Networks (CNNs) have shown a remarkable success across various machine
learning problems [15]. However, our theoretical understanding of CNNs still remains restricted,
where the main challenge arises from the highly non-convex and nonlinear structure of CNNs with
nonlinear activations such as Rectified Linear Units (ReLU). To this end, we study the training
problem for various CNN architectures with ReLU activations and introduce equivalent finite
dimensional convex formulations that can be used to globally optimize these architectures. Our
results characterize the role of network architecture in terms of equivalent convex regularizers.
Remarkably, we prove that the proposed methods are polynomial time with respect to all problem
parameters.

Convex neural network training was previously considered in [2, 4]. However, these studies are
restricted to two-layer fully connected networks with infinite width, thus, the optimization problem
involves infinite dimensional variables. Moreover, it has been shown that even adding a single neuron
to a neural network leads to a non-convex optimization problem which cannot be solved efficiently [2].
Another line of research [5, 10, 14, 16, 20, 21, 24, 32] focuses on the effect of implicit and explicit
regularization in neural network training and aims to explain why the resulting network generalizes
well. Among these studies, [10, 20, 24] proved that the minimum `2 norm two-layer network that
perfectly fits a one dimensional dataset outputs the linear spline interpolation. Moreover, [14] studied
certain linear convolutional networks and showed an implicit non-convex quasi-norm regularization.
However, as the number of layers increases, the regularization approaches to `0 quasi-norm, which is
not computationally tractable. Recently, [21] showed that two-layer CNNs with linear activations
can be equivalently optimized as nuclear and `1 norm regularized convex problems. Although all
the norm characterizations provided by these studies are insightful for future research, existing re-
sults are quite restricted due to linear activations, simple settings or intractable optimization problems.

Shallow CNNs and their representational power: As opposed to their relatively simple and shal-
low architecture, CNNs with two layers are very powerful and efficient inference models. In [3], the
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authors show that greedy training of two layer CNNs can achieve comparable performance to deeper
models such as VGG-11[26]. However, a full theoretical understanding and interpretable description
of CNNs even with a single hidden layer is lacking in the literature.

Our contributions: Unlike previous studies, we introduce exact and finite dimensional convex
programs to globally optimize various CNN architectures through our convex analytic framework
utilizing semi-infinite duality. Our contributions can be summarized as follows. We develop convex
programs that are polynomial time with respect to all input parameters: the number of samples,
data dimension, and the number of neurons to globally train CNNs. To the best of our knowledge,
this is the first work characterizing polynomial time trainability of non-convex CNN models. More
importantly, we achieve this complexity with explicit and interpretable convex optimization prob-
lems. Consequently, training CNNs, especially in practice, can be further accelerated by leveraging
extensive tools available from convex optimization theory.

Notation and preliminaries: We denote the matrices and vectors as uppercase and lowercase bold
letters, respectively, for which a subscript indicates a certain element or column. We use Ik to
denote the identity matrix of size k. We denote the set of integers from 1 to n as [n]. The Frobenius
and nuclear norms are denoted as ‖ · ‖F and ‖ · ‖∗. We use Bp to denote the unit `p ball, i.e.,
Bp := {u ∈ Cd : ‖u‖p ≤ 1}. We also use 1[x] as a function that outputs 1 if x is true, 0 otherwise.

In order to keep the presentation and notation simple, we will use a regression framework with
scalar outputs and squared loss. In our regression framework, we denote the input data matrix and
the corresponding label vector as X ∈ Rn×d and y ∈ Rn, respectively. Moreover, we represent the
patch matrices, i.e., subsets of columns, extracted from X as Xk ∈ Rn×h, k ∈ [K], where h denotes
the filter size. With this notation, {Xku}Kk=1 describes a convolution operation between the filter
u ∈ Rh and the data matrix X. Throughout the paper, we will use the ReLU activation function
defined as (x)+ = max{0, x}. However, since CNN training problems with ReLUs are not convex
in their conventional form, below we introduce an alternative formulation for this activation, which
will be crucial for our derivations.

1.1. Hyperplane arrangements

LetH be the set of all hyperplane arrangement patterns of X, defined as the following set

H :=
⋃{
{sign(Xw)} : w ∈ Rd

}
,

which has finitely many elements, i.e., |H| ≤ NH < ∞, NH ∈ N. We now define a collection
of sets that correspond to positive signs for each element in H, by S :=

{
{∪hi=1{i}} : h ∈

H
}

. We extend ReLU to an elementwise function that masks the negative entries of a vector or
matrix. Hence, given a set S ∈ S, e define a diagonal mask matrix D(S) ∈ Rn×n defined as
D(S)ii := 1[i ∈ S]. Then, we can equivalently represent (Xw)+ as D(S)Xw provided that
D(S)Xw ≥ 0 and (In −D(S))Xw ≤ 0. Note that these constraints can be compactly defined
as (2D(S)− In)Xw ≥ 0. If we denote the cardinality of S as P , i.e., the number of regions in a
partition of Rd by hyperplanes passing through the origin and are perpendicular to the rows of X,
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then for r ≤ n, where r := rank(X) ≤ d, we have [8, 19, 28, 30]

P ≤ 2
r−1∑
k=0

(
n− 1

k

)
≤ 2r

(
e(n− 1)

r

)r
.

1.2. Convolutional hyperplane arrangements

We now define a notion of hyperplane arrangements for CNNs, where we introduce the patch
matrices {Xk}Kk=1 instead of directly operating on X. We first construct a new data matrix as
M = [X1; X2; . . . XK ] ∈ RnK×h. We then define convolutional hyperplane arrangements as the
hyperplane arrangements for M and denote the cardinality of this set as Pconv. Then, we have

Pconv ≤ 2

rc−1∑
k=0

(
nK − 1

k

)
≤ 2rc

(
e(nK − 1)

rc

)rc
where rc := rank(M) ≤ h and K =

⌊
d−h
stride

⌋
+ 1. Note that when the filter size h is fixed, Pconv is

polynomial in n and d.

Remark 1 There exist P hyperplane arrangements of X where P is exponential in r. Thus, if X
is full rank, r = d, then P can be exponentially large in the dimension d. As it will be shown, this
makes the training problem for fully connected networks challenging. On the other hand, for CNNs,
the number of relevant hyperplane arrangements Pconv is exponential in rc. If M is full rank, then
rc = h� d and accordingly Pconv � P . This shows that the parameter sharing structure in CNNs
enables a significant reduction in the number of possible hyperplane arrangements. As shown in the
sequel, our results imply that the complexity of training problem is significantly lower compared to
fully connected networks.

2. Two-layer Convolutional Neural Networks

In this section1, we present exact convex formulation for two-layer CNN architectures with average
pooling. Particularly, we consider an architecture with m filters, average pooling and standard weight
decay regularization, which can be trained via the following problem

p∗1 = min
{uj ,wj}mj=1

1

2

∥∥∥∥∥∥
m∑
j=1

K∑
k=1

(Xkuj)+wj − y

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(
‖uj‖22 + w2

j

)
, (1)

where uj ∈ Rh and w ∈ Rm are the filter and output weights, respectively, and β > 0 is a
regularization parameter. After a rescaling (see Appendix A.1), we obtain the following problem

p∗1 = min
{uj ,wj}mi=1
uj∈B2,∀j

1

2

∥∥∥∥∥∥
m∑
j=1

K∑
k=1

(Xkuj)+wj − y

∥∥∥∥∥∥
2

2

+ β‖w‖1. (2)

1. All the proofs and details are presented in Appendix.
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Then, taking dual with respect to w and changing the order of min-max yields the weak dual

p∗1 ≥ d∗1 = max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. max

u∈B2

∣∣∣∣∣
K∑
k=1

vT (Xku)+

∣∣∣∣∣ ≤ β. (3)

which is a semi-infinite optimization problem with n variables. The dual of (3) can be obtained as a
finite dimensional convex program using semi-infinite optimization theory [12]. The same dual also
corresponds to the bidual of (1). Suprisingly, strong duality holds as soon as the number of neurons
exceed a critical value. In the sequel, we use this result to derive an exact convex formulation for (1).

Theorem 1 Let m be a number such that m ≥ m∗ for some m∗ ∈ N,m∗ ≤ n + 1, then strong
duality holds for (3), i.e., p∗1 = d∗1, and the equivalent convex program for (1) is

min
{wi,w

′
i}

Pconv
i=1

wi,w
′
i∈Rh,∀i

1

2

∥∥∥∥∥
Pconv∑
i=1

K∑
k=1

D(Ski )Xk

(
w′i −wi

)
− y

∥∥∥∥∥
2

2

+ β

Pconv∑
i=1

(
‖wi‖2 + ‖w′i‖2

)
s.t. (2D(Ski )− In)Xkwi ≥ 0, (2D(Ski )− In)Xkw

′
i ≥ 0, ∀i, k. (4)

Moreover, an optimal solution to (1) with m∗ filters can be constructed from (4) as follows

(u∗j1i , w
∗
j1i) =

(
w′
∗
i√

‖w′∗i ‖2
,
√
‖w′∗i ‖2

)
if ‖w′∗i ‖2 > 0

(u∗j2i , w
∗
j2i) =

(
w∗i√
‖w∗i ‖2

, −
√
‖w∗i ‖2

)
if ‖w∗i ‖2 > 0 ,

where {w′∗i ,w∗i }
Pconv
i=1 are the optimal solutions to (4). Here, we have m∗ :=

∑Pconv
i=1 1[‖w∗i ‖2 6=

0] +
∑Pconv

i=1 1[‖w′∗i ‖2 6= 0].

Therefore, we obtain a finite dimensional convex formulation with 2hPconv variables and 2nPconvK
constraints for the non-convex problem in (1). Since Pconv is polynomial in n and d given a fixed
rc ≤ h, (4) can be solved by a standard convex optimization solver in polynomial time.

Remark 2 Our analysis shows that for fixed rank rc, or fixed filter size h, the complexity is poly-
nomial in all problem parameters: n (number of samples), m (number of filters, i.e., neurons), and
d (dimension). The filter size h is typically a small constant, e.g., h = 9 for 3× 3 filters. We also
note that for fixed n and rank(X) = d, the complexity of fully connected networks is exponential in
d, which cannot be improved unless P = NP even for m = 2 [6, 21]. However, this result shows
that CNNs can be trained to global optimality with polynomial complexity as a convex program.

Interpreting non-convex CNNs as convex variable selection models: Interestingly, we have the
sum of the squared `2 norms of the weights in the non-convex problem (1) as the regularizer, however,
the equivalent convex program in (4) is regularized by the sum of the `2 norms of the weights. This
particular regularizer is known as group `1 norm, and is well-studied in the context of sparse recovery
and variable selection [17, 31]. Hence, our convex program reveals an implicit variable selection
mechanism in the original non-convex problem in (4). More specifically, the original features in X
are mapped to higher dimensions via convolutional hyperplane arrangements as {D(Ski )Xk}Pconv

i=1

and followed by a convex variable selection strategy using the group `1 norm.

4



CONVEX PROGRAMS FOR GLOBAL OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORKS IN POLYNOMIAL-TIME

3. Numerical experiments

In this section2, we present numerical experiments to verify our results in the previous sections.
We first perform an experiment with a synthetic dataset, where X ∈ R6×15 is generated using a
multivariate normal distribution with zero mean and identity covariance, and y = [1 − 1 1 1 1 − 1]T .
In this case, we use the two-layer CNN model in (1) and the corresponding convex program in (4).
In Figure 1, we plot the regularized objective value with respect to the computation time. Here, we
plot 5 different independent realizations for SGD. We also plot both the non-convex objective in (1)
and the convex objective in (4) for our convex program, where we use the prescribed rescaling in
Theorem 1 to achieve the optimal objective value. We perform the experiment using m = 3, 8, 15
filters of size h = 10 and stride 5, where we observe that as the number of filters increases, the ratio
of the trials converging to the optimal objective value increases as well.
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Figure 1: Training cost of a two-layer CNN (with average pooling and m = 3, 8, 15) trained with
SGD (5 initialization trials) on a synthetic dataset (n = 6, d = 15, h = 10, stride = 5), where the
green line with a marker represents the objective value obtained by the proposed convex program
in (4) and the red line with a marker represents the non-convex objective value in (1) of a feasible
network with the weights found by the convex program. Here, we use markers to denote the total
computation time of the convex optimization solver.

4. Concluding remarks

We studied non-convex CNN training problems and introduced exact finite dimensional convex
programs. Particularly, we provide equivalent convex characterizations for ReLU CNN architectures
in a higher dimensional space. Unlike the previous studies, we prove that these equivalent characteri-
zations have polynomial complexity in all input parameters and can be globally optimized via convex
optimization solvers. In the light of our results, efficient optimization algorithms can be developed to
exactly (or approximately) optimize deep CNN architectures for large scale experiments in practice,
which is left for future research.

2. We use CVX [13] and CVXPY [1, 9] with the SDPT3 solver [29] to solve convex optimization problems.
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Appendix A.

In this section, we present additional materials and proofs of the main results that are not included in
the main paper due to the page limit.

A.1. Equivalence of the `1 penalized objectives

In this section, we prove the equivalence between the original problems with `2 regularization and
their `1 penalized versions. We also note that similar equivalence results were also presented in
[10, 11, 18, 24]. We start with the equivalence between (1) and (2).

Lemma A.1 The following two problems are equivalent:

min
{uj ,wj}mj=1

1

2

∥∥∥∥∥∥
m∑
j=1

K∑
k=1

(Xkuj)+wj − y

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(
‖uj‖22 + w2

j

)

= min
{uj ,wj}mj=1

uj∈B2,∀j

1

2

∥∥∥∥∥∥
m∑
j=1

K∑
k=1

(Xkuj)+wj − y

∥∥∥∥∥∥
2

2

+ β
m∑
j=1

‖w‖1.

Proof of Lemma A.1 We rescale the parameters as ūj = γjuj and w̄j = wj/γj , for any γj > 0.
Then, the output becomes

m∑
j=1

K∑
k=1

(Xkūj)+w̄j =

m∑
j=1

K∑
k=1

(Xkujγj)+
wj
γj

=

m∑
j=1

K∑
k=1

(Xuj)+wj ,

which proves that the scaling does not change the network output. In addition to this, we have the
following basic inequality

1

2

m∑
j=1

(‖uj‖22 + w2
j ) ≥

m∑
j=1

(|wj | ‖uj‖2),

where the equality is achieved with the scaling choice γj =
(
|wj |
‖uj‖2

) 1
2 is used. Since the scaling

operation does not change the right-hand side of the inequality, we can set ‖uj‖2 = 1, ∀j. Therefore,
the right-hand side becomes ‖w‖1.

Now, let us consider a modified version of the problem, where the unit norm equality constraint
is relaxed as ‖uj‖2 ≤ 1. Let us also assume that for a certain index j, we obtain ‖uj‖2 < 1 with
wj 6= 0 as an optimal solution. This shows that the unit norm inequality constraint is not active for
uj , and hence removing the constraint for uj will not change the optimal solution. However, when
we remove the constraint, ‖uj‖2 →∞ reduces the objective value since it yields wj = 0. Therefore,
we have a contradiction, which proves that all the constraints that correspond to a nonzero wj must
be active for an optimal solution. This also shows that replacing ‖uj‖2 = 1 with ‖uj‖2 ≤ 1 does
not change the solution to the problem.
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A.2. Proof of the main result (Theorem 1)

We start with the following claim.

Proposition A.1 Given m ≥ m∗, strong duality holds for (3), i.e., p∗1 = d∗1.3

We now focus on the single-sided dual constraint

max
u∈B2

K∑
k=1

vT (Xku)+ ≤ β, (5)

which can be written as

max
Sk⊆[n]
Sk∈S

max
u∈B2

K∑
k=1

vTD(Sk)Xku s.t. (2D(Sk)− In)Xku ≥ 0, ∀k. (6)

Since the inner maximization is convex and there exists a strictly feasible solution for fixed D(Sk)
matrices, (6) can also be written as

max
Sk⊆[n]
Sk∈S

min
αk≥0

max
u∈B2

K∑
k=1

(
vTD(Sk)Xk +αTk (2D(Sk)− In)Xk

)
u

= max
Sk⊆[n]
Sk∈S

min
αk≥0

∥∥∥∥∥
K∑
k=1

vTD(Sk)Xk +αTk (2D(Sk)− In)Xk

∥∥∥∥∥
2

.

We now enumerate all hyperplane arrangements and index them in an arbitrary order, i.e., denoted as(
S1
i , . . . , S

K
i

)
, where i ∈ [Pconv], Pconv = |SK |, SK := {(S1

i , . . . , S
K
i ) : Ski ∈ S, ∀k, i}. Then,

(5) ⇐⇒ ∀i ∈ [Pconv], min
αk≥0

∥∥∥∥∥
K∑
k=1

vTD(Ski )Xk +αTk (2D(Ski )− In)Xk

∥∥∥∥∥
2

≤ β

⇐⇒ ∀i ∈ [Pconv], ∃αik ≥ 0 s.t.

∥∥∥∥∥
K∑
k=1

vTD(Ski )Xk +αTik(2D(Ski )− In)Xk

∥∥∥∥∥
2

≤ β.

We now use the same approach for the two-sided constraint in (3) to represent (3) as a finite
dimensional convex problem as follows

max
v

αik,α
′
ik≥0
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t.

∥∥∥∥∥
K∑
k=1

vTD(Ski )Xk +αTik(2D(Ski )− In)Xk

∥∥∥∥∥
2

≤ β (7)

∥∥∥∥∥
K∑
k=1

−vTD(Ski )Xk +α′
T

ik (2D(Ski )− In)Xk

∥∥∥∥∥
2

≤ β, ∀i.

3. The proof is presented in Appendix A.3, where the definition of m∗ is given.

10
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We note that the above problem is convex and strictly feasible for v = αik = α′ik = 0. Therefore,
Slater’s conditions and consequently strong duality holds [7], and (7) can be written as

min
λi,λ′i≥0

max
v

αik,α
′
ik≥0
−1

2
‖v − y‖22 +

1

2
‖y‖22 +

Pconv∑
i=1

λi

(
β −

∥∥∥∥∥
K∑
k=1

vTD(Ski )Xk +αTik(2D(Ski )− In)Xk

∥∥∥∥∥
2

)

+

Pconv∑
i=1

λ′i

(
β −

∥∥∥∥∥
K∑
k=1

−vTD(Ski )Xk +α′
T

ik (2D(Ski )− In)Xk

∥∥∥∥∥
2

)
. (8)

Next, we introduce new variables zi, z′i ∈ Rh to represent (8) as

min
λi,λ′i≥0

max
v

αik,α
′
ik≥0

min
zi∈B2
z′i∈B2

−1

2
‖v − y‖22 +

1

2
‖y‖22 +

Pconv∑
i=1

λi

(
β +

(
K∑
k=1

vTD(Ski )Xk +αTik(2D(Ski )− In)Xk

)
zi

)

+

Pconv∑
i=1

λ′i

(
β +

(
K∑
k=1

−vTD(Ski )Xk +α′
T

ik (2D(Ski )− In)Xk

)
z′i

)
, (9)

which is concave in v,αik,α
′
ik and convex in zi and z′i. Moreover the set B2 is convex and compact.

By recalling Sion’s minimax theorem [27] for the inner max-min, we express the strong dual of (9)
as

min
λi,λ′i≥0

min
zi∈B2
z′i∈B2

max
v

αik,α
′
ik≥0
−1

2
‖v − y‖22 +

1

2
‖y‖22 +

Pconv∑
i=1

λi

(
β +

(
K∑
k=1

vTD(Ski )Xk +αTik(2D(Ski )− In)Xk

)
zi

)

+

Pconv∑
i=1

λ′i

(
β +

(
K∑
k=1

−vTD(Ski )Xk +α′
T

ik (2D(Ski )− In)Xk

)
z′i

)
. (10)

We now compute the maximum with respect to v,αik,α
′
ik analytically to obtain the following

problem

min
λi,λ′i≥0

min
zi∈B2
z′i∈B2

1

2

∥∥∥∥∥
Pconv∑
i=1

K∑
k=1

D(Ski )Xk

(
λ′iz
′
i − λizi

)
− y

∥∥∥∥∥
2

2

+ β

Pconv∑
i=1

K∑
k=1

(
λi + λ′i

)
s.t. (2D(Ski )− In)Xkzi ≥ 0, (2D(Ski )− In)Xkz

′
i ≥ 0,∀i, k. (11)

Then, we apply a change of variables and define wi = λizi and w′i = λ′iz
′
i. Thus, we obtain

min
wi,w′i∈Rh

1

2

∥∥∥∥∥
Pconv∑
i=1

K∑
k=1

D(Ski )Xk

(
w′i −wi

)
− y

∥∥∥∥∥
2

2

+ β

Pconv∑
i=1

(
‖wi‖2 + ‖w′i‖2

)
s.t. (2D(Ski )− In)Xkwi ≥ 0, (2D(Ski )− In)Xkw

′
i ≥ 0, ∀i, k, (12)

where we eliminate the variables λi, λ′i, since λi = ‖wi‖2 and λ′i = ‖w′i‖2 are feasible and optimal.
We now note that there will be m∗ pairs {w′∗i ,w∗i },∀i ∈ [Pconv]. Then, using the prescribed

11
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{u∗j , w∗j}m
∗

j=1, we evaluate the non-convex objective in (1) as follows

p∗1 ≤
1

2

∥∥∥∥∥∥
m∗∑
j=1

K∑
k=1

(Xku
∗
j )+w

∗
j − y

∥∥∥∥∥∥
2

2

+
β

2

Pconv∑
i=1,w′

∗
i 6=0

∥∥∥∥∥ w′
∗
i√

‖w′∗i ‖2

∥∥∥∥∥
2

2

+

∥∥∥∥√‖w′∗i ‖2∥∥∥∥2
2


+
β

2

Pconv∑
i=1,w∗i 6=0

∥∥∥∥∥ w∗i√
‖w∗i ‖2

∥∥∥∥∥
2

2

+

∥∥∥∥√‖w∗i ‖2∥∥∥∥2
2


which has the same objective value with (12). Since strong duality holds for the convex program, we
have p∗1 = d∗1, which is equal to the value of (12) achieved by the prescribed parameters above.

A.3. Proof of Proposition A.1

We first review the basic properties of infinite size neural networks and introduce technical details
to derive the dual of (3). We refer the reader to [2, 22] for further details. Let us first consider a
measurable input space X with a set of continuous basis functions (i.e., neurons or filters in our
context) ψu : X → R, which are parameterized by u ∈ B2. Next, we use real-valued Radon
measures with the uniform norms [23]. Let us consider a signed Radon measure denoted as µ. Now,
we can use µ to formulate an infinite size neural network as f(x) =

∫
u∈B2 ψu(x)dµ(u), where

x ∈ X is the input. The norm for µ is usually defined as its total variation norm, which is the
supremum of

∫
u∈B2 g(u)dµ(u) over all continuous functions g(u) that satisfy |g(u)| ≤ 1. Now, we

consider the case where the basis functions are ReLUs, i.e., ψu =
(
xTu

)
+

. Then, the output of a
network with finitely many neurons, say m neurons, can be written as

f(x) =
m∑
j=1

ψujwj

which can be obtained by selecting µ as a weighted sum of Dirac delta functions, i.e., µ =∑m
j=1wjδ(u − uj). In this case, the total variation norm, denoted as ‖µ‖TV , corresponds to

the `1 norm ‖w‖1.
Now, we ready to derive the dual of (3), which can be stated as follows (see Section 8.6 of [12]

and Section 2 of [25] for further details)

d∗1 ≤ p1,∞ = min
µ

1

2

∥∥∥∥∥
∫
u∈B2

K∑
k=1

(Xku)+ dµ(u)− y

∥∥∥∥∥
2

2

+ β‖µ‖TV . (13)

Although (13) involves an infinite dimensional integral form, by Caratheodory’s theorem, we know
that the integral can be represented as a finite summation, to be more precise, a summation of at most
n + 1 Dirac delta functions [22]. If we denote the number of Dirac delta functions as m∗, where
m∗ ≤ n+ 1, then we have

p1,∞ = min
{uj ,wj}m

∗
j=1

uj∈B2,∀j

1

2

∥∥∥∥∥∥
m∗∑
j=1

K∑
k=1

(Xkuj)+wj − y

∥∥∥∥∥∥
2

2

+ β‖w‖1

= p∗1

12
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provided that m ≥ m∗. We now need to show that strong duality holds, i.e., p∗1 = d∗1.
We first note that the semi-infinite problem (3) is convex. Then, we prove that the optimal value

is finite. Since β > 0, we know that v = 0 is strictly feasible, and achieves 0 objective value.
Moreover, since −‖y− v‖22 ≤ 0, the optimal objective value p∗1 is finite. Therefore, by Theorem 2.2
of [25], strong duality holds, i.e., p∗1,∞ = d∗1 provided that the solution set of (3) is nonempty and
bounded. We also note that the solution set of (3) is the Euclidean projection of y onto a convex,
closed and bounded set since (Xku)+ can be expressed as the union of finitely many convex closed
and bounded sets.
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