
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Efficient Designs Of SLOPE Penalty Sequences In Finite Dimension

Yiliang Zhang ZYLTHU14@SAS.UPENN.EDU

Zhiqi Bu ZBU@SAS.UPENN.EDU

Philadelphia, USA

Abstract
In linear regression, SLOPE is a new convex analysis method that generalizes the Lasso via the
sorted `1 penalty: larger fitted coefficients are penalized more heavily. This magnitude-dependent
regularization requires an input of penalty sequence λ, instead of a scalar penalty as in the Lasso
case, thus making the design extremely expensive in computation. In this paper, we propose two
efficient algorithms to design the possibly high-dimensional SLOPE penalty, in order to minimize
the mean squared error. For Gaussian data matrices, we propose a first order Projected Gradient
Descent (PGD) under the Approximate Message Passing regime. For general data matrices, we
present a zero-th order Coordinate Descent (CD) to design a sub-class of SLOPE, referred to as
the k-level SLOPE. Our CD allows an useful trade-off between the accuracy and the computation
speed. We demonstrate the performance of SLOPE with our designs via various experiments on
synthetic data and real-world datasets.

1. Introduction

In linear regression, we aim to find an accurate estimator β̂ of the unknown truth β from
y = Xβ +w.

where the response y ∈ Rn, the data matrix X ∈ Rn×p, the true parameter β ∈ Rp and the
noise w ∈ Rn. Specifically, in high dimension where p > n, ordinary linear regression fails to
find a unique solution and `1-related regularization is usually introduced to find sparse estimators,
including the Lasso [19], elastic net [22], (sparse) group Lasso [20], adaptive Lasso [21] and the
recent SLOPE [4]:

β̂(λ) = arg min
b

1

2
‖y −Xb‖22 +

p∑
i=1

λi|b|(i) (1.1)

Here
∑p

i=1 λi|b|(i) is the sorted `1 norm of b governed by the penalty vector λ ∈ Rp with
λ1 ≥ · · · ≥ λp ≥ 0, and |b|(i) is the ordered statistics of absolute values |bi| such that |b|(1) ≥ · · · ≥
|b|(p).1 The sorting step in the norm allows SLOPE to work similarly to the taxation: assigning
larger thresholds to larger fitted coefficients.

Many desirable properties have been proven for SLOPE. For example, SLOPE is a convex
optimization that can be solved by existing subgradient descent and the proximal gradient descent;
SLOPE controls the false discovery rate in the case of independent predictors. However, questions
such as what posterior distribution does SLOPE solution follow, can we characterize statistics (e.g.
the false discovery rate and true positive rate) exactly, whether SLOPE has better estimation error
than the Lasso and how to design the Rp SLOPE penalty are not answered until recently [3, 5, 10].

1. The Lasso is a sub-case of SLOPE when λ1 = · · · = λp.

© Y. Zhang & Z. Bu.

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

The substantial difficulty imposed by sorted penalty impedes the general application of SLOPE by
two means. From the practical point of view, tuning a Rp penalty can be extremely costly for large
p and naive methods that work for the Lasso, such as the grid search, renders not pragmatic. From
a theoretical perspective, the sorted norm is complicated as the effect of thresholding of SLOPE is,
unlike the Lasso, non-separable and data-dependent, making the analysis much involved.

We give a computationally efficient framework to design the SLOPE penalty sequence λ ∈ Rp
which corresponds to an estimator β̂(λ) that minimizes the estimation error. To be more specific, we
derive the gradient of penalty for SLOPE under the Approximate Message Passing (AMP) regime
[1, 2, 8, 9] and propose to use projected gradient descent to search for optimal penalty sequences.
For general data matrcies, we propose the k-level SLOPE. In words, k-level SLOPE is a sub-class of
SLOPE, where the p elements in {λi} have only k unique values. Under this definition, the general
SLOPE is p-level SLOPE and the Lasso is indeed 1-level SLOPE. Additionally, k-level SLOPE is
a sub-class of (k + 1)-level SLOPE, and larger k leads to better performance but requires longer
computation time. We illustrate that even 2-level SLOPE (k = 2) can outperform the Lasso. 2

1.1. Notations

We start by introducing the proximal operator of SLOPE,

proxJθ(y) := argmin
b

1

2
‖y − b‖2 + Jθ(b), (1.2)

where Jθ(b) :=
∑p

i=1 λi|b|(i) and the proximal operator indeed solves (1.1) with an identity data
matrix. This operator is the building block that is iteratively applied to derive the SLOPE estimator.
We note that there is no closed form of proxJθ(x) but it can be efficiently computed as in [4,
Algorithm 3]. Next we denote the mean squared error (MSE) as MSE(u,v) := ‖u − v‖2. Two
performance measures that are investigated in this work are the prediction error, MSE(y, ŷ), and the
estimation error, MSE(β, β̂).

2. SLOPE penalty design under AMP regime

2.1. Computing gradients with respect to penalty

We introduce a special regime of the Approximate Message Passing (AMP) [1, 2, 8, 9] for SLOPE
[6], within which the SLOPE estimator can be asymptotically exactly characterized. A similar
regime is the case when Convex Gaussian Min-max Theorem (CGMT) [7, 16–18] applies, which
shares similar assumption as those in AMP. We then derive the gradient of MSE(β, β̂) with respect
to the penalty λ and optimize our penalty design iteratively. Generally speaking, AMP is a class of
gradient-based optimization algorithms that mainly work on independent Gaussian random data ma-
trix, offering both a sequence of estimators that converge to the true minimizer and a distributional
characterization of the latter.

We assume the noise w has zero mean and variance σ2
w. More assumptions of SLOPE AMP

can be found in appendix A. We base our analysis on two key quantities (α, τ) which are the
unique solution to the following equations, namely the calibration and the state evolution in the
AMP regime (see [5, 10]):

2. The general SLOPE is p-level SLOPE and the Lasso is indeed 1-level SLOPE.

2

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

λ = ατ

(
1− 1

n
E ‖prox (β + τZ;ατ)‖∗0

)
(2.1)

τ2 = σ2
w +

1

δp
E ‖prox (β + τZ;ατ)− β‖2 (2.2)

Here ‖ · ‖∗0 is a modified `0 norm that counts the unique non-zero absolute values in a vector and
Z ∈ Rp follows i.i.d. standard normal. We denote δ := limp n/p as the aspect ratio or sampling
ratio and ε := plim |{j : βj 6= 0}|/p where plim is the probability limit. We now introduce some
properties that are useful to derive the desirable λ. By [5, Proposition 2.3], the calibration (2.1)
describes a bijective, monotone and parallel mapping between α and λ [5, Proposition 2.3], which
allows us to work with α easily instead of λ. By [5, Theorem 1], the state evolution (2.2) can
be solved via a fixed point recursion, which converges to the unique solution τ(α) monotonically
under any initial condition.

To demonstrate our design of λ ∈ Rp in SLOPE, we start with quoting [6, Corollary 3.4]:
plim ‖β̂ − β‖2/p = δ(τ2 − σ2

w). (2.3)

Hence minimizing MSE(β, β̂) is equivalent to minimizing τ , which depends on α and leads
to differentiating (2.2) against each of αi for i ∈ [p]. Next, we use the gradient information to
descend (with the projection elaborated in Algorithm 3) till convergence. Once the minimizing α is
obtained, we leverage the calibration (2.1) to find the corresponding λ(α).

We shorthand proxJb(a) by using η(a; b). In particular proxJατ (β + τZ) is denoted by η
and we let ηj represent its j-th element. We define a set Ij := {k : |ηk| = |ηj |}, which will be
used in characterization of gradients. We also define an inverse mapping for ranking of indices:
σ : {1, . . . , p} → {1, . . . , p} such that σ(i) = j representing |η|(i) = |ηj |. Consider a toy example
η = (−2,−4, 3, 1), then the ranking of magnitudes is (3, 1, 2, 4) whose inverse gives: σ(1) = 2,
σ(2) = 3, σ(3) = 1 and σ(4) = 4. We state the following theorem to give a concrete form of
gradients ∂τ/∂αi, which is used in the projected gradient descent (PGD) in Algorithm 1.

Theorem 1 The gradients satisfy

∂τ

∂αi
= E

1

|Iσ(i)|D(α, τ)

∑
j∈Iσ(i)

(ηj − βj) sign(ηj)τ (2.4)

where D(α, τ) is a negative constant independent of index i.

The form of D(α, τ) in the denominator and the proof of Theorem 1 can be found in Appendix
B.1, where we also show that D(α, τ) is always negative. In practice, we can either set the step
size st as constant or simply set D = 1 to save computation time. We remark that, using a constant
step size and E

(∑
j∈Iσ(i)(ηj − βj) sign(ηj)τ

)
/|Iσ(i)| as the gradient is equivalent to using a time-

dependent st = s ·D(αt, τt) and the actual gradient ∂τ
∂αi

.

2.2. Projection onto non-negative decreasing vectors

We notice that α (and λ) must be non-negative and decreasing, hence the vanilla gradient descent
unsuitable for this constrained optimization problem of α. Let S denotes the set of non-negative
and decreasing vectors in Rp (i.e. α ∈ S ⇒ αi ≥ αi+1 ≥ 0,∀i). Define the projection on to S as

ΠS(γ) = argminγ′∈S
1

2
‖γ − γ′‖22. (2.5)

3

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

We propose to use projected gradient descent (PGD) to solve the optimization problem with
constraint in S, which is illustrated in the following section. To compute the projection onto S , we
propose a novel algorithm (Algorithm 3 ProjectOnS() in appendix B.2) and prove its correct-
ness in a corresponding theorem (Theorem 2). At a high level, the algorithm iteratively finds the
increasing sub-sequences of γ and averages them until the sequence becomes non-increasing.

2.3. Projected Gradient Descents

Now that we have the gradients in Theorem 1 and the projection in Algorithm 3, the projected
gradient descent, shown in Algorithm 1, is straight-forward:

Algorithm 1: Projected Gradient
Descent (PGD)

Input: initial α0, step size {st}
for t = 1, · · · , T do
γt+1 = αt − st∇α(τ(αt))
αt+1 = ProjectOnS(γt+1)

end for
Output: αT

We highlight that Algorithm 1 is only one form of
PGD. In fact, with a concrete form of the gradients,
we can use any off-the-shelf first-order optimizers to
find α iteratively. Some examples include projected
versions of Heavy Ball method [14], Nesterov acceler-
ated gradient descent [13], Adam [11], etc.

To better understand the convergence behavior of
PGD, we note that the domain S is clearly convex and
we need to study the convexity of the objective func-

tion τ . Unfortunately, τ(α) for SLOPE is in general non-convex: even in the Lasso AMP regime,
it is shown that τ(α) is only a quasi-convex function of α [12, Theorem 3.3]. We note that some
non-convex problems may enjoy desirable properties such as having unique global minimum or lo-
cal minima do not exist. As for SLOPE, the analysis on quasi-convexity of τ(α) has not been well
established but in practice, we do not observe any local minimum.

Remarkably, the gradient information that we use distinguishes our work from [10]. We pause
a bit and compare our approach with theirs, as they work under the same (asymptotic) assumptions
as our AMP regime. Instead of optimizing directly on τ , they propose to optimize the η in the
functional space [10, Proposition 3]: for a fixed candidate τ , they use the finite approximation
with 2048 grids to solve a functional optimization, whose minimum is L(τ). Next, they check the
feasibility of the candidate τ by whether L(τ) ≤ δ(τ2−σ2

w). Lastly, a binary search is conducted to
find the optimal τ (smallest feasible τ) and the optimal design can be derived from the corresponding
η. In summary, this approach took a detour of by a zero-order optimization algorithm, as the authors
did not search over λ (or α) directly. Our first-order algorithm overcomes the seemingly unwieldy
computation burden, especially in the high dimension when p is very large.

10 20 30 40 50

0.
36

0.
40

0.
44

0.
48

Iterations

E
st

im
at

io
n

M
S

E

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
35

0.
40

0.
45

0.
50

α

E
st

im
at

io
n

M
S

E

Lasso
SLOPE Gaussian
SLOPE BH
SLOPE PGD

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

1
0.

00
3

0.
00

5

Probability

Q
ua

nt
ile

s
of

 λ

1
2

3
4

Q
ua

nt
ile

s
of

 α

Figure 1: X i.i.d. N (0, 1/n), n = 300, p = 1000,Π is Bernoulli(ε), δ = n/p = 0.3, ε = 0.5, σw =
0. Left: PGD iteratively finds minimizing α. Middle: Red dashed line is LASSO MSE path; other
lines are different SLOPE MSE. Right: Best α (or λ) sequence found by PGD.

4

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

Once we find the desirable α, the calibration (2.1) allows us to convert α to λ in the original
SLOPE problem. We demonstrate in Figure 1, SLOPE can outperform the best-tuned Lasso signif-
icantly. In Figure 1, SLOPE reduces MSE(β, β̂) from 0.473 by Lasso and to 0.350 by SLOPE, a
26% drop in the estimation error.

3. k-level SLOPE

We propose to approximate the SLOPE problem by restricting that the penalty λ only contains k
different non-negative values, which we denote by (λ1, · · · , λk;S1, · · · , Sk−1). Here λi denotes
the penalty magnitude and Si represents the splitting index in [p], where the penalty magnitudes
change, i.e, Si − Si−1 entries in λ take the value λi. We note that λi is decreasing in i while
Si is increasing, guaranteeing that λ satisfies the assumption of SLOPE. As an example in R5,
λ = (7, 5, 1; 2, 3) = (7, 7, 5, 1, 1). We name this restricted SLOPE problem as the k-level SLOPE
and design the (2k − 1) degree of freedom penalty λ respectively.

Note that k-level SLOPE is always a sub-case of (k + 1)-level SLOPE. Therefore, by allowing
k to take values other than 1 and p, we can trade off the difficulty of designing the penalty and the
accuracy gain by employing more penalty levels. We demonstrate that empirically, the trade-off is
surprisingly encouraging: even 2 or 3 levels of penalty sequence can exploit the benefit of SLOPE.

3.1. Practical penalty design for k-level SLOPE

We emphasize that in the general regime beyond AMP and CGMT, we cannot access the gradi-
ent information nor the functional optimization in [10] for two reasons: the true β distribution is
not known in real data and the data matrix X is too restrict (i.i.d. with a specific variance). To
design the k-level SLOPE penalty in the real-world datasets, we propose the Coordinate Descent
(CD, Algorithm 2)3 and compare to the PGD in Algorithm 1 under the AMP and CGMT regimes.

Algorithm 2: Coordinate Descent (CD)

Input: initial λ,MSEold =∞
while MSE < MSEold do

Set MSEold = MSE
for i = 1, . . . , k do
λi = argminλi∈(λi+1,λi−1)MSE({λj}; {Sj})

end for
for i ∈ {1, . . . , k − 1} do
Si = argminSi∈(Si−1,Si+1)MSE({λj}; {Sj})

end for
end while
Output: λ = (λ1, · · · , λk;S1, · · · , Sk−1)

We highlight some details of Algorithm 2 that
make it efficient and practical. First of all, Al-
gorithm 2 directly works on λ instead of α
(the calibration is generally unavailable). Sec-
ond, the projection is not needed as in Algo-
rithm 1 since λ is decreasing and non-negative
by our definition of the search domain. Third,
Algorithm 2 is flexible in the following sense:
(1) we can choose any order of coordinates
to successively minimize the error, e.g. by
λ1, S1, λ2, S2, · · · ; (2) we can use the grid
search or binary search for the magnitudes and
splits. To further demonstrate the utility of k-

level SLOPE in practice, we apply the model to real datasets, where MSE(β, β̂) is intractable, and
focus on the prediction MSE(y, ŷ).

3. We slightly abuse the notation of MSE to mean either the estimation error (only available in synthetic data) or the
prediction error, when it is clear from context.

5

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

4. Experiment

In this experiment, we compare the performance of 2-level SLOPE with Lasso in linear regression
setting. The dataset we adopt is atherosclerosis cardiovascular disease (ASCVD), which records
medical information of 236 patients and their corresponding ASCVD risk score (outcome vari-
able). We select 1000 features out of 4216 features, which has the largest correlation with the
outcome variable. We conduct 20-fold cross-validation and calculate the cross-validation prediction
MSE(y, ŷ). For the sake of implementation consistency, we adopt R package SLOPE to run both
Lasso and SLOPE in experiments. Using grid search, the optimal prediction MSE(y, ŷ) given by
Lasso is 0.528. The optimal prediction MSE(y, ŷ) given by 2-level SLOPE (using Algorithm 2) is
0.489.

We further extend the idea of k-level SLOPE in logistic regression and justify the results on
Alzheimer’s Disease Neuroimaging Initiative (ADNI) gene dataset. The dataset contains over 19000
genomic features of 649 patients, along with a binary disease status (normal or ill). We select the
first 300 patients in the original dataset and 500 features out of the total features, which has the
largest correlation with the outcome variable. We conduct 10-fold cross-validation and calculate the
cross-validation prediction accuracy. Using grid search, the optimal prediction accuracy given by
Lasso is 0.62, while 2-level SLOPE (using Algorithm 2) achieves optimal prediction accuracy 0.66.

5. Discussion

In this work, we propose a framework to flexibly and efficiently design the SLOPE penalty se-
quence. Under the AMP setting, our first-order PGD approach is capable of finding the effective
penalty sequence with reasonable computation budget. In the practical world beyond the AMP set-
ting, we propose k-level SLOPE, which empirically provides decent results. Much room is left for
future study. From a theoretical perspective, the quasi-convexity of τ(α) in AMP setting is still not
being well studied. If the quasi-convexity indeed holds true for SLOPE AMP, then we can guarantee
that the minimizing λ is indeed the global minimizer and thus claim our design is optimal. From
a practical perspective, we anticipate that k-level SLOPE can also be explored in various applica-
tions that adopts the Lasso, such as the matrix completion, the compressed sensing and the neural
network regularization.

References

[1] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs,
with applications to compressed sensing. IEEE Transactions on Information Theory, 57(2):
764–785, 2011.

[2] Mohsen Bayati and Andrea Montanari. The lasso risk for gaussian matrices. IEEE Transac-
tions on Information Theory, 58(4):1997–2017, 2011.

[3] Pierre C Bellec, Guillaume Lecué, Alexandre B Tsybakov, et al. Slope meets lasso: improved
oracle bounds and optimality. The Annals of Statistics, 46(6B):3603–3642, 2018.

[4] Małgorzata Bogdan, Ewout Van Den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J Candès.
Slope—adaptive variable selection via convex optimization. The annals of applied statistics,
9(3):1103, 2015.

6

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

[5] Zhiqi Bu, Jason Klusowski, Cynthia Rush, and Weijie Su. Algorithmic analysis and statistical
estimation of slope via approximate message passing. In Advances in Neural Information
Processing Systems, pages 9361–9371, 2019.

[6] Zhiqi Bu, Jason Klusowski, Cynthia Rush, and Weijie Su. Algorithmic analysis and statistical
estimation of slope via approximate message passing. arXiv preprint arXiv:1907.07502, 2019.

[7] Michael Celentano, Andrea Montanari, and Yuting Wei. The lasso with general gaussian
designs with applications to hypothesis testing. arXiv preprint arXiv:2007.13716, 2020.

[8] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for com-
pressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919,
2009.

[9] David L Donoho, Arian Maleki, and Andrea Montanari. Message passing algorithms for com-
pressed sensing: I. motivation and construction. In 2010 IEEE information theory workshop
on information theory (ITW 2010, Cairo), pages 1–5. IEEE, 2010.

[10] Hong Hu and Yue M Lu. Asymptotics and optimal designs of slope for sparse linear regression.
In 2019 IEEE International Symposium on Information Theory (ISIT), pages 375–379. IEEE,
2019.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[12] Ali Mousavi, Arian Maleki, Richard G Baraniuk, et al. Consistent parameter estimation for
lasso and approximate message passing. The Annals of Statistics, 46(1):119–148, 2018.

[13] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/kˆ 2). In Doklady an ussr, volume 269, pages 543–547, 1983.

[14] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[15] Weijie Su, Emmanuel Candes, et al. Slope is adaptive to unknown sparsity and asymptotically
minimax. The Annals of Statistics, 44(3):1038–1068, 2016.

[16] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. The gaussian min-max theorem
in the presence of convexity. arXiv preprint arXiv:1408.4837, 2014.

[17] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Regularized linear regression:
A precise analysis of the estimation error. Proceedings of Machine Learning Research, 40:
1683–1709, 2015.

[18] Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. Precise error analysis of regu-
larized m-estimators in high dimensions. IEEE Transactions on Information Theory, 64(8):
5592–5628, 2018.

[19] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

7

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

[20] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):
49–67, 2006.

[21] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American statistical
association, 101(476):1418–1429, 2006.

[22] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005.

8

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

Appendix A. Assumptions in Approximate Message Passing regime for SLOPE

Five assumptions are made in AMP regime for analysis of SLOPE [5]:

• The measurement matrix X has independent and identically-distributed (i.i.d.) gaussian en-
tries that have mean 0 and variance 1/n.

• The signal β has elements that are i.i.d. B, with E
(
B2 max{0, logB}

)
<∞.

• The noise ω is elementwise i.i.d. W , with σ2
w := E

(
W 2
)
<∞.

• The vector λ(p) = (λ1, . . . , λp) is elementwise i.i.d. Λ, with E
(
Λ2
)
<∞.

• The ratio n/p reaches a constant δ ∈ (0,∞) in the large system limit, as n, p→∞.

Appendix B. Analysis of Projected Gradient Descent for α

B.1. Proof of Theorem 1

Proof
Minimizing the estimation error is equivalent to minimizing τ . Since the AMP algorithms are

working on the finite dimension, we analyze the finite-size approximation of the state evolution [6,
Equation (2.5)]:

τ2 = σ2
w +

1

δp
E
∥∥proxJατ (β + τZ)− β

∥∥2

In finite dimensions, the expectation is taken with respect to Z. Differentiating both sides of the
state evolution with respect to αi and denoting τ ′ = ∂τ

∂αi
give:

2ττ ′ =
∂

∂αi

(
σ2
w +

1

δp
E‖ proxJατ (β + τZ)− β‖2

)
=

1

n

∂

∂αi

p∑
j=1

E
(
[proxJατ (β + τZ)]j − βj

)2 (B.1)

Recall ηj represents the j-th element of η := proxJατ (β + τZ). By chain rule

2ττ ′ =
2

n

p∑
j=1

E(ηj − βj)
∂ηj
∂αi

=
2

n

p∑
j=1

E(ηj − βj)

[
p∑

k=1

dηj
dak

∂ak
∂αi

+
dηj
dbk

∂bk
∂αi

]
(B.2)

where we define ak := βk + τZk, bk := αkτ . To calculate the derivatives, we pause to discuss
forms of general derivatives of η(a, b). Define

∂1η(a, b) := diag
[∂

∂a1
,
∂

∂a2
, . . . ,

∂

∂ap

]
η(a, b) (B.3)

∂2η(a, b) := diag
[∂

∂b1
,
∂

∂b2
, . . . ,

∂

∂bp

]
η(a, b). (B.4)

9

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

According to [15, Proof of Fact 3.4] and [6, Proof of Theorem 1], we have

[∂1η(a, b)]j =
1

#{1 ≤ k ≤ p : |[η(a, b)]k| = |[η(a, b)]j |}

and that

d

dak
[η(a, b)]j =I{|η(a, b)|j = |η(a, b)|k} sign(ηjηk)[∂1η(a, b)]j

for the derivative regardng the first variable. Recall that the permutation σ : {1, . . . , p} → {1, . . . , p}
is the inverse mapping for ranking of indices such that |η|(i) = |[η]σ(i)|. Similarly, according to [6,
Proof of Theorem 1]:

d

dbk
[η(a, b)]j = − sign([η(a, b)]σ(k))

d

daσ(k)
[η(a, b)]j

= I
{
|η(a, b)|j = |η(a, b)|σ(k)

}
sign

(
ηj
)[
∂1η(a, b)

]
j
. (B.5)

In addition to Ij defined in Section 2, we let Kj := {k : |ησ(k)| = |ηj |}. We can rewrite (B.2)
as

2ττ ′ =
2

n

p∑
j=1

E(ηj − βj)

∑
k∈Ij

dηj
dak

∂ak
∂αi

+
∑
k∈Kj

dηj
dbk

∂bk
∂αi

=

2

n

p∑
j=1

E(ηj − βj) sign(ηj)

[
1

|Ij |
∑
k∈Ij

sign(ηk)
∂ak
∂αi
− 1

|Kj |
∑
k∈Kj

∂bk
∂αi

]

=
2

n

p∑
j=1

E(ηj − βj) sign(ηj)

[
1

|Ij |
∑
k∈Ij

sign(ηk)Zkτ
′ − 1

|Kj |
∑
k∈Kj

(αkτ
′ + I{k = i}τ)

]

Merging the terms containing the derivative τ ′ on one side gives

1

n

∑
j∈Iσ(i)

E(ηj − βj) sign(ηj)/|Kj |

=
1

n

p∑
j=1

E(ηj − βj) sign(ηj)

[
1

|Ij |
∑
k∈Ij

sign(ηk)Zkτ
′ − 1

|Kj |
∑
k∈Kj

αkτ
′

]
− ττ ′

Notice that |Ij | = |Kj | due to σ being a permutation, we can simplify above as

∂τ

∂αi
= E

1

|Iσ(i)|D(α, τ)

∑
j∈Iσ(i)

(ηj − βj) sign(ηj)τ (B.6)

where D(α, τ) in the denominator is

D(α, τ) = −nτ +

p∑
j=1

E
1

|Ij |
(ηj − βj) sign(ηj)

∑
k∈Ij

(sign(ηk)Zk − ασ−1(k))

10

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

We next show that D(α, τ) is always negative. Firstly observe from (2.2) that

τ2 >
1

n

p∑
j=1

E(ηj − βj)2 (B.7)

Now for the set Ii with a fixed index i,∑
j∈Ii

(ηj − βj)2 ≥ 1

|Ii|
(
∑
j∈Ii

|ηj − βj |)2 (B.8)

≥ 1

|Ii|
(
∑
j∈Ii

(ηj − βj) sign(ηj))
2 (B.9)

=
1

|Ii|
∑
j∈Ii

(ηj − βj) sign(ηj)
∑
k∈Ii

τZk sign(ηk)− ασ−1(k)τ (B.10)

≥ τ

|Ii|
∑
j∈Ii

(ηj − βj) sign(ηj)
∑
k∈Ij

Zk sign(ηk)− ασ−1(k) (B.11)

This in turn implies that

p∑
j=1

(ηj − βj)2 =

p∑
j=1

1

|Ij |
∑
k∈Ij

(ηk − βk)2 (B.12)

≥
p∑
j=1

τ

|Ij |
(ηj − βj) sign(ηj)

∑
k∈Ij

Zk sign(ηk)− ασ−1(k) (B.13)

Combining with (B.7) yields D < 0.

B.2. Characterization of projection on S

To calculate projection ΠS , we propose the following algorithm.

Algorithm 3: ProjectOnS (ΠS)
Input: Arbitrary sequence γ = (γ1, . . . , γp)
for i = 1, · · · , p do

Identify the shortest sub-sequence {γj , . . . , γi} whose average is smaller than its left neighbor
(with γ0 =∞):

1
i−j+1

∑i
k=j γk ≤ γj−1

Assign the average value to such sub-sequence for (γj , . . . , γi):
γj , . . . , γi ← 1

i−j+1

∑i
k=j γk

end for
Output: max{γ, 0} (Element-wise truncation)

We now state that Algorithm 3 indeed find the projection onto S:

11

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

Theorem 2 Given ∀γ ∈ Rp as input, Algorithm 3 outputs the projection of γ on S, that is, ΠS(γ).

The proof consists of two parts. In the first part we provide a detailed characterization of ΠS(γ)
by partitioning the index sequence {1, . . . , p} into a number of carefully selected sub-sequences.
We prove that within each sub-sequence, ΠS(γ) takes the same value at each index, and such value
is exactly the average of the sub-sequence γ’s values at these indices. In the second part, we prove
that Algorithm 1 indeed finds such sub-sequences and thus operates in a way that matches the goal
of the projection ΠS(γ). The final truncation of the averaged sequence at 0 is a trivial method to
guarantee the non-negativity.

We firstly prove that Algorithm 3 indeed finds the projection. To do so we firstly provide
a detailed characterization of the projection, then prove that the output of Algorithm 3 matches
the form of projection. We start by defining blocks and segmentation blocks, upon which our
proof highly relies. Suppose γ = {γ1, . . . , γp}, blocks are subsequences defined as B(γ, u) :=
{γu, . . . , γu+L(γ,u)−1} where length L(γ, u) is defined as

L(γ, u) =

{
L∗ if L∗ 6= ∅
p otherwise

(B.14)

where

L∗
∆
= min

{
1 ≤ L ≤ p− u

∣∣∣∀0 ≤ k ≤ p− u− L, 1

k + 1

k∑
i=0

γu+L+i <
1

L

L−1∑
i=0

γu+i

}
Roughly speaking, L(γ, u) is the minimum value of a finite set (truncated at p when the set is
empty). For each element L in this set, the average value in sequence {γu, . . . , γu+L−1} is always
larger than that of arbitrary sequence {γu+L, . . . , γu+L+k} whose left start is γu+L. With such
definition of blocks, we can now segment γ into q ≤ p blocks:

γ = {B(γ, 1), B(γ, L(γ, 1) + 1), B(γ, L(γ, L(γ, 1) + 1) + L(γ, 1) + 1), . . . }
∆
= {B1, . . . , Bq}

We callB1, . . . , Bq segmentation blocks for vector γ. It’s straightforward to see thatBk = B(γ, Lk)
where Lk satisfies L1 = L(γ, 1) and

Lk = L(γ,

k−1∑
i=1

Li + 1)

Our result shows that for input vector γ, its projection vector ΠS(γ) takes identical values inside
each of the segmentation blocks. Before formally stating the theorem, We first highlight the follow-
ing fact that will be frequently used in the proof of the theorem.

Fact 1 For two sequences of length p: {ai} and {bi}, if
∑
ai =

∑
bi, then function g(C) :=∑

(bi − ai + C)2 is monotonically increasing with respect to |C|.

Proof Notice that∑
(bi − ai + C)2 =

∑
(bi − ai)2 +

∑
2C(bi − ai) + pC2

= pC2 +
∑

(bi − ai)2

12

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

Hence g(C) is is monotonically increasing with respect to |C|.

Theorem 3 Let B denote the segmentation block that contains γi, then

(ΠS(γ))i = max

 1

|B|
∑
γj∈B

γj , 0

Proof

The proof consists of two steps. In the first step, we prove that for each segmentation block
B, the projection of each coordinates share the same value. That is, (ΠS(γ))i = C(B) as long as
γi ∈ B. In the second step, we show that this constant is the mean of the block truncated at 0:
C(B) = max

{
1
|B|
∑

γj∈B γj , 0
}

.

Step 1 Without loss of generality, we consider B = B(γ, u). We know from definition of blocks
that ∀1 ≤ l ≤ L− 1, ∃kl s.t. 1

kl

∑kl
i=1 γu+l−1+i ≥ 1

l

∑l
i=1 γu+i−1. We use induction to prove that

(ΠS(γ))u = (ΠS(γ))u+l, ∀1 ≤ l ≤ L(γ, u) − 1. For l = 1, assume (ΠS(γ))u > (ΠS(γ))u+1.
Consider two cases: (i) (ΠS(γ))u > γu. (ii) (ΠS(γ))u ≤ γu. We now show that both cases lead to
contradiction and hence do not hold. In case (i), we consider

(Π̃S(γ))i =

{
max{γu, (ΠS(γ))u+1} if i = u

(ΠS(γ))i otherwise

then obviously, ∣∣∣(Π̃S(γ))u − γu
∣∣∣ < |(ΠS(γ))u − γu|

which leads to that 1
2‖(Π̃S(γ)) − γ‖22 < 1

2‖(ΠS(γ)) − γ‖22. This contradicts to the definition of
projection. In case (ii), from definition of blocks we have that ∃k0 ≥ 1 s.t. 1

k0

∑k0
i=1 γu+i ≥ γu.

Consider

(Π̃S(γ))i =

{
(ΠS(γ))u if i ∈ {u+ 1, . . . , u+ k0}
(ΠS(γ))i otherwise

Notice that 1
k0

∑k0
i=1 γu+i ≥ γu ≥ (ΠS(γ))u > (ΠS(γ))u+1, we have for i ∈ {u+ 1, . . . , u+ k0},∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i and that∣∣∣∣∣(Π̃S(γ))i −
1

k0

k0∑
i=1

γu+i

∣∣∣∣∣ <
∣∣∣∣∣(ΠS(γ))i −

1

k0

k0∑
i=1

γu+i

∣∣∣∣∣
According to Fact B.2, we define substitution for i ∈ {u + 1, . . . , u + k0}: bi = 1

k0

∑k0
i=1 γu+i,

ai = γu+i, bi + C1 = (Π̃S(γ))i and bi + C2 = (ΠS(γ))i. Then since |C1 < C2|, we have
1
2‖(Π̃S(γ))− γ‖22 < 1

2‖(ΠS(γ))− γ‖22, which contradicts to the definition of projection.
Now assume the statement holds for 1 ≤ l ≤ l0 − 1, that is (ΠS(γ))u = · · · = (ΠS(γ))u+l0−1,

we want to prove that (ΠS(γ))u = (ΠS(γ))u+l0 . Since the projection is on S, by definition we
know (ΠS(γ))u can never be smaller than (ΠS(γ))u+l0 . We now assume (ΠS(γ))u > (ΠS(γ))u+l0

13

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

and consider two cases: (i) (ΠS(γ))u >
1
l0

∑l0−1
i=0 γu+i. (ii) (ΠS(γ))u ≤ 1

l0

∑l0−1
i=0 γu+i. To com-

plete the proof, it suffices for us to show that neither of the cases can hold without contradictions.
In case (i), we consider

(Π̃S(γ))i =

max{ 1

l0

∑l0−1
j=0 γu+j , (ΠS(γ))u+l0}

if i ∈ {u, . . . , u+ l0 − 1}
(ΠS(γ))i otherwise

then obviously for i ∈ {u, . . . , u + l0 − 1},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i
and that ∣∣∣∣∣(Π̃S(γ))i −

1

l0

l0−1∑
i=0

γu+i

∣∣∣∣∣ <
∣∣∣∣∣(ΠS(γ))i −

1

l0

l0−1∑
i=0

γu+i

∣∣∣∣∣
According to Fact B.2, using the same substitution as that in analysis of l = 1, we have that
1
2‖(Π̃S(γ))−γ‖22 < 1

2‖(ΠS(γ))−γ‖22, which makes contradiction to the definition of projection. In
case (ii), from definition of blocks we have that ∃k0 ≥ 1 s.t. 1

k0

∑k0
i=1 γu+l0−1+i ≥ 1

l0

∑l0−1
i=0 γu+i.

Now we consider

(Π̃S(γ))i =

{
(ΠS(γ))u if i ∈ {u+ l0, . . . , u+ l0 − 1 + k0}
(ΠS(γ))i otherwise

Notice that 1
k0

∑k0
i=1 γu+l0−1+i ≥ 1

l0

∑l0−1
i=0 γu+i ≥ (ΠS(γ))u > (ΠS(γ))u+l0 , we have for i ∈

{u+ l0, . . . , u+ l0 − 1 + k0},
∣∣∣(Π̃S(γ))i − (ΠS(γ))i

∣∣∣ is a constant independent of i and that∣∣∣∣∣(Π̃S(γ))i −
1

k0

k0−1∑
i=0

γu+l0+i

∣∣∣∣∣ <
∣∣∣∣∣(ΠS(γ))i −

1

k0

k0−1∑
i=0

γu+l0+i

∣∣∣∣∣
Again according to Fact B.2, we have 1

2‖(Π̃S(γ)) − γ‖22 < 1
2‖(ΠS(γ)) − γ‖22, which contradicts

to the definition of projection. This implies that it can never happen that (ΠS(γ))u > (ΠS(γ))u+l0 ,

which completes the induction. We have proved that (ΠS(γ))u = · · · = (ΠS(γ))u+L(γ,u)−1
∆
=

C(B(u)) for each segmentation block B(u) of vector γ.

Step 2 Now we already know that inside each segmentation block, the projection of each coordi-
nate is a constant C(B), we now optimize the sequence {C(Bi)}qi=1. According to Fact B.2, inside
each Bi, the optimal constant (i.e. constant gives smallest `2 error argminC≥0

1
2

∑
γj∈Bi(γj − C)2)

is : max
{

1
|Bi|
∑

γj∈Bi γj , 0
}

. Meanwhile, it’s feasible to set

(ΠS(γ))i = max

 1

|B|
∑
γj∈B

γj , 0

since we have that max

{
1
|Bi|
∑

γj∈Bi γj , 0
}
≥ max

{
1

|Bi+1|
∑

γj∈Bi+1
γj , 0

}
by definition of

blocks. This wraps up the proof.

14

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

B.3. Proof of Theorem 2

We next prove the validity of Algorithm 3.
Proof Suppose γ has segmentation blocks B1, . . . , Bq, we firstly prove that (ΛS(γ))i = (ΠS(γ))i
for i ≤ |B1|. We let γj(t) denote the value of γj at the moment i was assigned from t to t + 1 in
Algorithm 3 (i.e. the time when first t iterations are finished). We also let γj(0) denote the initial
value of γj in the input. Then clearly (ΛS(γ))j = max{γj(p), 0}. During the value-averaging
step, the algorithm is constantly transporting values from elements with larger index to those with
smaller. Hence it’s straightforward to see that

J∑
j=1

γj(t) ≥
J∑
j=1

γj(t− 1) (B.15)

for arbitrary J, t ∈ {1, . . . , p}. First assume γ1(p) = · · · = γ
L̃1

(p) > γ
L̃1+1

(p). Since Algorithm 3
only involves averaging values among subsequences, we have that

∑p
j=1 γj(p) =

∑p
j=1 γj . More-

over since γ
L̃1

(p) > γ
L̃1+1

(p), there’s no value-averaging steps between any one of the first L̃1

elements and one of the rest elements. This implies

L̃1∑
j=1

γj(p) =

L̃1∑
j=1

γj (B.16)

By definition of blocks, we know that ∃k such that 1
k

∑k
i=1 γL̃1+i

≥ 1

L̃1

∑L̃1
i=1 γi = γ1(p). By

(B.15) we have that
1

k

k∑
i=1

γ
L̃1+i

≤ 1

k

k∑
i=1

γ
L̃1+i

(p) ≤ γ
L̃1+1

(p)

Together with above, this implies that γ1(p) ≤ γ
L̃1+1

(p), which contradicts to the assumption.

Hence we have that L̃1 ≥ L1.
On the other hand, if L̃1 > L1, then at the moment i is assigned to be L̃1 + 1 in the algorithm

(i.e. the time when first L̃1 iterations are finished), we must have that∑L̃1
j=1 γj(L̃1 − 1)

L̃1

≥
∑L1

j=1 γj(L̃1 − 1)

L1

This implies that ∑L̃1
j=L1+1 γj(L̃1 − 1)

L̃1 − L1

≥
∑L1

j=1 γj(L̃1 − 1)

L1
(B.17)

By (B.15) we have ∑L1
j=1 γj

L1
≤
∑L1

j=1 γj(L̃1 − 1)

L1
(B.18)

15

EFFICIENT DESIGNS OF SLOPE PENALTY SEQUENCES IN FINITE DIMENSION

Meanwhile at t = L̃1 − 1, the sum of first L1 terms is the same as that in γ. This implies

L̃1∑
j=L1+1

γj(L̃1 − 1) =

L1∑
j=1

γj +

L̃1∑
j=L1+1

γj −
L1∑
j=1

γj(L̃1 − 1)

≤
L̃1∑

j=L1+1

γj

(B.19)

where the last inequality is given by (B.15). Combining (B.17), (B.18) and ((B.19)) yields∑L̃1
j=L1+1 γj

L̃1 − L1

≥
∑L1

j=1 γj

L1

This contradicts to definition of L1 in (B.14). Hence we have that L̃1 = L1. This means γ1(p) =
· · · = γL1(p) > γL1+1(p). Recall that (ΛS(γ))j = max{γj(p), 0}, this together with (B.16) yields

(ΠS(γ))1 = max

 1

|B1|

L1∑
j=1

γj , 0

 = (ΛS(γ))1

= · · · = (ΛS(γ))L1 > (ΛS(γ))L1+1

Now we have prove that (ΠS(γ))i = (ΛS(γ))i for i ≤ |B1| and that there is no interaction between
element in B1 and that outside B1. This implies that the existence of B1 does not affect the rest
of output values (ΛS(γ))i>|B1|. Hence we can ignore B1 and repeat exactly the same procedure
to prove that (ΠS(γ))i = (ΛS(γ))i when |B1| + 1 ≤ i ≤ |B2| and that there is no interactions
between element in B2 and that outside B2. Iteratively we can prove ΠS(γ) = ΛS(γ)

16

	Introduction
	Notations

	SLOPE penalty design under AMP regime
	Computing gradients with respect to penalty
	Projection onto non-negative decreasing vectors
	Projected Gradient Descents

	k-level SLOPE
	Practical penalty design for k-level SLOPE

	Experiment
	Discussion
	Assumptions in Approximate Message Passing regime for SLOPE
	Analysis of Projected Gradient Descent for
	Proof of Theorem 1
	Characterization of projection on S
	Proof of Theorem 2

