
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

GD on Neural Networks Typically Occurs at the Edge of Stability

Jeremy M. Cohen JEREMYCOHEN@CMU.EDU

Simran Kaur SKAUR@ANDREW.CMU.EDU

Yuanzhi Li YUANZHIL@ANDREW.CMU.EDU

Zico Kolter ZKOLTER@CS.CMU.EDU

Ameet Talwalkar ATALWALK@ANDREW.CMU.EDU

Carnegie Mellon University, Pittsburgh PA

Abstract
We empirically demonstrate that full-batch gradient descent on neural network training objectives
typically operates in a regime we call the Edge of Stability. In this regime, the leading eigenvalue
of the training loss Hessian hovers just above the value 2/(step size), and the training loss behaves
non-monotonically, yet consistently decreases over long timescales. Our results expose a large gap
between theory and practice in non-convex optimization: many analyses of gradient descent (those
based on L-smoothness or monotonic descent) do not apply at the Edge of Stability.

1. Introduction

In this paper, we train neural networks using full-batch gradient descent, and find that gradient
descent (GD) typically operates in a regime that is not well-explained by current optimization theory.
We study the evolution during training of the sharpness — the leading eigenvalue of the training
objective’s Hessian. The sharpness play a major role in the dynamics of GD with step size η:
if the sharpness is less than 2/η, then the descent lemma [6] guarantees that a gradient step will
decrease the training objective. On the other hand, if the sharpness is greater than 2/η, then (barring
other assumptions) a gradient step might increase the training objective, and, even worse, GD is
(to quadratic order) an unstable algorithm: if run on the quadratic Taylor approximation, it would
diverge. Consequently, analyses of GD with a fixed step size η frequently stipulate that the sharpness
should be less than 2/η, if not globally then at least along the optimization trajectory [5, 28].

We will show that, while there do exist step sizes η for which the sharpness will remain less
than 2/η for the entire duration of training, these step sizes are so small that they are, at best, highly
suboptimal in terms of convergence speed, and at worst, completely unfeasible for training. The
reason why these step sizes are so small is that gradient descent on neural network training objectives
seems to have an overwhelming tendency to continually increase the sharpness. Therefore, even if
the initial sharpness is less than 2/η, the sharpness often rises past 2/η later in training. As one
would expect, this causes gradient descent to become destabilized. What is unexpected is that after
becoming destabilized, gradient descent transitions into a regime we call the Edge of Stability in
which it continues to successfully optimize the loss, but in a fashion that is inconsistent with much
of optimization theory. At the Edge of Stability, the sharpness hovers right at (or just above) the
value 2/η, meaning that monotone descent is not guaranteed. Moreover, monotone descent does
not occur: at the Edge of Stability, the training loss usually behaves non-monotonically over short
timescales. Yet despite this, optimization is successful: over long timescales, the training loss
consistently decreases. We think that understanding how gradient descent can succeed at the Edge
of Stability should be viewed as an important open problem in optimization theory.
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2. Sharpening and instability

We first illustrate our main points on a running example; the following section will show that they
hold more generally. We consider training a network on a subset of CIFAR-10 using full-batch
gradient descent. The network is a fully-connected architecture with two hidden layers of 200 units
each (656,810 total parameters), and with ELU activations [8]. We train on a subset of CIFAR-10
of size 5,000. We use the square loss for classification [16], encoding the target class with 1 and the
other classes with 0 (our findings also hold for cross-entropy loss, but with one minor twist). We
consider training finished when the loss reaches 0.05.
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Figure 1: Evolution of train loss (top)
and sharpness (bottom) dur-
ing gradient flow.

To start, we “train” this network using gradient flow,
numerically integrating the ODE using the Runge-Kutta
RK4 algorithm [37]. Figure 1 plots the train loss (top)
and sharpness (bottom) as a function of time. Crucially,
observe that the sharpness continually rises over time.
It seems to be a general property of gradient flow on
neural network training objectives that the sharpness has
an overwhelming tendency to continually increase. We
call this phenomenon progressive sharpening. By “over-
whelming tendency,” we mean that gradient flow does oc-
casionally decrease the sharpness (e.g. Figure 22), but
these brief decreases always seem be followed by a return
to continual increase. We do not know why progressive
sharpening occurs; this is an important question for future

work. In Appendix D we take a step towards reconciling progressive sharpening with NTK theory.
Gradient descent with step size η is a forward Euler discretization of the gradient flow ODE.

Consequently, at sufficiently small step sizes, gradient descent roughly tracks the trajectory of gradi-
ent flow, traveling at a speed proportional to the step size. However, while gradient flow can traverse
arbitrarily sharp regions of the loss landscape without difficulty, gradient descent is, to quadratic
order, unstable in regions of the loss landscape where the sharpness exceeds 2/η. Namely, suppose
that at some point θ0, we were to switch from running gradient descent on the real objective to
running gradient descent on the quadratic Taylor approximation around θ0. Let ∆t be the displace-
ment from θ0 along the leading Hessian eigenvector and let λ be the sharpness. Then ∆t would
evolve under gradient descent as ∆t = c

[
(1− ηλ)t − 1

]
, where c is a constant (Appendix C). This

sequence diverges iff |1 − ηλ| > 1, which, since λ, η > 0, means λ > 2/η. Thus, if the sharpness
exceeds 2/η, then gradient descent run on the quadratic Taylor approximation would oscillate with
increasing magnitude along the direction of highest curvature, leading to eventual divergence.

For sufficiently small step sizes, gradient descent will stably track the gradient flow trajectory
for the entire duration of training. In particular, let λmax be the maximum sharpness along the
gradient flow trajectory (and assume that λmax is finite). If we train at a step size smaller than
2/λmax, then we can roughly expect (and will verify) that: (1) gradient descent will approximately
track the gradient flow trajectory from start to finish, (2) the sharpness along the gradient descent
trajectory will remain less than 2/η, and (3) the training loss will decrease monotonically.

What is surprising is that this network can also be successfully trained at step sizes much larger
than 2/λmax. At such step sizes, gradient descent roughly tracks the gradient flow trajectory at
first; however, once the sharpness reaches 2/η, gradient descent departs the gradient flow trajectory
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Figure 2: Gradient descent tracks the gradient flow trajectory until the sharpness reaches 2/η,
and then enters the Edge of Stability.

and enters a regime we call the Edge of Stability in which (1) the sharpness ceases to increase
further and instead hovers right at (or just above) the value 2/η, and (2) the train loss behaves non-
monotonically. In Figure 2, we run gradient descent at a range of step sizes (see the legend on the
right), plotting the train loss curves in 2(a). We draw a vertical dotted line at the iteration where the
sharpness first reaches 2/η; observe that the train loss decreases monotonically before this event,
but behaves non-monotonically afterwards. In Figure 2(b), we plot the evolution of the sharpness,
drawing a horizontal dashed line at the value 2/η. Observe that once the sharpness rises to 2/η, it
stops increasing and remains approximately there for the duration of training. In Figure 2(c), we
plot the `2 distance between the gradient flow trajectory and gradient descent trajectory. That is, for
each time t, we compute the `2 distance between the gradient flow iterate at time t and the gradient
descent iterate at step t/η. We draw a vertical dotted line at the time where the sharpness first
crosses 2/η. Observe that before this event, the distance between the gradient descent and gradient
flow trajectories is essentially zero (because GD is roughly following the gradient flow trajectory),
yet after this point, the difference starts to grow (because GD departs the gradient flow trajectory).

Observe from Figure 2(a) that gradient descent converges much faster at step sizes greater than
2/λmax, where it eventually enters the Edge of Stability, than at step sizes less than 2/λmax (e.g.
the brown curve). Step sizes less than 2/λmax are unreasonably small. We believe that the Edge of
Stability should be viewed as the “rule” for gradient descent on neural networks, not the “exception.”

At the Edge of Stability, gradient descent is constantly “trying” to increase the sharpness, but is
being somehow restrained from doing so. If we cut the learning rate, this restraint is removed, and
gradient descent is freed to follow gradient flow into a region of increased sharpness. To demonstrate
this, in Figure 3, we run gradient descent until it enters the Edge of Stability, then halve the learning
rate and continue training. Observe that as soon as the learning rate is cut, the sharpness starts to
increase. It only stops increasing once gradient descent is back at the Edge of Stability.
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Figure 3: After a learning rate drop, progressive sharpening resumes. We train the network
with step size 0.01 (orange), for either 6k iterations (left two panes) or 10k iterations
(right two panes); then we cut the learning rate to 0.005 (green) and train for longer.
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Figure 4: Momentum gradient descent operates at the Edge of Stability. We train the network to
completion with fixed step size (left: η = 0.005; right: η = 0.02) but varying amounts β
of either Polyak or Nesterov momentum (see legend). For each algorithm, the horizontal
solid line of the appropriate color marks the maximum stable sharpness given by (1).

Momentum Similar to vanilla gradient descent, when run on a quadratic Taylor approximation,
gradient descent with either Polyak or Nesterov momentum acts independently along each Hessian
eigenvector, and will diverge along the leading eigenvector if and only if the sharpness exceeds
a certain threshold (the “maximum stable sharpness”, or MSS). We prove in Appendix C that for
gradient descent with learning rate η and momentum parameter β, the MSS is:

MSSPolyak(η, β) =
1

η
(2 + 2β) , MSSNesterov(η, β) =

1

η

(
2 + 2β

1 + 2β

)
. (1)

The Polyak result previously appeared in Goh [13]; the Nesterov one seems to be new. It is inter-
esting to note that MSSPolyak(η, β) is increasing in β, whereas MSSNesterov(η, β) is decreasing in β.
That is, adding Polyak momentum gives gradient descent a higher tolerance for sharpness, whereas
adding Nesterov momentum gives gradient descent a lower tolerance for sharpness. In Figure 4,
we train our network to completion with varying amounts β of both Polyak and Nesterov momen-
tum, while keeping the learning rate η held fixed. Just like in the vanilla GD case, we see that the
sharpness rises to the maximum stable sharpness and then remains approximately there.

Cross-entropy loss So far, we have focused on the squared loss. The situation is mostly the same
for the commonly-used cross-entropy loss, but with one difference: for cross-entropy loss, at the
end of training, we often observe that the sharpness decreases. This behavior seems to be caused by
the well-known fact that at the end of training, gradient descent continually scales up the logits so
as to drive the cross-entropy loss to zero [43]. When this occurs, the sharpness drops, because the
second derivative of the cross-entropy goes to zero as its input increases.

3. Experiments

In Appendix A, we demonstrate that our main points hold across many different settings. Namely,
we show that if the initial sharpness is less than 2/η, then the sharpness will tend to continually
rise during training (progressive sharpening) until gradient descent reaches the Edge of Stability, a
regime where the sharpness hovers right at (or just above) 2/η, and the training loss behaves non-
monotonically. We demonstrate this point across different architectures (fully-connected, CNN,
VGG, Transformer, deep linear network), activation functions (ReLU and tanh), loss functions
(squared loss and cross-entropy), datasets (CIFAR-10, a synthetic regression task, language model-
ing), and on networks both with and without Batch Normalization.

4



GRADIENT DESCENT ON NEURAL NETWORKS TYPICALLY OCCURS AT THE EDGE OF STABILITY

4. Related work

Several previous works have measured the evolution of the sharpness (and, more generally, the
Hessian spectrum) during neural network training [11, 20, 21, 23, 27, 33–35, 40]. Xing et al. [49]
observed that full-batch gradient descent eventually enters a regime where the training loss behaves
non-monotonically, but did not describe when/why this occurs, and did not discuss the implications
of this observation for optimization theory. Prior works have argued that the stability properties of
optimization algorithms could serve as a form of implicit bias in deep learning [12, 22, 30, 31, 47]

5. Conclusion

We have demonstrated that, at all but the smallest step sizes, gradient descent eventually transitions
in a regime — the Edge of Stability — where the sharpness hovers right at (or just above) the
value 2/η, and the training loss behaves non-monotonically. From the point of view of conventional
optimization theory, it is surprising that gradient descent can succeed in this regime, considering
that in this regime (1) the descent lemma fails to hold, and (2) gradient descent is, to quadratic
order, unstable (meaning that it would diverge if run on the quadratic Taylor approximation). We
hope that this paper will inspire research aimed at understanding the Edge of Stability.

It is currently popular for authors motivated by deep learning to prove convergence results for
optimization algorithms under the “non-convex butL-smooth” setting [1, 7, 9, 26, 29, 38, 39, 41, 45,
46, 48, 50, 51, 53]. For gradient descent, analyses based on L-smoothness require (at a minimum)
that the sharpness should be less than 2/η along the optimization trajectory. Therefore, our results
imply that for neural network training, analyses based on L-smoothness cannot explain the success-
ful convergence of vanilla gradient descent at any reasonable step size. We think that authors may
want to reconsider the suitability of the “non-convex but L-smooth” setting in light of this finding.

Even analyses of gradient descent that do not explicitly assume L-smoothness often assert that
gradient descent will decrease the training objective monotonically [3, 52]. However, at the Edge
of Stability, the training loss usually behaves non-monotonically over short timescales even as it
consistently decreases over long timescales. Thus, any analysis that aims to prove that gradient
descent will monotonically decrease the training loss is doomed to be unrealistic in practice.

While we focused in this paper on full-batch gradient descent, we believe that some of our
findings may also have analogues for SGD. First, while it is obviously normal for the training loss
to behave non-monotonically during SGD, we present a surprising experiment in Appendix B which
suggests that SGD on neural networks rapidly “acclimates” to the learning rate and batch size in such
a way that subsequent SGD steps do not even consistently decrease the training loss in expectation,
even though SGD steps with a smaller learning rate or larger batch size would consistently decrease
the loss in expectation. We view this experiment as evidence that SGD on neural networks may
behave more similar to gradient descent at the Edge of Stability than to classical analyses of SGD as
in Bottou et al. [5]. Second, much like how the learning rate in gradient descent implicitly constrains
the sharpness along the optimization trajectory, the experiments in Jastrzebski et al. [22] indicate
that a similar phenomenon may be at play during SGD, though SGD seems to implicitly constrain
not just the sharpness but also the variance of the stochastic gradients. For SGD, we currently lack
a precise quantitative understanding of this implicit bias. A fascinating open problem is whether
SGD satisfies some “steady state” condition analogous to the sharpness ≈ 2/η rule that we have
identified for full-batch gradient descent.
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Appendix A. Experiments

We now demonstrate our main point across different architectures, activation functions, loss func-
tions, and tasks, and on networks both with and without batch normalization. Across all of these
training setups, we will show that if the initial sharpness is less than 2/η, then the sharpness will
tend to continually rise during training (progressive sharpening) until gradient descent reaches the
Edge of Stability, a regime where the sharpness hovers right at (or just above) 2/η and the training
loss behaves non-monotonically. Training loss curves (and accuracies) are plotted in Appendix G.

In the first row of Figure 5, we demonstrate that our findings hold across several different ar-
chitectures — a ReLU CNN, a tanh CNN, and a ReLU fully-connected network — trained using
the square loss on a subset of 5k examples from CIFAR-10. In the second row, we demonstrate that
our findings hold for the more commonly-used cross-entropy loss, the only difference being that

Figure 5: Our findings hold across a diverse range of settings. We train networks using gradient
descent and measure the sharpness at regular intervals during training. Each color is a
different learning rate η. The horizontal dashed line marks the value 2/η. See Appendix
G for plots of the train loss and train/test accuracies and additional commentary.
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the sharpness starts to decrease towards the end of training. (Here we cease training once the loss
reaches 0.05, but if training were allowed to run longer, the sharpness would continue to drop.) In
the third row, we verify that our findings hold on the full CIFAR-10 dataset, using three small-ish
architectures (where we don’t train to completion). Figure ?? shows the same point for the larger,
realistic VGG-11 architecture (where we do). In the experiments on full CIFAR-10, we compute
the sharpness on a subsampled set of 5k datapoints.

Batch normalization [17] is known to have unusual optimization properties [28], so it is natural
to wonder whether batch-normalized (BN) networks still operate at the Edge of Stability. The
fourth row of Figure 5 demonstrates that the sharpness in BN networks behaves exactly the same
under gradient descent as it does in non-BN networks. (As is standard practice, we use ghost
batch normalization [15] to make full-batch gradient descent feasible with limited GPU memory.)
Appendix E reconciles this finding with Santurkar et al. [42].

Finally, in the fifth row of Figure 5, we demonstrate that our results hold on settings beyond
image classification: a Transformer trained on the WikiText-2 language modeling task; a deep linear
network trained on synthetic isotropic data; and a one-hidden-layer tanh network trained on a toy
one-dimensional regression problem.

11
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Appendix B. Stochastic Gradient Descent

We have demonstrated that during full-batch gradient descent with step size η, the sharpness rises
until reaching the maximum stable sharpness 2/η, where it approximately remains for the duration
of training. Unfortunately, prior work has shown that the evolution of the sharpness during SGD is
not as easily characterized. On the one hand, just like with gradient descent, the learning rate seems
to affect the sharpness along the optimization trajectory, with larger learning rates (as well as smaller
batch sizes) steering SGD towards less sharp regions of the loss landscape [21, 22]. On the other
hand, in behavior different from gradient descent, during SGD the sharpness sometimes does not
equilibrate at any steady-state value, much less one that we can numerically predict; for example,
in Figure 5(a) of Jastrzebski et al. [22], one can see that the sharpness gradually drifts downwards
during SGD training. We suspect that this is partly because the sharpness does not directly affect
the stability of SGD unless one makes the strong assumption that the Hessian and the covariance
matrix of per-example gradients share a leading eigenvector, as in Jastrzebski et al. [22].

That said, we do suspect that there may exist some sense in which SGD, too, operates at the
Edge of Stability. In particular, we now demonstrate that SGD seems to “acclimate” to the learning
rate and batch size in such a way that an actual step sometimes increases and sometimes decreases
the loss in expectation, yet a step with a larger learning rate or smaller batch size would almost
always increase the loss in expectation, and a step with a smaller learning rate or a larger batch size
would almost always decrease the loss in expectation.

In Figure 6, we train the ELU network from Section 2 using SGD with learning rate 0.01 and
batch size 32. We periodically compute the training loss (over the full dataset) and plot these on
the left pane of Figure 6. Observe that the training loss does not decrease monotonically, but of
course this is not surprising — SGD is a random algorithm. However, what may be more surprising
is that SGD is not even decreasing the training loss in expectation. On the right pane of Figure
6, every 500 steps during training, we use the Monte Carlo method to approximately compute the
expected change in training loss that would result from an SGD step (the expectation here is over
the randomness involved in selecting the minibatch). Observe that at many points during training,
an SGD step would decrease the loss (as desired) in expectation, but at other points, and SGD step
would increase the loss in expectation.

In Figure 7(a), during training of the same network, we compute the expected change in training
loss that would result from taking an SGD step with the same learning rate used during training,
but half the batch size used during training (i.e. 16). We observe that an SGD step with half the
batch size would consistently cause an increase in the training loss in expectation. In Figure 7(b)
we repeat this experiment, but with twice the batch size used during training (i.e. 64). Notice that
an SGD step with twice the batch size would consistently cause a decrease in the training loss in
expectation. In Figure 7(c) and (d) repeat this experiment with the learning rate; we observe that
an SGD step with a larger learning rate would consistently increase the training loss in expectation,
while an SGD step with a smaller learning rate would consistently decrease the training loss in
expectation.

To be clear, there was nothing special in absolute terms about the hyperparameters we used.
In Figure 8(a), we train the same network with learning rate 0.01 and batch size 16 and evaluate
the expected loss change during training. Observe that some steps increase the loss in expectation,
while others decrease the loss in expectation. Figure 8(b)-(d) repeats this experiment with: (b)
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learning rate 0.01 and batch size 64, (c) learning rate 0.02 and batch size 32, and (d) learning rate
0.005 and batch size 32.

We view this experiment as evidence that SGD on neural networks behaves more similar to
gradient descent at the Edge of Stability, than to conventional analyses of SGD like the ones in
Bottou et al. [5].
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Figure 6: SGD does not consistently decrease the training loss in expectation. We train the
ELU network from section 2 using SGD with learning rate 0.01 and batch size 32. At
regular intervals during training, we compute (left) the full-batch training loss, and (right)
the expected change in the full-batch training loss (where the expectation is over the
randomness in sampling the minibatch). Strikingly, note that after the very beginning
of training, the expected loss change is sometimes negative (as desired) but oftentimes
positive. See Figure 7.
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Figure 7: An SGD step with a smaller learning rate or a larger batch size than the ones used
during training would consistently decrease the loss in expectation. At regular inter-
vals during the training run depicted in Figure 6 (with η = 0.01 and batch size 32), we
measure the expected change in the full-batch training loss that would result from an SGD
step with a different learning rate or batch size. Observe that taking an SGD step with a
smaller learning rate or a larger batch size would consistently have decreased the loss in
expectation, while taking an SGD step with a larger learning rate or a smaller batch size
would have consistently increased the loss in expectation.

13



GRADIENT DESCENT ON NEURAL NETWORKS TYPICALLY OCCURS AT THE EDGE OF STABILITY

0 5000 1000015000200002500030000
SGD step

ex
pe

ct
ed

 lo
ss

 c
ha

ng
e

0.5x batch size

0 5000 10000 15000 20000
SGD step

ex
pe

ct
ed

 lo
ss

 c
ha

ng
e

2x batch size

0 5000 10000 15000
SGD step

ex
pe

ct
ed

 lo
ss

 c
ha

ng
e

2x learning rate

0 10000 20000 30000
SGD step

ex
pe

ct
ed

 lo
ss

 c
ha

ng
e

0.5x learning rate

Figure 8: There is nothing special about the hyperparameters we have used. Figure 6 showed
that if we train a network with η = 0.01 and batch size 32, the train loss does not con-
sistently decrease in expectation, yet 7(b) showed that at every point during training that
network, an SGD step with batch size 64 would have decreased the loss in expectation.
A natural question is what would have happened had we trained with η = 0.01 and batch
size 64. Figure 8(b) demonstrates that the train loss would not consistently decrease in
expectation. The other panes are analogous.

Appendix C. Stability of gradient descent on quadratic functions

This appendix describes the stability properties of gradient descent (and its momentum variants)
when optimizing the quadratic objective function

f(x) =
1

2
xTHx + gTx + c (2)

starting from the initialization x0 = 0. Our notation is intentionally chosen to resemble a second-
order Taylor approximation.

To review, vanilla gradient descent is defined by the iteration:

xt+1 = xt − η∇f(xt).

Meanwhile, gradient descent with Polyak (also called “heavy ball”) momentum [14, 36, 44] is
defined by the iteration:

vt+1 = βvt − η∇f(xt)

xt+1 = xt + vt+1

where vt is a “velocity” vector and 0 ≤ β < 1 is the momentum coefficient. For β = 0 the
algorithm reduces to vanilla GD.

Finally, Nesterov momentum Goodfellow et al. [14], Sutskever et al. [44] is an adaptation of
Nesterov’s accelerated gradient [32] for deep learning defined by the iteration:

vt+1 = βvt − η∇f(xt + βvt)

xt+1 = xt + vt+1

where vt is a “velocity” vector and 0 ≤ β < 1 is the momentum coefficient. For β = 0 the
algorithm reduces to vanilla GD.

All three of these algorithms share a special property: on quadratic functions, they act indepen-
dently along each Hessian eigenvector. That is, if we express the iterates in the Hessian eigenvector
basis, then in this basis the coordinates evolve independent from one another under gradient descent.
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Proposition 1 Consider running vanilla gradient descent on the quadratic objective (2) starting
from x0 = 0. Let q be the leading eigenvector of H and let λ be the sharpness. (Assume that
λ > 0.) Then the sequence {qTxt} will diverge iff λ > 2/η.

Note that in the main text, we referred to qTxt as ∆t.
Proof The update rule for gradient descent on this quadratic function is:

xt+1 = (I− ηH)xt − ηg.

Therefore, the quantity qTxt evolves under gradient descent as:

qTxt+1 = (1− ηλ)qTxt − η qTg

Define x̃t = qTxt + 1
λq

Tg, and note that {qTxt} diverges if and only if {x̃t} diverges.
The quantity x̃t evolves under gradient descent according to the simple rule:

x̃t+1 = (1− ηλ)x̃t

The sequence x̃t will diverge iff |1 − ηλ| > 1. Since η > 0 and λ > 0, it is impossible for
1− ηλ > 1, so x̃t diverges if and only if 1− ηλ < −1 ⇐⇒ λ > 2/η.

Remark: to recover the formula given in the main text for the evolution of qTxt, note that
qTxt = x̃t − 1

λq
Tg = (1− ηλ)tx̃0 − 1

λq
Tg = ((1− ηλ)t − 1)( 1

λq
Tg).

We now prove analogous results for Nesterov and Polyak momentum.
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Theorem 2 Consider running Nesterov momentum on the quadratic objective (2) starting from
x0 = 0. Let q be the leading eigenvector of H and let λ be the sharpness. (Assume that λ > 0.)
Then the sequence {qTxt} will diverge iff λ > 1

η

(
2+2β
1+2β

)
.

Proof The update rules for Nesterov momentum on this quadratic function are:

vt+1 = β(I− ηH)vt − ηg − ηHxt

xt+1 = xt + vt+1.

Define x̃t = qTxt + 1
λq

Tg and ṽt = qTvt. Note that qTxt diverges iff x̃t diverges.
The quantities x̃t and ṽt evolve under Nesterov momentum as:

ṽt+1 = β(1− ηλ)ṽt − ηλx̃t
x̃t+1 = x̃t + ṽt+1

By noting that ṽt = x̃t − x̃t−1, we can rewrite this as a recurrence in x̃:

x̃t+1 = x̃t + β(1− ηλ)(x̃t − x̃t−1)− ηλx̃t
= (1− ηλ)(1 + β)x̃t − β(1− ηλ)x̃t−1

This is a linear homogenous second-order difference equation. By Theorem 2.37 in Elaydi [10],
since λ > 0 and η > 0 and β < 1, this recurrence diverges if and only if λ > 1

η

(
2+2β
1+2β

)
.

The following result previously appeared in Goh [13].

Theorem 3 Consider running Polyak momentum on the quadratic objective (2) starting from x0 =
0. Let q be the leading eigenvector of H and let λ be the sharpness. (Assume that λ > 0.) Then the
sequence {qTxt} will diverge iff λ > 1

η (2 + 2β).

Proof The update rules for Polyak momentum on this quadratic function are:

vt+1 = βvt − ηHxt − ηg
xt+1 = xt + vt+1.

Define x̃t = qTxt + 1
λq

Tg and ṽt = qTvt. Note that qTxt diverges iff x̃t diverges.
The quantities x̃t and ṽt evolve under Polyak momentum as:

ṽt+1 = βṽt − ηλx̃t
x̃t+1 = x̃t + ṽt+1.

By noting that ṽt = x̃t − x̃t−1, we can rewrite this as a recurrence in x̃:

x̃t+1 = x̃t + β(x̃t − x̃t−1)− ηλx̃t
= (1 + β − ηλ)x̃t − βx̃t−1.
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This is a linear homogenous second-order difference equation. By Theorem 2.37 in Elaydi [10],
since λ > 0 and η > 0 and β < 1, this recurrence diverges if and only if λ > 1

η (2 + 2β).

None of these three results have used the fact that (q, λ) are the leading eigenvector and eigen-
value; they would also apply to any eigenvector/eigenvalue pair (qi, λi). Thus, along any direction
of positive curvature (i.e. λi > 0), gradient descent (vanilla, or with Polyak/Nesterov momentum)
diverges iff λi is strictly larger than some threshold, and converges iff λi is strictly smaller than that
threshold. If the quadratic is convex (i.e. H � 0), this means that gradient descent will converge to
the solution iff the sharpness is strictly less than that threshold, and will diverge iff the sharpness is
strictly greater than that threshold.

If H has negative eigenvalues, then gradient descent (with a positive step size) will diverge along
the directions of negative curvature. Of course, neural network training Hessians do have negative
eigenvalues [11, 40], yet gradient descent does not diverge during normal training. The reason may
be that the directions of negative curvature are somewhat illusory: Alain et al. [2] walked along
directions of negative curvature, and found that the negative curvature did not last for very long,
whereas the directions of most positive curvature lasted for longer. In other words, the quadratic
Taylor approximation was accurate over greater distances for the directions of positive curvature
than for the directions of negative curvature.
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Appendix D. Infinite Width Limits

In this appendix, we conduct an experiment which aims to reconcile progressive sharpening with
the theory of infinite-width neural networks. It is well-known that, under a certain network param-
eterization and initialization, when training infinitely wide neural networks using gradient flow or
gradient descent with sufficiently small step sizes, the parameters move almost no distance from
their initial position, and therefore the Hessian does not change from initialization [18, 19, 25].
Accordingly, one might hypothesize that progressive sharpening might attenuate as networks (with
NTK parameterization) become increasingly wide.

We consider fully-connected networks under the NTK parameterization [25] with two hidden
layers and tanh activations. We consider networks with widths 100, 200, 400, and 800. We train
these four networks on the Fashion-MNIST dataset using the cross-entropy loss, with a small learn-
ing rate (aiming to mimic gradient flow). We use the same learning rate for each network (this is
sensible under the NTK parameterization). We stop each network when the loss reaches a certain
threshold.

In Figure 9(b), we plot the sharpness by iteration. One can see that sharpening happens quicker
for the narrow networks than for the wider networks. However, there is a confounding factor: as can
be seen from Figure 9(a), the narrower networks train faster. To remove this confounding factor, in
Figure 9(c), we plot sharpness as a function of train loss. Here one can clearly see that at every train
loss, the narrower (resp: wider) networks have a higher (resp: lower) sharpness. This observation
aligns with NTK theory.
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Figure 9: Under the NTK parameterization, wider networks find a less-sharp solution for any
given value of the training loss.
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Appendix E. Reconcling our results with Santurkar et al. [42]

In this appendix, we reconcile the apparent contradiction between our results and those of the well-
known work Santurkar et al. [42].

Aiming to explain the effectiveness of batch normalization (BN), Santurkar et al. [42] conjec-
tured that BN smooths the optimization landscape, in three different senses of the word “smooth”:

1. BN improves the Lipschitzness of the objective function along the optimization trajectory.
To demonstrate this, at regular intervals during training, Santurkar et al. [42] measured the
change in loss that would arise from taking a step in the negative gradient direction. (Note
that the step size used here was different from the training step size.) Note that this step size
was larger than the step size used during training — in their Figure 4(a), it was larger by 4x;
in their Figure 9(a), it was larger by 3 · 107x.

2. BN improves the gradient predictiveness of the objective function along the optimization
trajectory. Here, gradient predictiveness is defined as the `2 distance between the gradient
at the current iterate, and the gradient after taking a very large step in the negative gradient
direction. To demonstrate this, Santurkar et al. [42] measured the gradient predictiveness at
regular intervals during training.

3. BN improves the effective smoothness along the optimization trajectory, defined as the Lip-
schitz constant of the gradient in the direction of the negative gradient. Given an objective
function f , an iterate θ, and a step size α, the effective smoothness is defined as

sup
γ∈[0,α]

‖∇f(θ)−∇f(θ − γ∇f(θ))‖2
‖γ∇f(θ)‖2

.

To demonstrate this, Santurkar et al. [42] measured the effective smoothness at regular inter-
vals during training.

Note that Santurkar et al. [42] did not conjecture that BN improves the L-smoothness (a.k.a
decrease the sharpness) along the optimization trajectory — only that BN improves the effective
smoothness, which is the L-smoothness in the negative gradient direction.

Our main paper demonstrates that BN does not improve the L-smoothness along the optimiza-
tion trajectory, at least for full-batch gradient descent. During gradient descent with step size η, for
both BN and non-BN networks, if the sharpness is less than 2/η, then the sharpness eventually rises
to approximately 2/η, where it remains for the duration of training. Thus, in the long run, for both
BN and non-BN networks, the smoothness settles at approximately the same value — and moreover,
this is precisely the value that voids the descent lemma (and arguments based on L-smoothness).

Moreover, we now demonstrate that BN does not improve the effective smoothness either (at
least during full-batch gradient descent). In Figure 10, we train a ReLU CNN both with (top row)
and without (bottom row) batch normalization, at the same grid of learning rates, using the cross-
entropy loss on a subset of 5k examples from CIFAR-10. (For the BN network we use ghost batch
normalization with two ghost batches of size 2,500, since a batch with all 5k examples does not
fit into GPU memory.) We measure both the sharpness/smoothness and the effective smoothness
at regular intervals during training. (We numerically evaluate the sup in the definition of effective
smoothness using a grid of 10 evenly spaced points.) Observe that for each learning rate, the effec-
tive smoothness behaves similar to the smoothness: it rises to 2/η and then remains approximately
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there, until the end of training, when both values drop because we are using the cross-entropy loss.
Thus, BN does not improve the effective smoothness along the optimization trajectory. Despite this,
one can see that the BN network trains substantially faster than the non-BN network.
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Figure 10: Batch normalization does not improve the smoothness or the effective smoothness
along the optimization trajectory.

Note that this finding is actually consistent with Figure 4(c) and Figure 11(d) in Santurkar
et al. [42], which are meant to show, respectively, that both BN and their `p normalization schemes
improve effective smoothness on a VGG network. These two plots show that for both BN and non-
BN networks trained using SGD with step size η = 0.1, the effective smoothness hovers around
the value 20 = 2/η, which is exactly what we observe. Their plots do show that the effective
smoothness behaves more regularly for the batch-normalized network than for the non-BN network.
But we strongly disagree with their interpretation of these two figures as demonstrating that BN
improves the effective smoothness during training.

The third and final piece of evidence in Santurkar et al. [42] for the conjecture that BN improves
the effective smoothness is their Figure 9(c), which shows that BN improves the effective smooth-
ness on a deep linear network. For this figure, the step size α used in their computation of effective
smoothness was larger than the training step size η by a factor of 3 · 107. (For the VGG network, α
was larger than η by a factor of 4.) The effective smoothness at this massive distance has no bearing
on training.
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Appendix F. Experimental details

F.1. Tasks

We used the following tasks:

• CIFAR-10 [24]: we standardize each channel by subtracting the mean and dividing by the
standard deviation.

• CIFAR-10 5k: this is a subset of CIFAR-10 of size 5,000. In particular, we retain every 10-th
train example.

• Wikitext-2: this is a language modeling dataset. We use bptt = 35, i.e. we predict text
in contiguous blocks of 35 words. We use only the first 4970 (it is divisible by 35) training
examples in the dataset.

• Deep linear network task: The task is to map the matrix X ∈ Rn×d =
[
x1, . . . , xn

]T
to the matrix Y ∈ Rn×d =

[
y1, . . . , yn

]T using a deep linear network f : Rd → Rd that
consists of a stack of L matrices each of size d× d. Error is measured using the squared loss:
1
n

∑n
i=1 ‖f(xi)− yi‖22.

We use n = d = 50. We generate X as a random whitened matrix (i.e. 1
nX

TX = I) and
generate Y = XAT , where A ∈ Rd×d is a random matrix of standard Gaussians.

To generate X as a random whitened matrix, we sample a 50 × 50 matrix of standard Gaus-
sians, then we let X be

√
50 times the Q factor in the QR factorization of that matrix.

• Toy regression task: This is a one-dimensional regression task using the square loss. We
sample 20 datapoints uniformly spaced between −1 and 1, and we label these datapoints
noiselessly using the Chebyshev polynomial of degree 5. The dataset is plotted in Figure 11.
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Figure 11: The dataset for the toy one-dimensional regression task.
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F.2. Architectures

• VGG-11 (no BN): we took the VGG-11 sized for CIFAR-10 available at https://github.
com/chengyangfu/pytorch-vgg-cifar10, and we removed the dropout layers. In
Figure ??, we “warm-started” optimization by running GD for 400 iterations at learning rate
0.02. The reason we do this is that loss landscape is very flat at initialization, and if we did
not do this, the network trained at, say, η = 0.00125 would basically not budge for the first
several thousand iterations of training.

• VGG-11 (BN): same as above (though we do not need to warm start training). Since GPUs
do not have enough memory to do a full-batch step, we use ghost batch normalization [15]
with 50 ghost batches of size 1,000.

• ReLU CNN: The PyTorch code for this network is:

nn.Sequential(
nn.Conv2d(3, 32, bias=True, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, bias=True, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(2048, 10, bias=True)

)

We use the default PyTorch initialization.

• ReLU CNN (BN) Same as the ReLU CNN, but we insert a nn.BatchNorm2d layer after
each ReLU. We use 2 ghost batches of size 2,500 each.

• Tanh CNN and Tanh CNN (BN): same as the ReLU CNN, except we use the tanh activation
instead of ReLU.

• ReLU fully-connected network The PyTorch code for this network is:

nn.Sequential(
nn.Linear(3072, 100, bias=True),
nn.ReLU(),
nn.Linear(100, 100, bias=True)
nn.ReLU(),
nn.Linear(100, 10, bias=True)

)

We use the default PyTorch initialization.

• Tanh fully-connected network: Same as the ReLU fully-connected network, but with tanh
activations.
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• ELU fully-connected network: Same as the ReLU fully-connected network, but with ELU
activations, and with hidden layer size 200 rather than 100. (There is no nefarious reason for
the difference in hidden layer size; we just ran the ReLU and tanh experiments first, and then
decided to make the network more overparameterized.)

• Deep linear network: this is a deep linear network with 20 layers, each a 50 × 50 matrix.
We initialize each matrix using Xavier initialization: each entry is drawn from N (0, 1

50).

• Toy 1d tanh network: The PyTorch code for this network is:

nn.Sequential(
nn.Linear(1, 100, bias=True),
nn.Tanh(),
nn.Linear(100, 1, bias=False),

)

We initialize using Xavier initialization.

• Transformer: we use the Transformer from the Pytorch language modeling tutorial: https:
//github.com/pytorch/examples/tree/master/word_language_modelwith
ninp=200, nhead=2, nhid=200, nlayers=2, dropout=0.
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Appendix G. Complete Experiment Plots

In this section, we present complete plots for the experiments described in Section ??. The purpose
of these experiments is to demonstrate the following points:

1. When sharpness is less than 2/η, gradient descent has an overwhelming tendency to increase
the sharpness (progressive sharpening).

2. So long as the sharpness is less than 2/η, gradient descent at different learning rates roughly
follows the same path, just at different speeds. This is because gradient descent is roughly
tracking the gradient flow trajectory (see the animation in Bach [4] for a visualization of what
we mean). The way we demonstrate this is by plotting the train loss and the sharpness by
time; when plotted by time, the sharpness and training loss of GD at different learning rates
almost exactly coincide.

3. If the sharpness rises to 2/η (see the caveat below), gradient decent subsequently enters the
Edge of Stability, a regime where (1) the training loss typically behaves non-monotonically,
and (2) the sharpness hovers right at, or just above, the value 2/η, rather than increasing
further.

4. For sufficiently small learning rates η, gradient descent can terminate before the sharpness
reaches 2/η. We will demonstrate that these small learning rates are highly suboptimal in
terms of convergence speed — therefore, we say that they are not “reasonable.”

On some problems, it is feasible to actually train to completion at these small learning rates.
In this case, our experiments demonstrate that larger learning rates (which enter the Edge of
Stability) train faster. On other problems, sharpening seems to occur so rapidly that training
to completion at these small learning rates is not a practical experiment for us to run; however,
our gradient flow thought experiment from section 2 implies that these small learning rates
should exist.

There is one slight caveat. On a few optimization problems (e.g. Figure 24), we observe that the
gradient descent enters the Edge of Stability regime when the sharpness is a little bit smaller than
2/η. This is because we are only measuring the sharpness right at the iterates themselves. However,
if the sharpness in between the iterates (which we do not measure) exceeds 2/η, then it is possible
for a gradient step to increase the training loss, and for gradient descent to become destabilized.

Note that a common pattern in our plots (visible in Figure ??) is for the train loss to spike right
when the sharpness first crosses 2/η, and then appear to decrease monotonically for a while before
later turning non-monotonic. Here is what is going on: after the sharpness first crosses 2/η, only
the leading Hessian eigenvalue is greater than 2/η, and the others are less than 2/η. During this
period, the training loss is actually behaving non-monotonically, but the non-monotonicity is very
slight: often the training loss follows a sawtooth pattern where every other step slightly increases
the loss. While this is happening, the second-largest eigenvalue is steadily increasing. (Sharpening
also occurs with non-leading eigenvalues.) Once the second-largest eigenvalue crosses 2/η, then
the major non-monotonicity ensues.
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Figure 12: ReLU CNN trained with square loss on 5k subset of CIFAR-10. (1) For the blue
learning rate, the initial sharpness was greater than 2/η, so gradient descent catapulted
at the beginning of training (which is why the blue train loss doesn’t coincide with the
others when plotted by time). (2) When we plot the sharpness by time, the red and green
dots almost (but not exactly) overlap before the green one enters the Edge of Stability,
the red and green learning rates are roughly following the same path.
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Figure 13: Tanh CNN trained with square loss on 5k subset of CIFAR-10. The blue learning
rate is large enough that the initial sharpness was greater than 2/η.
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Figure 14: ReLU fully-connected network trained with square loss on 5k subset of CIFAR-10..
Here we use the cross-entropy loss, so the sharpness drops near the end of training.
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Figure 15: ReLU CNN trained with cross-entropy on 5k subset of CIFAR-10.
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Figure 16: Tanh CNN trained with cross-entropy on 5k subset of CIFAR-10.
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Figure 17: ReLU fully-connected network trained with cross-entropy on 5k subset of CIFAR-
10.
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Figure 18: ReLU CNN trained with cross-entropy on full CIFAR-10.
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Figure 19: Tanh CNN trained with cross-entropy on full CIFAR-10.
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Figure 20: ReLU fully-connected network trained with cross-entropy on full CIFAR-10.
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Figure 21: VGG-11 (no BN) trained with cross-entropy on full CIFAR-10.
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Figure 22: ReLU CNN (with BN) trained with cross-entropy on full CIFAR-10. Note that at the
beginning of training, the sharpness decreases for a short while. This is why we phrase
progressive sharpening as an “overwhelming tendency” for the sharpness to increase
during gradient flow, not a hard-and-fast rule.

29



GRADIENT DESCENT ON NEURAL NETWORKS TYPICALLY OCCURS AT THE EDGE OF STABILITY

0 1000 2000 3000 4000 5000
iteration

0

1

2

lo
ss

train loss by iteration
= 0.01
= 0.005
= 0.0025

0 1000 2000 3000 4000 5000

200

400

600

800

sharpness by iteration

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train accuracy

0 2 4 6
time

1.0

1.5

2.0

2.5

lo
ss

train loss by time

0 2 4 6

200

400

600

800

sharpness by time

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

test accuracy

Figure 23: Tanh CNN (with BN) trained with cross-entropy on full CIFAR-10.
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Figure 24: VGG-11 (with BN) trained with cross-entropy on full CIFAR-10. The red learning
rate enters the Edge of Stability when the sharpness directly on the gradient descent
trajectory is slightly less 2/η; we have verified that during this period, the sharpness in
between iterates exceeds 2/η.
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Figure 25: Transformer trained on a subset of the WikiText-2 language modeling dataset.
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Figure 26: Deep linear network trained on isotropic Gaussian data.
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Figure 27: Tanh fully-connected network with one hidden layer trained on toy 1-dimensional
regression task.

Figure 28: Additional learning rate drop experiments. If we cut the learning rate while the net-
work is at the Edge of Stability, then progressive sharpening resumes until the network
is once again at the Edge of Stability. (These networks are trained on the full CIFAR-10
dataset.)
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