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Abstract
Distributed centralized learning refers to a class of machine (deep) learning algorithms that enable
a group of collaborative learning agents to train models using a dataset distributed among them
with the aid of a central parameter server. Recently, decentralized learning algorithms which are
independent of the central parameter server have demonstrated state-of-the-art results. However, an
essential requirement to achieve such performance has been balanced distribution (among classes)
of data among the agents, referred to as iid data. In real-life applications, having a precise iid
distribution of data among the agents is often not feasible. We propose a Local Gradient Aggregation
(LGA) that is a decentralized learning algorithm, where each agent collects the gradient information
from its neighboring agents and updates its model with a projected gradient. We demonstrate
the efficacy of LGA on non-iid data distributions on benchmark datasets. By comparing against
state-of-the-art decentralized algorithms, we show that our algorithm achieves the highest accuracy
rate on non-iid data distribution while preserving the iid counterpart’s performance.

1. Introduction
Distributed machine learning refers to algorithms focused on learning from data distributed among

many agents using distributed optimization schemes. Researchers have designed distributed deep
learning algorithms with several approaches including: centralized learning (also known popularly as
Federated Learning, FL) [6, 17], decentralized learning [15, 19], gradient compression [1, 25] and
Coordinate updates [20, 21]. In this paper, we study two aspects of distributed deep learning:

Decentralized learning: While having a central parameter server is acceptable in data center type
applications, in certain use cases such as learning over a robotic network, continuous communication
with a central parameter server is often not feasible. Several decentralized learning algorithms
have been proposed to address this concern, where agents directly interact with each other (their
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neighbors) without a central parameter server. Recent contributions in decentralized learning have
been made with the aid of gossip averaging algorithms [3, 8, 32]. Combining SGD with gossip
averaging algorithm, [15, 24, 33] proposed effective algorithms. In another line of work, researchers
proposed utilizing compression techniques to achieve a consensus model [9, 28]. Around the same
time, Assran et al. [2] proposed SGP algorithm which converges at the same sub-linear rate as SGD
and SwarmSGD was proposed by Nadiradze et al. [18], which leverages random interactions between
participating agents in a graph to achieve consensus.

Learning to cope with non-iid data: Researchers have found empirically and shown analytically
that decentralized learning algorithms achieve comparable performance to its centralized counterpart
under the so-called iid (independently and identically distributed) assumption. However, in real life
application, such an assumption is difficult to satisfy. Li et al. [14] analytically showed the limitations
with FedAvg on non-iid data. Li et al. [13] proposed a variant of FL by adding a penalty term in
the local objective function. Motivated by life-long learning, Shoham et al. [26] proposed FedCurv
by adding a penalty term to the local loss function using the Fisher information matrix. In another
research study, Zhao et al. [34] proposed FedAvg-EMD utilizing the earth mover’s distance (EMD)
as a metric to quantify the distance between the data distribution on each client and population
distribution. Also, FedNova was proposed in which they use a normalized gradient in the update
law of FedAvg [31]. Similar to the case of decentralized learning, compression techniques [22, 23],
momentum variant of algorithms [12, 30], the use of adaptive gradients [29], and use of controllers
in agent’s and server’s models [7] are also used in centralized learning for coping with non-iid data.
Although several FL approaches can handle departure from the iid assumption, there is still a gap in
decentralized learning [4]. To overcome this issue, we are proposing the Local Gradient Aggregation
(LGA) algorithm and show its effectiveness in learning models in a decentralized manner from both
iid and non-iid data distributions. Inspired by continual learning literature [16], we are devising an
algorithm which in each step of training, collects the gradient information from each agent’s model
on all other agent’s datasets and projects them into a single gradient which is then used to update
the model. We interpret the algorithm and analytically show how to obtain such an optimal local
gradient using quadratic programming (QP). Finally, we empirically validate the performance of our
algorithm. We then compare the effectiveness of our algorithm with the state-of-the-art and show
that we can achieve higher accuracy in learning from non-iid data.

2. Problem Formulation
In this section, we describe the decentralized distributed learning framework. Following that, we

propose the Local Gradient Aggregation (LGA) method for decentralized distributed learning.

2.1. Distributed Empirical Risk Minimization
The standard (unconstrained) empirical risk minimization problem which is used in a generic

deep learning problem can be represented as:

min
1

n

n∑
i=1

f i(x), (1)

where x ∈ Rd denotes the set of parameters of deep learning model and f : Rd → R is a
prescribed loss function, f i is the function value corresponding to a data point i, and the set D
represents the training dataset with n as the total number of data samples (n = |D|).

In decentralized learning setting, we have N agents (N > 1) and each agent j has a subset
of training data, Dj , j ∈ {1, . . . , N}. There are nj samples in each of the subsets Dj . Also,
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we assume that
∑N

j=1 nj = n. We also construct a set for (j, l) ∈ {1, . . . , N} × {1, . . . , N} to
represent all the pairs of agent communications possible in the communication network. This is
often formulated using a communication graph topology [10], where agents represent the vertices
of the graph and the set (j, l) represents the edges of the graph. In this paper, we represent this set
as C := {(j, l) ∈ {1, . . . , N} × {1, . . . , N}}. Throughout the rest of analysis, we assume that the
graph is undirected and static. We now reformulate Eq. 1 as:

min f(x) =
N∑
j=1

∑
i∈Dj

f i(xj) :=
N

n

N∑
j=1

fj(x
j); s.t. xj = xl ∀ (j, l) ∈ C (2)

where, fj(x) = 1
N f(x) represents the empirical loss specific to jth agent.

2.2. Limitations in Existing Update Laws
The optimization problem in Eq. 2 has been solved using numerous proposed techniques, and

some have been covered in the related works. Generically, they can be summarized into three
categories: parameter consensus, gradient consensus, and both. Next, discuss why the performance
of most of these existing algorithms degrades when the assumption that Dj is the independently and
identically distributed (IID) is violated. We denote by φ(·) the implicit core update law for each xj .
Thus, the following expressions show respectively, three categories:

• Parameter consensus:xjk = φ(
∑

l πjlx
l
k−1,∇fj(x

j
k−1, ζk))

• Gradient consensus: xjk = φ(xjk−1,
∑

l πjl∇fl(xlk−1, ζk))

• Both: xjk = φ(
∑

l πjlx
l
k−1,

∑
l πjl∇fl(xlk−1, ζk))

where πjl is the j-th row and l-th column element of a doubly stochastic matrix Π, ζk is the random
seed at time step k realized by randomly selecting a mini-batch of samples. These three categories
typically can perform well when Dj is IID, regardless of different convergence rates. However, in
most real-world problems, the IID assumption has rarely possible. From a local agent’s perspective,
non-IID data makes a significant impact on local parameters and gradients. Thus, utilizing the
parameter consensus scheme could get stuck with bad local minima. Though the gradient consensus
may reduce the variance, the optimal solution obtained using this approach can be biased as xjk−1
is quite different for j ∈ {1, ..., N}. Combining both parameter consensus and gradient consensus
is beneficial for getting better local optima due to the reduction of variance and bias, but still, the
local gradient can have a negative impact such that the direction of

∑
l πjl∇fl(xlk−1, ζk) may not be

the optimal one for xjk. To mitigate these issues, we take a different viewpoint on finding the local
optimal gradient for each agent, motivated by the recent advances in continual learning.

2.3. Inspiration From Gradient Episodic Memory
Lopez-Paz and Ranzato [16] perceived the problem of continual learning involving several

tasks, which lead to a data distribution shift, from the perspective of gradient episodic memory by
formulating a constrained optimization problem.

Specifically, they solved the following problem once observing a new sample at time k, s,

minx f(s;x), s.t. f(Mt;x) ≤ f(Mt;xk−1) ∀t < k, (3)

whereMt signifies the previous tasks, xk−1 indicates the model state at the end of learning of task
k − 1. To solve the above problem efficiently, the authors first assume that the function is locally
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linear due to the small optimization steps and then diagnose the increase in previous tasks’ loss by
computing angle between the gradient vectors. Hence, the following relationship can be obtained as

〈g, gt〉 := 〈∂f(s;x)

∂x
,
∂f(Mt;x)

∂x
〉 ≥ 0, ∀t < k. (4)

Two scenarios are taken into account for Eq. 4. If all inequalities are satisfied, g is the correct direction
to update x. If one or more inequalities are violated, at least one previous task will experience an
increase in loss after the parameter update. One intuitively simple correction is to find another
gradient vector g̃ that is closest to the proposed initially one g satisfy the inequality constraint, which
can be realized by solving a quadratic programming (QP) problem. Hence, the optimization problem
Eq. 3 has been turned equivalently into a bi-level optimization problem that aims at finding the best
model parameter, which also enables the continuous loss descents over tasks. Comparing the data
distribution shifts in the continual learning with the non-IID data distributions in the decentralized
learning, we can leverage the techniques into the decentralized learning framework by finding the
local optimal gradient for each local model. Thus, we present the proposed algorithm in the next
section, followed by a detailed analysis of the algorithm interpretation.

3. Local Gradient Aggregation Algorithm for Distributed Deep Learning
We introduce the following definitions to characterize the analysis.

Definition 1 Given a dataset Dj , an differentiable objective function f j , and model parameter xj ,
a self-gradient is defined asgjj := ∇xjf j(Dj ;x

j);; given a dataset Dl, an differentiable objective
function f l, and model parameter xj , a cross-gradient is defined as gjl := ∇xjf l(Dl;x

j).

Note that in the following gjj and gjl are calculated as stochastic gradients. Based on the formulation
discussed in the last section, we devise the LGA algorithm suitable for distributed deep learning. In
this algorithm, xj is the model parameter for each agent j, which is initialized along with Dj . K is
the number of iterations, α is the step size, and N is the number of agents, which are the inputs to the
algorithm. In each iteration k, the gradient of the model parameters for each agent j on its data subset
is calculated by gjjk . Then agent j’s model parameters are sent to the other agents, and the gradients
are calculated on the other agents’ data subsets gjlk ; ∀l 6= j and stored in a matrix Gj associated with
agent j. Using Gj and gjjk . the QP solver obtains the local optimal gradient g̃, which is then used to
update agent j’s model parameter. We also add momentum update for faster convergence.

Different from the aforementioned update laws in the last section, in Algorithm 1, we can observe
that the local optimal gradient g̃j is obtained for each agent by solving a simple QP problem. Another
noticeable difference in this context is the cross-gradient gjl. With non-IID data distributions, the
difference between self-gradients in different agents is significant such that large variations in gjj

result in poor convergence. However, the cross-gradient alleviates this issue and provides a local
optimal direction for the parameter’s local loss descent. Intuitively, the local optimal gradient
obtained from the neighbors enable the local loss function to continuously descend on a path to a
local minimum that all agents in the neighborhood will reach.

4. Experimental Results
In this section, we analyze the performance of LGA algorithm empirically. We compare the

effectiveness of our algorithms with baseline algorithms SwarmSGD [18], SGP [2], and CDSGD [5].
Experiment Setup: We present the empirical studies on CIFAR-10 and MNIST datasets with both
iid and non-iid data distributions. The experiments are performed for 5 and 10 agents. To simulate
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Algorithm 1 Local Gradient Aggregation

1: Initialization: Dj , x
j
0, v

j
0, (j = 1, 2, . . . , N), α,K, a QP solver

2: for k = 0 : K do
3: for j = 1 : N do
4: Randomly shuffle the corresponding data subset Dj

5: Compute gjjk
6: Gj = {}
7: for each agent l, s.t. (j, l) ∈ C do
8: Compute gjlk
9: Gj ← Gj ∪ gjlk

10: wj
k =

∑
l πjlx

l
k−1

11: end for
12: g̃j ← QP(gjjk , G

j)

13: vjk = µvjk−1 − αg̃
j

14: xjk = wj
k + vjk

15: end for
16: end for
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Figure 1: Average training and validation accuracy for LGA method on (a) iid (b) non-iid data

non-iid data distribution, we assign each agent with unique classes (unseen by the other agents). In
other words, when there are 5 agents, each agent has the data for 2 distinct classes, and similarly,
when there are 10 agents, each agent has the data for 1 distinct class. We use a simple LeNet
model [11] for training MNIST and use a VGG11 [27] model for CIFAR10. Mini-batch sizes of 64
and 256 are used for 5 and 10 agents, respectively. The initial step-size is set to 0.01 for CIFAR-10
and 0.001 for MNIST experiments. The decaying constant for the step size is 0.98. We present
detailed results on experiments with MNIST Data in the Appendix.

LGA method maintains the high accuracy and smooth performance for different graph
topologies: Figure 1 shows that LGA can maintain the high accuracy when learning from both iid
and non-iid data distributions. However, based on Figure 4 other methods suffer from more complex
graph typologies and their performance gets adversely affected when the graph is not fully connected.

LGA can achieve high accuracy when the number of participating agents increases: Based
on Figure 2, LGA can still achieve comparably high accuracy when the number of agents is doubled
in a fully connected graph topology. However, when graph topology becomes sparser, LGA also
succumbs to a decrease in the performance. As Figure 4 b shows, LGA accuracy diminishes when
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Figure 2: Average training and validation accuracy for LGA method on (a) iid (b) non-iid data

the graph topology gets more complicated in a 10 agent scenario from the non-iid dataset. However,
the high accuracy is still maintained in the iid scenario (see Appendix).

LGA achieves the highest accuracy in less number of epochs smoothly and maintains it in
both iid and non-iid scenarios: Figure 3 shows the accuracy comparison for different methods
under both iid and non-iid data distribution for fully connected graph topology (the results for other
topologies are in the Appendix and the trend matches with Figure 3). LGA achieves the highest
accuracy on both non-iid and iid data distribution in less number of epochs. This also matches
what we observe in Figure 4 with a different number of agents. Another observation, as Figure 3
shows, is that an immediate result of the LGA algorithm is smoothness and stability of the training
process compared to other algorithms. Since the optimal gradient is achieved after aggregating the
gradients from all the participating agents in the neighborhood and applying QP projection, the
ultimate gradient is much less noisy than the other algorithms.
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Figure 3: Average training (solid line) and validation (dash line) accuracy for different methods on
(a) iid (b) non-iid data distributions for fully connected graph topology with 5 agents

5. Conclusions
In this paper, we propose a Local Gradient Aggregation (LGA) algorithm to effectively learn from

non-iid data distributions in a decentralized manner that resolves the scalability and connectivity
concerns associated with using a central parameter server. We present the convergence characteristics
of the algorithm and investigate the effect of different topologies, with different combinations of
agent numbers empirically. Also, we compare the performance of LGA algorithm with state-of-the-
art decentralized learning algorithms as baseline methods. Future research directions include: (i)
Computation analysis of LGA (ii) investigating projection methods other than QP (iii) empirical
comparison between different extents of non-iidness in the data distribution.
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(a) (b)
Figure 4: Average validation accuracy for different methods with (a) 5 (b) 10 agents on non-iid data
distributions on CIFAR-10 dataset
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Appendix A. Appendix

A.1. Additional CIFAR-10 Results and Observations

LGA maintains its performance for different graph topologies when the number of par-
ticipating agents increases while learning from iid data distribution: Figure 5 shows that LGA
achieves almost constant accuracies for different topologies when learning from iid distributions with
increasing number of agents. We showed earlier in Figure 1 that LGA can be topology agnostic also
in non-iid setting when the number of agents are smaller. However, when both the graph topology
and the number of agents becomes complicated, LGA also succumbs to decrease in the performance.
As Figure 4 b shows.

(a) (b)
Figure 5: Average validation accuracy for different methods with (a) 5 (b) 10 agents on iid data
distributions on CIFAR-10 dataset

LGA achieves the highest accuracy in less number of epochs smoothly and maintains it
in both iid and non-iid scenarios with different topologies: Figure 6 and 7 shows the accuracy
comparison for different methods under both iid and non-iid data distribution for Ring and Bipartite
graph topologies. Confirming the observation that we made based on Figure 3, LGA achieves the
highest accuracy on both non-iid and iid data distribution in less number of epochs for other graph
topologies as well.
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Figure 6: Average training (solid line) and validation (dash line) accuracy for different methods on
(a) iid (b) non-iid data distributions for Ring graph topology with 5 agents
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Figure 7: Average training (solid line) and validation (dash line) accuracy for different methods on
(a) iid (b) non-iid data distributions for Bipartite graph topology with 5 agents

A.2. MNIST Results

Same as what we did for CIFAR-10, we are comparing different methods performance on MNIST
dataset. The results are summarized in Figure 8 and 9. Although the accuracies are much higher
in MNIST, and most of the methods work in most of the settings, we can see that CDMSGD [5]
and SGP [2] diverge in some non-iid settings, whereas LGA maintains its performance in all of the
experiments.

(a) (b)
Figure 8: Average validation accuracy for different methods with (a) 5 (b) 10 agents on iid data
distributions on MNIST dataset
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(a) (b)
Figure 9: Average validation accuracy for different methods with (a) 5 (b) 10 agents on non-iid data
distributions on MNIST dataset
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