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Abstract
The study of first-order optimization algorithms (FOA) typically starts with assumptions on

the objective functions, most commonly smoothness and strong convexity. These metrics are used
to tune the hyperparameters of FOA. We introduce a class of perturbations quantified via a new
norm, called *-norm. We show that adding a small perturbation to the objective function has an
equivalently small impact on the behavior of any FOA, which suggests that it should have a minor
impact on the tuning of the algorithm. However, we show that smoothness and strong convexity can
be heavily impacted by arbitrarily small perturbations, leading to excessively conservative tunings
and convergence issues. In view of these observations, we propose a notion of continuity of the
metrics, which is essential for a robust tuning strategy. Since smoothness and strong convexity are
not continuous, we propose a comprehensive study of existing alternative metrics which we prove to
be continuous. We describe their mutual relations and provide their guaranteed convergence rates
for the Gradient Descent algorithm accordingly tuned.

1. Introduction

Optimization of a high-dimensional cost function is at the core of fitting most machine learning
models. In practice this is almost always performed by gradient-based first-order optimization
algorithms (FOA). The analysis of their convergence properties typically assumes that their hyper-
parameters are tuned based on some function properties; for example it is well-known that if f is
µ-strongly convex and L-smooth, then gradient descent (GD) with step size α = 2

µ+L achieves a
global linear convergence rate of 1− 2

κ+1 where κ = L
µ is called the condition number (see e.g. [28]).

The condition number gives an indication of the tightness of the bounds on the curvature of f , and
therefore of the difficulty to optimize it: the bigger the value of κ is, the slowest is the convergence
of the algorithm.

In this paper we analyze this phenomenon and we propose a unifying framework to study the
convergence of FOA and design robust tunings of their hyperparameters. We first introduce a
new topology, based on the definition of a star-norm ‖·‖∗ (Section 4.1). Such a norm will be the
fundamental tool that will be used throughout the paper in order to assess the “closeness” between
objective functions: Theorem 4.3 states that two functions whose difference is small in the ‖·‖∗-norm
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sense have comparable behaviour under continuous FOA. Therefore, the tuning strategy for the
hyperparameters of the optimization algorithm should account for this similarity. However, the
standard tuning based on smoothness and strong convexity fails to do so (Theorem 4.9) and it is easy
to construct examples that illustrate this weakness.

Based on such a topology, we then define the notion of continuity of a condition number (Section
4.3), which in turn reflects the continuity of some properties of the objective function that we call
upper/lower conditions (Section 5), smoothness and strong convexity being two examples of them.
Having a continuous condition number is essential to the robustness of both tuning methods and
convergence rates of the FOA. Our approach implies that even when the objective function verifies
some of the strongest conditions (strong convexity and smoothness), relying on weaker ones to tune
the FOA can lead to better and more consistent convergence behaviours.

2. Related Work

Because strong convexity and smoothness are strong requirements that are not verified by some
classic machine learning models such as logistic regression (which verifies convexity but not strong
convexity), several works have already explored substitute assumptions. Alternatives to strong
convexity, which we will call lower conditions have been the most thoroughly studied, under some
overlapping names. These include local-quasi-convexity [16], weak quasi-convexity [15], restricted
secant inequality (RSI) [33], error bounds (EB) [24], quadratic growth (QG) [3], Polyak-Łojasiewicz
(PL) [29], further generalized as Kurdyka-Łojasiewicz (KL) [19][7]. The scattering of these notions
in the literature has led to some confusing names. For example, optimal strong convexity (OSC) [21]
is also called semi-strong convexity [12] and weak strong convexity [25], despite being a different
notion from the weak strong convexity of [17], which was formerly called quasi-strong convexity
(QSC) in [26]. Similarly, the restricted strong-convexity from [2] is a different notion from the
restricted strong convexity of [33]. To avoid further confusion, we will use the name star-strong
convexity (∗SC) for the notion of WSC/QSC of [17].

Alternatives to smoothness, which we will call upper conditions, have also been proposed, though
more sporadically, such as local smoothness [16], restricted smoothness [2], relative smoothness
[23], [14], [35], restricted Lipschitz-continuous gradient (RLG) [33].

Most lower conditions can naturally be translated into an equivalent upper condition, by shifting
the inequality from a lower bound to an upper bound. For example, smoothness is an upper condition
equivalent to strong convexity, and weak-smoothness [15] is an upper condition equivalent of the
PL condition, which is further generalized to the stochastic case as expected smoothness in [13].
Similarly, RSI, WSC, EB, and QG all have natural equivalent upper conditions. In an attempt to
reduce the number of similar names and their associated confusion, we will for instance refer to the
PL condition as PL−(µ) and to its equivalent upper condition as PL+(L).

In [17] the authors propose a study of the implications between some lower conditions, although
under the assumption of global smoothness, and omitting the constant conversion induced by the
implications. To the best of our knowledge, a study of the implications between upper conditions is
missing from the literature.

While alternative conditions have been extensively researched, the main goal of the works
mentioned above has always been to extend convergence results to a larger class of functions. On the
other hand, our work aims at introducing a new approach for tackling the optimization task and at
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bringing a deeper understanding on the convergence of FOA and its connection with properties of
the objective function itself.

3. Setup and notation

In this paper, we focus on minimizing an objective function f : Rd → R using first-order algorithms
(FOA). The objective function is assumed to be continously differentiable f ∈ C1(Rd), with a
convex set of global minima X∗ ⊆ Rd; we denote f∗ = minx∈Rd f(x). For x ∈ Rd, we denote the
distance between x and X∗ as d(x,X∗) = infx∗∈X∗ ‖x− x∗‖2. We recall that since X∗ is convex,
for every x ∈ Rd there exists a unique element x∗p ∈ X∗ (called the projection of x onto X∗) such
that ‖x− x∗p‖2 = d(x,X∗).

For our analysis we will consider the following class of deterministic FOA:

Definition 3.1 (Continuous FOA) A first-order algorithm Aθ, possibly depending on a set of hy-
perparameters θ, is continuous if ∀n ∈ N the (n+ 1)-iterate

xn+1 = Aθ
(
{xi}i=0...n, {f(xi)}i=0...n, {∇f(xi)}i=0...n

)
, (1)

is continuous with respect to all of its arguments.

Trivially, any algorithm that can be expressed as a finite composition of continuous operations is
continuous. This class of FOA includes all the major algorithms like GD and Heavy Ball (HB)
methods with step size and momentum hyperparameters not depending on the local values of f .

We denote B(X∗, r) = {y ∈ Rd| d(y,X∗) < r} to be the set of points in Rd whose distance
from set X∗ is smaller than r and, for a set of functions F , we denote f + F the set of functions g
such that g − f ∈ F .

Unless stated otherwise, rates of convergence refer to the convergence of f(xn) − f∗, not
d(xn, X

∗).

4. Continuity of first-order algorithms and condition numbers

In this section we introduce the theoretical framework to analyze the behaviour of FOA for objective
functions that are "close". The first necessary component is a norm ‖ · ‖∗ that will induce the right
kind of topology to evaluate the similarity between objective functions. Proofs of all key results are
collected in Appendix A.

4.1. Star norm and stability of FOA behaviors

Consider an objective function f ∈ C1(Rd). The purpose of the ‖ · ‖∗-norm will be to evaluate the
impact of a perturbation of f on the convergence properties of FOA. In particular, if two functions f
and g are such that ‖f − g‖∗ is small, it is desirable for the FOA to behave similarly on them. Since
we are focussing on optimization algorithms that depend on the first derivatives of the function, we
require the ‖ · ‖∗-norm to give some control over the amplitude of the gradient of the perturbation of
f . Additionally, notice that as the iterates approach the minima of the objective function, the updates
typically become finer, so that even a small perturbation of the function gradient can greatly affect
the convergence behaviour. This supports the intuition that the same perturbation of the gradient will
have more impact close to the set of minima X∗, and less impact far away.
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In view of the above discussion, we introduce the following definition of the ‖ · ‖∗-norm, which
measures the maximal perturbation of the gradient weighted by the inverse of the distance to X∗.

Definition 4.1 (Star norm) Let X∗ ⊆ Rd and

FX∗ = {h ∈ C1(Rd) | ∀x∗ ∈ X∗, h(x∗) = 0 and ∃L ∈ R : ‖∇h(x)‖2 ≤ L d(x,X∗),∀x ∈ Rd}.

We define the star norm, ‖·‖∗, on FX∗ as

∀h ∈ FX∗ , ‖h‖∗ = sup
x∈Rd\X∗

‖∇h(x)‖2
d(x,X∗)

. (2)

Remark 4.2 We emphasize that neither X∗ nor FX∗ depend of the objective function f , which does
not need to be in FX∗ itself. Requiring h(x∗) = 0 ensures that the ‖ · ‖∗-norm is indeed a norm
on FX∗ . Equivalently, we could have considered the quotient space FX∗�[c], where [c] is the set of
constant functions, equipped with ‖ · ‖∗; however, this would have introduced too many technicalities
along the paper, therefore we did not proceed in this direction.

Let xi(f,Aθ, x0) denote the i-th iterate obtained by applying a prescribed algorithm Aθ to f
starting in x0. We now argue that two functions that are close in the sense of the star norm will have
similar behaviors for continuous FOA.

Theorem 4.3 Let f ∈ C1(Rd) with a set of global minimizers X∗ and ‖·‖∗ the corresponding star
norm. Let Aθ be a continuous first-order algorithm and K ⊂ Rd a compact set. Then, the following
result holds:

∀ ε > 0, ∀ i ∈ N, ∃ η = η(ε, i,K) > 0 such that

∀h ∈ FX∗ , if ‖h‖∗ < η, then ∀x0 ∈ K : ‖xi(f,Aθ, x0)− xi(f + h,Aθ, x0)‖2 < ε.

The following corollary proves that for a target neighborhood of X∗ and any δ > 0, if h is
sufficiently small in the sense of ‖·‖∗, then ∀x0 ∈ K, applying Aθ to f + h starting in x0 will attain
the target neighborhood in exactly the same number of steps as for f , up to a distance tolerance of δ.

Corollary 4.4 Under the same hypotheses as Theorem 4.3, let ε > 0 and B(X∗, ε) a target
neighborhood of X∗. Let us assume that Aθ applied to f converges to X∗ and ∀x0 ∈ K, let
Nx0 ∈ N the smallest number of iterations such that xNx0

(f,Aθ, x0) ∈ B(X∗, ε). Then,
∀ δ > 0, ∃ η > 0 s.t. for any h ∈ FX∗ , if ‖h‖∗ < η, then ∀x0 ∈ K,

xNx0−1(f + h,Aθ, x0) /∈ B(X∗, ε− δ) and xNx0
(f + h,Aθ, x0) ∈ B(X∗, ε+ δ).

Theorem 4.3 and Corollary 4.4 show that if h is sufficiently small in the sense of the norm ‖.‖∗,
then the behaviour of a continuous FOA on f and f + h will be similar, and thus it is natural to
assume that the tuning of hyperparameters θ should also be similar. However, as the next section
shows, this is not always the case.
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4.2. Standard tuning fails continuity test

Consider the family of piecewise quadratic functions {fε}ε≥0 ⊂ C1(R):

fε(x) =


x2 x ≤ 1

x2 + 1
εx

2 − 2x
ε + 1

ε 1 ≤ x ≤ 1 + ε2

x2 + 2εx− 2ε− ε3 x ≥ 1 + ε2

(3)

We can view each function fε as a perturbation of the quadratic f0(x) = x2, which is 2-smooth and
2-strongly convex: ∀ ε ≥ 0, fε(x) = f0(x) + hε(x) with hε ∈ FX∗={0}. It is also easy to see that
‖hε‖∗ → 0 as ε→ 0.

The following properties hold:

Proposition 4.5 For any ε > 0, the function fε is µε-strong convex and Lε-smooth, with µε = 2
and Lε = 2 + 2

ε ; moreover, these constants are optimal: i.e. fε is not µ-strongly convex for µ > 2
and not L-smooth for L < 2 + 2

ε .
Furthermore, GD tuned with step size α = 2

µ0+L0
= 1

2 applied to fε (∀ ε > 0) converges with
linear rate ε; however, if GD is tuned with α = 2

µε+Lε
= ε

2ε+1 , it does not converge with linear rate

q for any q < 1−ε2
(2ε+1)(1+ε2)

.

If we tune GD according to the values of smoothness and strong convexity of f0 and optimize fε,
the linear rate tends to 0 as ε→ 0 (in fact, we obtain convergence in at most two steps). On the other
hand, if we tune GD based on the tightest strong convexity and smoothness constants µε and Lε of
fε, the linear rate tends to 1 as ε→ 0. Notice that the condition number Lε

µε
of fε diverges as ε→ 0,

thus leading to a very conservative tuning and increasingly slow convergence rate, while the tuning
of f0 leads to superlinear convergence.

The above example suggests that a sane tuning strategy for the hyperparameters of a FOA should
be robust (continuous) with respect to ‖ · ‖∗-small perturbations of a given function. It also shows
that the standard tuning based on L-smoothness and µ-strong convexity lacks this property.

4.3. Continuity of condition numbers

We now formally introduce the notions of upper and lower conditions which represent generalizations
of smoothness and strong convexity, and the notion of continuity of a condition.

Definition 4.6 (Upper condition) We use the term upper condition to describe a generalization of
smoothness and we formalize it as a family of sets of functions, C+(L) ⊆ C1(Rd), which satisfies
C+(L1) ⊆ C+(L2) for all L1 ≤ L2.

Definition 4.7 (Lower condition) We use the term lower condition to describe a generalization of
strong convexity. We formalize it as a family of sets of functions, C−(µ) ⊆ C1(Rd), which satisfies
C−(µ1) ⊇ C−(µ2) for all µ1 ≤ µ2.

In Definition 5.1 and Definition 5.3, we list some known upper and lower conditions extensively
studied in the literature .
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Definition 4.8 (Continuity of a condition) We say that C+ is continuous in f ∈
⋃
L>0 C+(L)

with convex set of global minima X∗ if for any L > 0 s.t. f ∈ C+(L), ∀ ε > 0, ∃ η > 0 s.t.
∀h ∈ FX∗ , if ‖h‖∗ ≤ η, then f + h ∈ C+(L+ ε).

Similarly, C− is continuous in f ∈
⋃
µ>0 C−(µ) with set of global minima X∗ if for any µ > 0

s.t. f ∈ C−(µ), ∀ ε > 0, ∃ η > 0 s.t. ∀h ∈ FX∗ , if ‖h‖∗ ≤ η, then f + h ∈ C−(µ− ε).
We say that C+ is continuous if it is continuous in all f ∈

⋃
L>0 C+(L) that admits a convex

set of global minima, and C− is continuous if it is continuous in all f ∈
⋃
µ>0 C−(µ) that admits a

convex set of global minima.

Note that this definition is independent from the standard notion of continuity, as we only allow
f to be approximated by functions in f + FX∗ .

Based on the observations of Theorem 4.3 and Corollary 4.4, if we tune a continuous FOA based
on a condition C±, it is desirable for C± to be continuous in the sense we just introduced. However,
the standard properties of smoothness and strong convexity fail to be continuous:

Theorem 4.9 For any f µ̄-strongly convex and L̄-smooth with a set of global minima X∗ ⊆ Rd,
there exists a family {hε}ε>0 in FX∗ such that lim

ε→0
‖hε‖∗ = 0 and ∀L, µ > 0, there is εL,µ such that

∀ ε ≤ εL,µ, fε = f + hε is not L-smooth and not µ-strongly convex.

Not only smoothness and strong convexity are continuous nowhere, but also the discontinuity is
not bounded: given any objective function f , it is possible to approximate it by a family of perturbed
functions {fε}ε>0 with arbitrarily bad conditioning. In particular, the explicitly construction of
{fε}ε>0 is given in the proof. Therefore, the main consequence of Theorem 4.9 is that tunings that
rely on smoothness and strong convexity lack robustness.

5. Alternative conditioning

Motivated by the weakness of strong convexity and smoothness detailed in Subsection 4.2 and in
Theorem 4.9, we propose here known alternative conditions that could be used to tune FOA.

Let f ∈ C1
(
Rd
)

with convex set of minimizer X∗. We recall that any x ∈ Rd has an unique
projection x∗p ∈ X∗ on X∗: ‖x− x∗p‖2 = d(x,X∗).

Definition 5.1 (Lower conditions) Let µ > 0. ∀x, y ∈ Rd we define:

• (Strong convexity) f ∈ SC−(µ) iff f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ
2 ‖y − x‖

2
2.

• (Star strong convexity) f ∈ ∗SC−(µ) iff f∗ ≥ f(x) + 〈∇f(x), x∗p − x〉+ µ
2

∥∥x∗p − x∥∥2

2
.

• (Lower restricted secant inequality) f ∈ RSI−(µ) iff 〈∇f(x), x− x∗p〉 ≥ µ
∥∥x− x∗p∥∥2

2
,

• (Lower error bound) f ∈ EB−(µ) iff ‖∇f(x)‖2 ≥ µ
∥∥x− x∗p∥∥2

,

• (Lower Polyak-Łojasiewicz) f ∈ PL−(µ) iff 1
2 ‖∇f(x)‖22 ≥ µ (f(x)− f∗).

• (Lower quadratic growth) f ∈ QG−(µ) iff f(x)− f∗ ≥ µ
2

∥∥x− x∗p∥∥2

2
.

Remark 5.2 A function in SC−(0) is called convex and a function in ∗SC−(0) is called star-convex.

6



A STUDY OF CONDITION NUMBERS FOR FIRST-ORDER OPTIMIZATION

∗SC+(L)

SC+(L)

EB+(L)

PL+(L) RSI+(L) QG+(L)

L 7→ 2L

if SC−(µ)
L 7→ L+ 2(−µ)+

if SC−(µ)

L 7→ L+
√
L(L− µ)

if QG−(µ)

L 7→L2

µ

∗SC−(µ)SC−(µ) EB−(µ)

PL−(µ)

RSI−(µ)

QG−(µ)

if QG+(L)
µ 7→ 2µ− L

if ∗SC−(µ1)

µ 7→ µ+µ1
2

if QG+(L), µ 7→ µ2

L

Figure 1: Graph of implications between upper and lower conditions. Red arrows only hold under
∗SC−(µ) or SC−(µ) where µ can be negative. Green arrows only hold under QG+ or
QG−.

Definition 5.3 (Upper conditions) Let L > 0. ∀x, y ∈ Rd we define:

• (Smoothness) f ∈ SC+(L) iff f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2 ‖y − x‖

2
2.

• (Star smoothness) f ∈ ∗SC+(L) iff f∗ ≤ f(x) + 〈∇f(x), x∗p − x〉+ L
2

∥∥x∗p − x∥∥2

2
.

• (Upper restricted secant inequality) f ∈ RSI+(L) iff 〈∇f(x), x− x∗p〉 ≤ L
∥∥x− x∗p∥∥2

2
.

• (Upper error bound) f ∈ EB+(L) iff ‖∇f(x)‖2 ≤ L
∥∥x− x∗p∥∥2

.

• (Upper Polyak-Łojasiewicz) f ∈ PL+(L) iff 1
2 ‖∇f(x)‖22 ≤ L (f(x)− f∗).

• (Upper quadratic growth) f ∈ QG+(L) iff f(x)− f∗ ≤ L
2

∥∥x− x∗p∥∥2

2
.

Remark 5.4 The proposed upper and lower conditions all coincide on quadratics, with optimal L
and µ equal to the highest and lowest eigenvalues of the Hessian, respectively.

The upper and lower conditions above are related according to the graphs in Figure 1 (see proofs
in Appendices C and D). If an implication changes the value of the constant, it is specified on the
corresponding arrow. Some of the implications only hold under extended notions of ∗SC−(µ) and
SC−(µ), where µ is allowed to be negative (red arrows in Figure 1). These notions are weaker than
star convexity and convexity, respectively. Finally some implications are made under an additional
QG+ or QG− assumption (green arrows in Figure 1). In [17], the authors already presented
connections between the lower conditions, but the under assumption of global smoothness (SC+(L))
and without giving the conversion of constants. To the best of our knowledge, there is no study of the
implications between upper conditions in the literature.

Theorem 4.9 showed smoothness and strong convexity are not continuous in the sense of
Definition 4.8. On the other hand, the above alternatives are continuous conditions, therefore they
are robust to the type of perturbations introduced in Section 4.1:

Theorem 5.5 The lower conditions ∗SC−, RSI−, EB−, QG−, PL− are continuous. The upper
conditions ∗SC+, RSI+, EB+, QG+, PL+ are continuous in all functions f ∈ QG−(µ), for some
µ > 0.
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Table 1: Linear rates for the GD algorithm for each pair of conditions, as function of κ = L
µ .

Rates marked with ∗/† hold under the additional assumption of star-convexity/convexity,
respectively. Rates are colored in green if corresponding to a continuous pair of conditions
and red otherwise.

Rates of cv SC−(µ) ∗SC−(µ) PL−(µ) RSI−(µ) EB−(µ) QG−(µ)

SC+(L)
(
κ−1
κ+1

)2
1− 1

κ 1− 1
κ 1− 1

κ2
/ 1− 1

2κ * 1− 1
κ2

1− 1
4κ *

PL+(L)
(
1− 1

κ

)2
1− 1

κ 1− 1
4κ * 1− 1

κ2
/ 1− 1

2κ * 1− 1
4κ2

* 1− 1
4κ *

EB+(L)
(
1− 1

κ

)2
1− 1

κ2
1− 1

4κ2
* 1− 1

κ2
1− 1

4κ4
* 1− 1

4κ2
*

∗SC+(L)
(
1− 1

κ

)2
1− 1

κ2
† 1− 1

4κ2
† 1− 1

κ2
† 1− 1

4κ4
† 1− 1

4κ2
†

RSI+(L)
(
1− 1

κ

)2
1− 1

4κ2
† 1− 1

16κ2
† 1− 1

4κ2
† 1− 1

16κ4
† 1− 1

16κ2
†

QG+(L)
(
1− 1

κ

)2
1− 1

4κ2
† 1− 1

16κ2
† 1− 1

4κ2
† 1− 1

16κ4
† 1− 1

16κ2
†

Proof. See Appendix B.
Note that since SC−(µ), ∗SC−(µ),PL−(µ),RSI−(µ),EB−(µ) ⊂ QG−(µ

2

L ) (see Figure 1),
∗SC+, RSI+, EB+, QG+, PL+ are continuous in any function that verifies one of the proposed
lower conditions.

6. Gradient descent convergence

To give some insights on the strengths of the listed conditions, we collected in Table 1 the guaranteed
linear convergence rates of f(xn)−f∗ of the GD algorithm with constant step size and proper tuning,
obtained for each pair of upper/lower conditions f ∈ C+(L) ∩ C−(µ), as function of the condition
number κ = L

µ . The conditions are ordered from the strongest to the weakest, when applicable.
The rates that are marked with an asterisk or a † symbol are only guaranteed under an additional
assumption of convexity or star convexity, respectively. Many of these rates do not exist in the
literature to the best of our knowledge. In particular, the rates under QG+(L) ∩ SC−(µ), and all the
rates inherited from the known ones, as in Figure 1, are novel. The rate under PL+ ∩∗SC−(µ) is a
particular case of Theorem 3.1 in [13] applied to the deterministic case. For the sake of completeness,
we reported rates under additional convexity assumption, although convexity suffers from the same
continuity issue as strong convexity and smoothness.

We refer to Appendix E for the proofs; the exact value of the step size for the convergence of GD
under each pair of upper/lower conditions is also given.

Some care needs to be taken when comparing the κ’s from different entries of the table, as the
quantities involved (L and µ) differ according to the upper/lower conditions considered. Notice
that the condition PL+(L) paired with any lower condition shows a convergence rate with the same
dependence in κ as SC+(L), with the added bonus that PL+(L) is continuous. Additionally, the pair
EB+(L)∩RSI−(µ) has a linear rate that depends quadratically in κ, however, this pair of conditions
is weaker than other pairs (PL+(L), PL−(µ), ∗SC−(µ)), therefore the condition number κ for this
case might be drastically smaller and it may yield a better convergence rate. Thus, these two pairs
PL+(L) ∩ C−(µ) and EB+(L) ∩ RSI−(µ) look particularly promising for effectively tuning the
step size of the GD algorithm.
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We recall that quadratics give a lower bound
(
κ−1
κ+1

)2
for the convergence rate for GD with

fixed step size. Since all the conditions listed in this paper coincide on quadratics, such a lower
bound applies to any pair of upper/lower conditions. However, it may be not tight for some pairs of
conditions.

Finally, we complete Table 1 by mentioning the sublinear convergence speed we have under any
upper condition and convexity or star-convexity (C+(L) ∩ SC−(0) or C+(L) ∩ ∗SC−(0)). While it
is known that GD has a rate of convergence of order O

(
1
n

)
if f ∈ SC+(L) ∩ SC−(0) (see e.g. [6]),

the same rate can be achieved under PL+(L) ∩ ∗SC−(0) for the best iterate (or the average under
convexity). For a complete proof, we refer to Appendix E.

7. Conclusion

In this paper we presented an argument on the necessity to adopt different conditions from the ones
classically used (smoothness and strong convexity), in order to tune the hyperparameters of FOA in a
meaningful way. Via a new notion of continuity of a condition number, we have established that the
properties of strong convexity and smoothness have an important weakness resulting in a lack of
robustness for first-order algorithms tuned on them. We have presented promising alternatives that
do not share this weakness and given examples of the benefits of a theoretical framework based on
these conditions. We have proposed an extensive study of the relationships between these conditions
and provided their guaranteed convergence rates for GD.

It is well known that some optimization algorithms (e.g. Nesterov Accelerated Gradient, [27])
can approach the lower bound of convergence rates achievable for µ-strongly convex and L-smooth
functions, as function of κ = L

µ . However, lower bounds based on more suitable condition number
may result in different optimality results, and could thus heavily impact our theoretical understanding
of FOA performances.
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Appendix A. Continuity

Proof of Theorem 4.3 We will prove the theorem by induction. Let f ∈ C1(Rd) with a set of
global minimaX∗. For h ∈ FX∗ , let g = f+h ∈ f+FX∗ . For n = 0, x0(·,Aθ, x0) ≡ x0 is clearly
continuous (in the sense of ‖·‖∗) for any fixed initial point x0 ∈ Rd; assume that the continuity
property is verified up to some n ∈ N: i.e. ∀ ε > 0 ∀ i = 0, . . . , n, ∃ η = η(ε, i,K) > 0 such that for
g ∈ f + FX∗ , if ‖f − g‖∗ < η, then ∀x0 ∈ K, ‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 < ε.

Let ε > 0 and

xn+1(f,Aθ, x0) = Aθ
(
{xi}i=0...n, {f(xi)}i=0...n, {∇f(xi)}i=0...n

)
;

Aθ being a continuous FOA implies that given ε > 0, there exists δ > 0 such that if ∀ i = 0, . . . , n

‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 < δ (4)

‖f(xi(f,Aθ, x0))− g(xi(g,Aθ, x0))‖2 < δ (5)

‖∇f(xi(f,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2 < δ (6)

for f ∈ C1(Rd), g ∈ f + FX∗ , then the claim follows

‖xn+1(f,Aθ, x0)− xn+1(g,Aθ, x0)‖2 < ε.

The idea now is to quantify how "close" f and g need to be (in ‖·‖∗-norm) in order to ensure that
the above inequalities are satisfied.

For equation (4): by recurrence hypothesis (n ∈ N is finite), given δ > 0 there exists η1 = η1(δ)
(simply consider = mini=1,...,n{η(δ, i,K)} > 0) such that ∀ g ∈ f + FX∗ , ‖f − g‖∗ < η1, then
∀x0 ∈ K, ‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 < δ, ∀ i = 1, . . . , n.

For equation (5):

‖∇f(xi(f,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2
≤ ‖∇f(xi(f,Aθ, x0))−∇f(xi(g,Aθ, x0))‖2 + ‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

(7)

The first term can be easily estimated: since f ∈ C1(Rd), given δ > 0 there exists ρ = ρ(δ) > 0
such that ∀x, y ∈ Rd with ‖x− y‖2 < ρ, then ‖∇f(x)−∇f(y)‖2 < δ

2 and ‖f(x)− f(y)‖2 < δ
2 .

In particular, for such a ρ > 0, ∃ η2 = η2(ρ, δ) > 0 such that for ‖f − g‖∗ < min{η1, η2}, then
‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 < ρ ∀ i = 0, . . . , n. Therefore,

‖∇f(xi(f,Aθ, x0))−∇f(xi(g,Aθ, x0))‖2 <
δ

2
∀ i = 0, . . . , n. (8)

Regarding the second term, we first introduce the quantity

Rf,n := max
i=0,...,n

{
sup
x0∈K

d (xi(f,Aθ, x0), X∗)

}
xi(f,Aθ, ·) is a finite composition of continuous functions and is therefore continuous (in x0). This
ensures that the image of K is a compact and thus that Rf,n is indeed finite.

‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

=
‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

d (xi(g,Aθ, x0), X∗)
d (xi(g,Aθ, x0), X∗) ≤ ‖f − g‖∗Rg,n (9)
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We want to claim that if ‖f − g‖∗ is small enough (for g ∈ f + FX∗), then Rg,n < Rf,n + δ:
indeed, if g ∈ f + FX∗ is such that ‖f − g‖∗ < min{η1, η2}, by recurrence hypothesis we have
∀ i = 0, . . . , n

d (xi(g,Aθ, x0), X∗) = inf
x∗∈X∗

‖xi(g,Aθ, x0)− x∗‖2

≤ inf
x∗∈X∗

{‖xi(g,Aθ, x0)− xi(f,Aθ, x0)‖2 + ‖xi(f,Aθ, x0)− x∗‖2}

= ‖xi(g,Aθ, x0)− xi(f,Aθ, x0)‖2 + inf
x∗∈X∗

‖xi(f,Aθ, x0)− x∗‖2

= ‖xi(g,Aθ, x0)− xi(f,Aθ, x0)‖2 + d (xi(f,Aθ, x0), X∗)

< δ +Rf,n. (10)

Then,

‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2 ≤ ‖f − g‖∗(Rf,n + δ) <
δ

2
(11)

as long as ‖f − g‖∗ < min{η1, η2,
δ

2(Rf,n+δ)}.
In conclusion, ∀ i = 0, . . . , n

‖∇f(xi(f,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2
≤ ‖∇f(xi(f,Aθ, x0))−∇f(xi(g,Aθ, x0))‖2 + ‖∇f(xi(g,Aθ, x0))−∇g(xi(g,Aθ, x0))‖2

≤ δ

2
+
δ

2
= δ (12)

For equation (6): similarly, we have

‖f(xi(f,Aθ, x0))− g(xi(g,Aθ, x0))‖2
≤ ‖f(xi(f,Aθ, x0))− f(xi(g,Aθ, x0))‖2 + ‖f(xi(g,Aθ, x0))− g(xi(g,Aθ, x0))‖2 (13)

The first term is bounded by δ/2 thanks the same argument as in (8). The second term is bounded
in the following way: call x̄ = xi(g,Aθ, x0) and let x̄∗p ∈ X∗ the projection of x̄ on X∗. Note that
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∀ t ∈ [0, 1], we have d
(
x̄∗p + t(x̄− x̄∗p), X∗

)
≤ t

∥∥x̄− x̄∗p∥∥2
since x̄∗p ∈ X∗. It follows that

|f(x̄)− g(x̄)| = |f(x̄)− g(x̄)− (f∗ − g∗)|

=

∣∣∣∣∫ 1

0
〈∇(f − g)(x̄∗p + t(x̄− x̄∗p)), x̄∗p − x̄〉 dt

∣∣∣∣
≤
∫ 1

0

∥∥∇(f − g)(x̄∗p + t(x̄− x̄∗p))
∥∥

2

∥∥x̄∗p − x̄∥∥2
dt

=

∫ 1

0

∥∥∇(f − g)(x̄∗p + t(x̄− x̄∗p))
∥∥

2

d
(
x̄∗p + t(x̄− x̄∗p), X∗

) d
(
x̄∗p + t(x̄− x̄∗p), X∗

) ∥∥x̄∗p − x̄∥∥2
dt

≤
∫ 1

0

∥∥∇(f − g)(x̄∗p + t(x̄− x̄∗p))
∥∥

2

d
(
x̄∗p + t(x̄− x̄∗p), X∗

) t
∥∥x̄∗p − x̄∥∥2

2
dt

≤ ‖f − g‖∗d (x̄, X∗)2
∫ 1

0
t dt

≤ ‖f − g‖∗
(Rf,n + δ)2

2

<
δ

2
(14)

as long as ‖f − g‖∗ < min
{
η1, η2,

δ
2(Rf,n+δ) ,

δ
(Rf,n+δ)2

}
.

In conclusion, ∀ i = 0, . . . , n

‖f(xi(f,Aθ, x0))− g(xi(g,Aθ, x0))‖2
≤ ‖f(xi(f,Aθ, x0))− f(xi(g,Aθ, x0))‖2 + ‖f(xi(g,Aθ, x0))− g(xi(g,Aθ, x0))‖2

<
δ

2
+
δ

2
= δ. (15)

�

Proof of Corollary 4.4 Let NK = supx0∈KNx0 (note that NK < +∞, since K is compact). We
will note g = f + h for h ∈ FX∗ .

For x0 ∈ K, we have

xNx0−1(f,Aθ, x0) /∈ B(X∗, ε) and xNx0
(f,Aθ, x0) ∈ B(X∗, ε)

and thanks to Theorem 4.3, there exists η > 0 such that for any g ∈ f + FX∗ , if ||f − g||∗ ≤ η then
∀ i ≤ NK, ∀x0 ∈ K, ‖xi(f,Aθ, x0)− xi(g,Aθ, x0)‖2 ≤ δ. Therefore,

xNx0−1(g,Aθ, x0) /∈ B(X∗, ε− δ) and xNx0
(g,Aθ, x0) ∈ B(X∗, ε+ δ).

�

Proof of Proposition 4.5 f is a piecewise quadratic with second derivative f ′′(x) = (2 + 2
ε ) for

x ∈ [1, 1 + ε2] and f ′′(x) = 2 elsewhere. Therefore, the optimal µ of strong convexity is 2 and the
optimal L of smoothness is 2 + 2

ε : f ∈ SC−(2) ∩ SC+(2 + 2
ε ).
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Consider the gradient descent update rule with step size α = 1
2 :

x− 1

2
f ′(x) =


0 x ≤ 1
x−1
ε 1 ≤ x ≤ 1 + ε2

−ε x ≥ 1 + ε2

It is easy to see that |x− 1
2f
′(x)| ≤ ε|x|, which proves the linear convergence rate of fε with tuning

α = 1
2 ; in fact, for ε ≤ 1, the algorithm can converge to x∗ = 0 in at most two steps.

Let us now assume we use the standard tuning based on strong convexity and smoothness

α =
2

µε + Lε
=

ε

2ε+ 1
.

We then have

x− αf ′(x) =


x

2ε+1 x ≤ 1
2−x
2ε+1 1 ≤ x ≤ 1 + ε2

x−2ε2

2ε+1 x ≥ 1 + ε2

which leads to

∀x ∈ R, |x− αf ′(x)| ≥ 1− ε2

(2ε+ 1)(1 + ε2)
|x|.

�

Proof of Theorem 4.9 Let f a L̄-smooth and µ̄-strongly convex function with a set of minima
X∗ ⊆ Rd. Note that strong convexity implies X∗ = {x∗}.

Let ε > 0. We define the function ωε ∈ C1(R) by ωε(0) = 0 and its derivative:

ω′ε(t) =


0 t ≤ 1− ε2

1−t−ε2
ε 1− ε2 ≤ t ≤ 1

t−ε2−1
ε 1 ≤ t ≤ 1 + ε2

0 1 + ε2 ≤ t

It is easy to see that |ω′ε(t)| ≤ ε, ∀ t ∈ R.
Let z ∈ Rd \ {x∗} and define

φ(x) :=
〈x− x∗, z − x∗〉
‖z − x∗‖2

, x ∈ Rd (16)

fε(x) := f(x) + ωε ◦ φ(x) (17)

Note that ωε ◦ φ(x∗) = 0 and

∇(f − fε)(x) = ∇ (ωε ◦ φ) (x) =
z − x∗

‖z − x∗‖2
ω′ε ◦ φ(x); (18)
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for x ∈ Rd,

if φ(x) ≤ 1− ε2, then ||∇(f − fε)(x)||2 = 0 (19)

if φ(x) ≥ 1− ε2, then ||∇(f − fε)(x)||2 ≤ ε ≤
ε

1− ε2
||x− x∗||2 (20)

since φ(x) ≥ 1−ε2 implies ‖x−x∗‖2 ≥ 1−ε2. Therefore, f−fε ∈ FX∗ and ‖f−fε‖∗ ≤ ε
1−ε2 → 0

when ε→ 0.
Let L, µ > 0. We now want to prove that for ε sufficiently small, fε is not L-smooth and not

µ-strong convex. Consider

x = x∗ + (1− ε2)
z − x∗

‖z − x∗‖2

y = x∗ +
z − x∗

‖z − x∗‖2

so that we have φ(x) = 1− ε2, φ(y) = 1, and y − x = ε2 z−x∗
‖z−x∗‖2 . Since f is Lf -smooth, ∀ ε > 0

we have

fε(y)− fε(x)− 〈∇fε(x), y − x〉
= f(y)− f(x)− 〈∇f(x), y − x〉+ ωε ◦ φ(y)− ωε ◦ φ(x)− 〈∇ωε ◦ φ(x), y − x〉

≤
Lf
2
||x− y||22 + ωε(1)− ωε(1− ε2)− ε2ω′ε(1− ε2)

=
Lf
2
||x− y||22 −

ε3

2
=

(
Lf
2
− 1

2ε

)
‖x− y‖22; (21)

therefore, if we pick ε such that 1
ε > Lf − µ, then fε is not µ-strong convex.

Similarly, consider

x = x∗ +
z − x∗

‖z − x∗‖2

y = x∗ + (1 + ε2)
z − x∗

‖z − x∗‖2

So that we have φ(x) = 1, φ(y) = 1 + ε2, and y − x = ε2 z−x∗
‖z−x∗‖2 . Since f is µf -strong convex,

∀ ε > 0 we have

fε(y)− fε(x)− 〈∇fε(x), y − x〉
= f(y)− f(x)− 〈∇f(x), y − x〉+ ωε ◦ φ(y)− ωε ◦ φ(x)− 〈∇ωε ◦ φ(x), y − x〉

≥
µf
2
‖x− y‖22 + ωε(1 + ε2)− ωε(1)− ε2ω′ε(1)

=
µf
2
‖x− y‖22 +

ε3

2
=

(
µf
2

+
1

2ε

)
‖x− y‖22; (22)

therefore, if we pick ε such that 1
ε > L− µf , then fε is not L-smooth.

Finally, for any ε ≤ min{ 1
max{1,Lf−µ} ,

1
max{1,L−µf}}, fε is not L-smooth and not µ-strong convex,

which concludes the proof. �
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Appendix B. Proof of Theorem 5.5

Note that all lower conditions listed in the theorem are continuous without any additional constraint;
on the other hand, the upper conditions require the assumption of the objective function f to belong
to QG−(µ) (for some µ > 0) in order to be continuous.

We stress that this extra condition is a mild adding, since tuning of a FOA usually requires f to
satisfy both an upper and a lower condition (and QG−(µ) is the weakest among the conditions we
proposed). On the other hand, this is necessary to guarantee that the set of minimizer for the original
f and the perturbed f + h, h ∈ FX∗ , are the same.

Continuity of ∗SC− and ∗SC+: Given f ∈ ∗SC+(L): f∗ ≤ f(x) + 〈∇f(x), x∗p − x〉+ L
2 ‖x−

x∗p‖22, ∀x ∈ Rd (with x∗p ∈ X∗ the corresponding projection point onto X∗). Consider g = f + h,

h ∈ FX∗ with ‖f − g‖∗ = ‖h‖∗ = sup ‖∇f(x)−∇g(x)‖2
d(x,X∗) = sup ‖∇h(x)‖2

d(x,X∗) ≤
ε
3 , then

g∗ = f∗ ≤ f(x) + 〈∇f(x), x∗p − x〉+
L

2
‖x− x∗p‖22, (23)

where g∗ is the value of g at each point of X∗. Note that ∀x ∈ Rd \X∗

〈∇f(x), x∗p − x〉 = 〈∇f(x)−∇g(x), x∗p − x〉+ 〈∇g(x), x∗p − x〉
≤ ‖∇f(x)−∇g(x)‖2

∥∥x− x∗p∥∥2
+ 〈∇g(x), x∗p − x〉

≤ ‖f − g‖∗
∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉

≤ ε

3

∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉 (24)

and

0 = h∗ = ω(x) +

∫ 1

0
〈∇h(x+ t(x∗p − x)), x∗p − x〉 dt

≤ h(x) +

∫ 1

0

∥∥∇h(x+ t(x∗p − x))
∥∥

2
‖x− x∗p‖2 dt

= h(x) +

∫ 1

0

∥∥∇h(x+ t(x∗p − x))
∥∥

2

d(x+ t(x∗p − x), X∗)
d(x+ t(x∗p − x), X∗)‖x− x∗p‖2 dt

≤ h(x) + ‖h‖∗ ‖x− x
∗
p‖22
∫ 1

0
1− t dt = h(x) +

1

2
‖f − g‖∗ ‖x− x

∗
p‖22

≤ h(x) +
ε

6
‖x− x∗‖22 (25)

where we used d(x+ t(x∗p − x), X∗) = (1− t)‖x− x∗p‖2, ∀ t ∈ [0, 1] (indeed any point lying on
the line segment x+ t(x∗p − x) has projection onto X∗ equal to x∗p).

Therefore, ∀x ∈ Rd \X∗

g∗ ≤ f(x) +
[ ε

3
‖x− x∗p‖22 + 〈∇g(x), x∗p − x〉

]
+
L

2
‖x− x∗p‖22

≤ f(x) + h(x) +
ε

6
‖x− x∗p‖22 +

ε

3
‖x− x∗p‖22 + 〈∇g(x), x∗p − x〉+

L

2
‖x− x∗‖22

= g(x) + 〈∇g(x), x∗p − x〉+
L+ ε

2
‖x− x∗p‖22 (26)
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(for x = x∗ ∈ X∗ the inequality is trivial), i.e. g ∈ ∗SC(L+ ε).
Similarly, given f ∈ ∗SC−(µ): f∗ ≥ f(x)+〈∇f(x), x∗p−x〉+

µ
2‖x−x

∗
p‖22, ∀x ∈ Rd. Consider

g = f + h, h ∈ FX∗ with ‖f − g‖∗ = ‖h‖∗ = sup ‖∇f(x)−∇g(x)‖2
d(x,X∗) = sup ‖∇h(x)‖2

d(x,X∗) ≤
ε
3 < µ, then

g∗ = f∗ ≥ f(x) + 〈∇f(x), x∗p − x〉+
µ

2
‖x− x∗p‖22. (27)

∀x ∈ Rd \X∗

〈∇f(x), x∗p − x〉 = 〈∇f(x)−∇g(x), x∗p − x〉+ 〈∇g(x), x∗p − x〉
≥ −‖∇f(x)−∇g(x)‖2

∥∥x− x∗p∥∥2
+ 〈∇g(x), x∗p − x

≥ −‖f − g‖∗
∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉 (28)

≥ − ε
3

∥∥x− x∗p∥∥2

2
+ 〈∇g(x), x∗p − x〉 (29)

and

0 = h∗ = ω(x) +

∫ 1

0
〈∇h(x+ t(x∗p − x)), x∗p − x〉 dt

≥ h(x)−
∫ 1

0

∥∥∇h(x+ t(x∗p − x))
∥∥

2
‖x− x∗p‖2 dt

≥ h(x)− 1

2
‖f − g‖∗ ‖x− x

∗
p‖22

≥ h(x)− ε

6
‖x− x∗p‖22 (30)

Therefore, ∀x ∈ Rd \X∗, g∗ ≥ g(x) + 〈∇g(x), x∗−x〉+ µ−ε
2 ‖x−x

∗‖22 and for x = x∗ ∈ X∗
the inequality is trivial: g ∈ ∗SC(µ− ε).

Continuity of RSI− and RSI+: Given f ∈ RSI+(L): ∀x ∈ Rd, 〈∇f(x), x−x∗p〉 ≤ L
∥∥x− x∗p∥∥2

2
.

Consider g = f + h with h ∈ FX∗ such that ‖h‖∗ = supx∈Rd\{X∗}
‖∇h(x)‖2
d(x,X∗) ≤ ε, then we have

∀x ∈ Rd \X∗

〈∇g(x), x− x∗p〉 = 〈∇f(x) +∇h(x), x− x∗p〉 = 〈∇f(x), x− x∗p〉+ 〈∇h(x), x− x∗p〉

≤ L
∥∥x− x∗p∥∥2

2
+ ‖∇h(x)‖2

∥∥x− x∗p∥∥2

≤ L
∥∥x− x∗p∥∥2

2
+ ε
∥∥x− x∗p∥∥2

2
= (L+ ε)

∥∥x− x∗p∥∥2

2
(31)

(for x = x∗ ∈ X∗ it is trivial and we have an equality), i.e. g ∈ RSI+(L+ ε).
Similarly, if f ∈ RSI−(µ), i.e. ∀x ∈ Rd, 〈∇f(x), x− x∗p〉 ≥ µ

∥∥x− x∗p∥∥2

2
, consider g = f + h

with h ∈ FX∗ , ‖h‖∗ = supx∈Rd\X∗
‖∇h(x)‖2
d(x,X∗) < ε < µ, then we have ∀x ∈ Rd \X∗

〈∇g(x), x− x∗p〉 = 〈∇f(x) +∇h(x), x− x∗p〉 = 〈∇f(x), x− x∗p〉+ 〈∇h(x), x− x∗p〉

≥ µ
∥∥x− x∗p∥∥2

2
− ‖∇h(x)‖2

∥∥x− x∗p∥∥2

≥ µ
∥∥x− x∗p∥∥2

2
− ε
∥∥x− x∗p∥∥2

2
= (µ− ε)

∥∥x− x∗p∥∥2

2
(32)
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(for x = x∗ ∈ X∗ it is trivial and we have an equality), i.e. g ∈ RSI−(µ− ε).
Continuity of EB− and EB+: Given f ∈ EB+(L): ∀x ∈ Rd, ‖∇f(x)‖2 ≤ Ld(x,X∗) =

L
∥∥x− x∗p∥∥2

, with x∗p ∈ X∗ the unique projection of x on X∗; this implies

sup
x∈Rd\X∗

‖∇f(x)‖2
d(x,X∗)

≤ L. (33)

Given ε > 0, consider g ∈ f + FX∗ , such that ‖f − g‖∗ < ε: then,

sup
x∈Rd\X∗

‖∇g(x)‖2
d(x,X∗)

≤ sup
x∈Rd\X∗

‖∇g(x)−∇f(x)‖2
d(x,X∗)

+ sup
x∈Rd\X∗

‖∇f(x)‖2
d(x,X∗)

≤ ε+ L (34)

Additionally, since g ∈ f + Fx∗ ,∇g(x∗) = 0 ∀x∗ ∈ X∗, therefore

‖∇g(x)‖2 ≤ (L+ ε)d(x,X∗), ∀x ∈ Rd (35)

i.e. g ∈ EB+(L+ ε).
Given f ∈ EB−(µ): ∀x ∈ Rd ‖∇f(x)‖2 ≥ µd(x,X∗) = µ‖x−x∗p‖2. Fix ε > 0 and consider

g ∈ f + Fx∗ , such that ‖f − g‖∗ < ε < µ; in particular ∀x ∈ Rd \ X∗, ‖∇f(x) − ∇g(x)‖2 <
ε d(x,X∗). Then, ∀x ∈ Rd \X∗

0 < (µ− ε) d(x,X∗) ≤ ‖∇f(x)‖2 − εd(x,X∗)

≤ ‖∇f(x)‖2 − ‖∇f(x)−∇g(x)‖2
≤ ‖∇f(x)−∇f(x) +∇g(x)‖2 = ‖∇g(x)‖2 (36)

(for x = x∗ ∈ X∗ the inequality is trivial), i.e. g ∈ EB−(µ− ε).
Continuity of PL− and PL+:
Let f ∈ PL−(µ) and ε > 0. From Figure 1 we have f ∈ QG−(µ). Given g ∈ f + FX∗ such

that ‖f − g‖∗ < µ, for any x ∈ Rd with projection x∗p onto X∗ we have:

‖∇f(x)−∇g(x)‖2 ≤ ‖f − g‖∗d (x,X∗) (37)

additionally for t ∈ [0, 1], d(x∗p + t(x− x∗p), X∗) = t
∥∥x− x∗p∥∥2

since x∗p ∈ X∗ and

|f(x)− g(x)| = |f(x)− g(x)− (f(x∗p)− g(x∗p))| =
∣∣∣∣∫ 1

0
〈∇(f − g)(x∗p + t(x− x∗p)), x− x∗p〉 dt

∣∣∣∣
≤
∫ 1

0
‖f − g‖∗d(x∗p + t(x− x∗p), X∗)‖x− x∗p‖2 dt

≤ ‖f − g‖∗‖x− x∗p‖22
∫ 1

0
t dt

≤ ‖f − g‖∗
2

d (x,X∗)2 (38)

Since f ∈ QG−(µ) and ‖f − g‖∗ < µ:

g(x)− g(x∗p) ≥ f(x)− f∗ − |f(x)− g(x)− (f(x∗p)− g(x∗p))|

≥ µ− ‖f − g‖∗
2

d(x,X∗)2 ≥ 0 (39)
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Thus g admits a minimum value g∗ which is attained at any x∗ ∈ X∗. Therefore, ∀x ∈ Rd

g(x)− g∗ ≥ µ− ‖f − g‖∗
2

d(x,X∗)2. (40)

Since f ∈ PL−(µ), we have

‖∇g(x)‖22 = ‖∇g(x)−∇f(x)‖22 + ‖∇f(x)‖2 + 2〈∇g(x)−∇f(x),∇f(x)〉

≥ 0 + 2µ(f(x)− f∗)− 2‖∇g(x)−∇f(x)‖2
√

2µ(f(x)− f∗)
≥ 2µ(g(x)− g∗)− 2µ|f(x)− g(x)− (f∗ − g∗)|

− 2‖f − g‖∗ d(x,X∗)
√

2µ(g(x)− g∗ + |f(x)− g(x)− (f∗ − g∗)|) (41)

The second term can be easily bounded by (38) and 40; the third term can be bounded as follows√
g(x)− g∗ + |f(x)− g(x)− (f∗ − g∗)| ≤

√
(g(x)− g∗) +

√
|f(x)− g(x)− (f∗ − g∗)|

≤
√

(g(x)− g∗) +

√
‖f − g‖∗

2
d(x,X∗)2

≤
√

(g(x)− g∗) +

√
‖f − g‖∗

µ− ‖f − g‖∗
(g(x)− g∗)

=

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)√
(g(x)− g∗) (42)

where we applied again (38) and (40). Finally we get:

‖∇g(x)‖22 ≥ 2

[
µ− µ‖f − g‖∗

µ− ‖f − g‖∗
− ‖f − g‖∗

√
2

µ− ‖f − g‖∗

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)]
(g(x)− g∗)

≥ 2(µ− ε)(g(x)− g∗) (43)

provided that ‖f − g‖∗ is small enough. Indeed, the quantity

0 ≤ µ‖f − g‖∗
µ− ‖f − g‖∗

+ ‖f − g‖∗

√
2

µ− ‖f − g‖∗

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)
→ 0, as ‖f − g‖∗ → 0,

therefore ∀ ε > 0, ∃ δ > 0 such that for ‖f − g‖∗ ≤ δ, we have

µ‖f − g‖∗
µ− ‖f − g‖∗

+ ‖f − g‖∗

√
2

µ− ‖f − g‖∗

(
1 +

√
‖f − g‖∗

µ− ‖f − g‖∗

)
≤ ε.

In conclusion, g ∈ PL−(µ− ε).
Let us now consider f ∈ PL+(L) ∩QG−(µ), and g ∈ f + FX∗ such that ||f − g||∗ < µ.

‖∇g(x)‖22 = ‖∇g(x)−∇f(x)‖22 + ‖∇f(x)‖22 + 2〈∇g(x)−∇f(x),∇f(x)〉 (44)
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The second term can be estimated thanks to (38) and (40):

‖∇f(x)‖22 ≤ 2L(f(x)− g(x)− (f∗ − g∗)) + 2L(g(x)− g∗)

≤ 2L

(
||f − g||∗

µ− ||f − g||∗
+ 1

)
(g(x)− g∗); (45)

and similarly the third term:

〈∇g(x)−∇f(x),∇f(x)〉 ≤ ‖∇g(x)−∇f(x)‖2 ‖∇f(x)‖2

≤ ||f − g||∗d(x,X∗)

√
2L

(
||f − g||∗

µ− ||f − g||∗
+ 1

)
(g(x)− g∗)

≤ ||f − g||∗

√
4L

µ− ||f − g||∗

(
||f − g||∗

µ− ||f − g||∗
+ 1

)
(g(x)− g∗).

(46)

This finally leads to:

‖∇g(x)‖22 ≤ 2(L+K)(g(x)− g∗) ≤ 2(L+ ε)(g(x)− g∗) (47)

where

K =

[
‖f − g‖∗

µ− ‖f − g‖∗
+

L‖f − g‖∗
µ− ‖f − g‖∗

+ ‖f − g‖∗

√
4L

µ− ‖f − g‖∗

(
‖f − g‖∗

µ− ‖f − g‖∗
+ 1

)]
,

provided that ‖f − g‖∗ is small enough. Following a similar argument as before, we can easily see
that K ≥ 0 and K → 0 as ‖f − g‖∗ → 0, therefore ∀ ε > 0, ∃ δ > 0 such that if ‖f − g‖∗ ≤ δ, then
K ≤ ε. Therefore, g ∈ PL+(L+ ε).

Continuity of QG− and QG+:
Given f ∈ QG+(L): f(x)− f∗ ≤ L

2 d(x,X∗)2, ∀x ∈ Rd. Consider g = f + h, h ∈ FX∗ with
‖h‖∗ = sup ‖∇f(x)−∇g(x)‖2

d(x,X∗) = sup ‖∇h(x)‖2
d(x,X∗) ≤ ε, then ∀x ∈ Rd, with x∗p ∈ X∗ the corresponding

projection on X∗,

g(x)− g∗ = f(x) + h(x)− (f∗ + h∗) = f(x)− f∗ + h(x)− h∗

≤ L

2
d(x,X∗)2 +

∫ 1

0
〈∇h(x∗p + t(x− x∗p)), x− x∗p〉 dt

≤ L

2
d(x,X∗)2 +

∫ 1

0

∥∥∇h(x∗p + t(x− x∗p))
∥∥

2
‖x− x∗p‖2 dt

≤ L

2
d(x,X∗)2 +

∫ 1

0

∥∥∇h(x∗p + t(x− x∗p))
∥∥

2

‖x∗p + t(x− x∗p)−X∗‖2
‖x∗p + t(x− x∗p)−X∗‖2‖x− x∗p‖2 dt

≤ L

2
d(x,X∗)2 + ‖h‖∗‖x− x∗p‖22

∫ 1

0
t dt

≤ L+ ε

2
d(x,X∗)2 (48)

where we used ‖x∗p + t(x− x∗p)−X∗‖2 ≤ t‖x− x∗p‖2, ∀ t ∈ [0, 1]; as before, for x = x∗ ∈ X∗ the
inequality is trivial. Therefore, g ∈ QG+(L+ ε).

The proof that g ∈ QG−(µ− ε) if f ∈ QG−(µ) for g ∈ f + FX∗ , ‖f − g‖∗ ≤ ε < µ, follows
the same argument.
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Appendix C. Graph of lower conditions

SC−(µ)→ ∗SC−(µ): Immediate by taking y = x∗p (the projection of x ∈ Rd onto X∗) in the
definition of strong convexity.

∗SC−(µ)→ PL−(µ): Assume f ∈ ∗SC−(µ): f∗ ≥ f (x) + 〈∇f(x), x∗p − x〉 + µ
2

∥∥x∗p − x∥∥2

2
,

∀x ∈ Rd. Hence,

f∗ − f (x) ≥ − 1

2µ
‖∇f(x)‖22 +

1

2µ

∥∥∇f(x) + µ
(
x∗p − x

)∥∥2

2
≥ − 1

2µ
‖∇f(x)‖22 (49)

i.e. ‖∇f(x)‖22 ≥ 2µ(f − f∗). Therefore, f ∈ PL−(µ).

PL−(µ)→ QG−(µ): The claim was originally proven in [17], following some arguments from
[8] and [32] and we will report it here for the sake of completeness.

Consider the gradient flow of g(x) =
√
f(x)− f∗: x′(t) = −∇g(x(t)). Note the f ∈ PL−(µ)

implies that ‖∇g(x)‖22 ≥
µ
2 > 0 ∀x ∈ Rd; in particular, despite the fact that g attains its minimum

on the set X∗, ∇g may not be defined on X∗ and the gradient flow equation ceases to be defined
once X∗ is reached. We then study the path of a gradient flow of g until it hits X∗: ∀x0 ∈ Rd,
∀T > 0 for which the flow is defined,

g(x0) ≥ g(x0)− g(xT ) = −
∫ T

0
〈∇g(x(t)), x′(t)〉dt =

∫ T

0
‖∇g(x(t))‖22 dt

≥
∫ T

0

µ

2
dt =

µ

2
T, (50)

where the first inequality follows from the fact that g is non-negative and the second inequality
follows from the PL−(µ) property. This proves the existence of T ∗ = T ∗(x0) such that xT ∗ ∈ X∗.

Therefore, ∀x0 ∈ Rd

g(x0) =g(x0)− g(xT ∗) =

∫ T ∗

0
‖∇g(x(t))‖22 dt

≥
√
µ

2

∫ T ∗

0
‖∇g(x(t))‖2 dt =

√
µ

2

∫ T ∗

0

∥∥x′(t)∥∥
2

dt

≥
√
µ

2

∥∥∥∥∥
∫ T ∗

0
x′(t) dt

∥∥∥∥∥
2

=

√
µ

2
‖x0 − xT ∗‖2

≥
√
µ

2
d(x0, X

∗) (51)

and, by squaring on both sides,

f(x)− f∗ = g(x)2 ≥ µ

2
d(x,X∗)2; (52)

i.e. f ∈ QG−(µ).
∗SC−(µ1) and QG−(µ2)→ RSI−

(µ1+µ2
2

)
: For f ∈ ∗SC−(µ1) ∩QG−(µ2), we have

〈∇f(x), x− x∗p〉 ≥ f(x)− f∗ +
µ1

2

∥∥x∗p − x∥∥2

2
≥ µ1 + µ2

2

∥∥x∗p − x∥∥2

2
(53)

i.e. f ∈ RSI−
(µ1+µ2

2

)
. Note that this holds also for non positive µ1. In particular, if f ∈ QG−(µ)

and f is *-convex (µ1 = 0), then f ∈ RSI−(µ2 ).
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∗SC−(µ)→ RSI− (µ): This follows directly from the three previous results. Indeed, ∗SC−(µ) ⊆
PL−(µ) ⊆ QG−(µ) and ∗SC−(µ) ∩QG−(µ) ⊆ RSI−(µ).

RSI−(µ)→ QG−(µ): For every x ∈ Rd consider the line segment x(t) = x∗p + t(x − x∗p),
t ∈ [0, 1], with x∗p ∈ X∗ the projection of x onto X∗. It is clear that ∀ t ∈ [0, 1] the projection of
x(t) onto X∗ is still x∗p. Since f ∈ RSI−(µ), ∀x ∈ Rd

〈∇f(x∗p + t(x− x∗p)), t(x− x∗p)〉 ≥ µ‖t(x− x∗p)‖22 = µt2‖(x− x∗p)‖22, (54)

therefore

f(x)− f∗ =

∫ 1

0
〈∇f(x∗p + t(x− x∗p)), x− x∗p〉dt ≥

∫ 1

0
µt
∥∥x− x∗p∥∥2

2
dt =

µ

2

∥∥x− x∗p∥∥2

2
,

(55)

implying that f ∈ QG−(µ).

RSI−(µ)→ EB−(µ): It follows from Cauchy-Schwartz inequality.

PL−(µ1) ∩QG−(µ2)→ EB−
(√
µ1µ2

)
: Assume f ∈ PL−(µ1) ∩QG−(µ2):

1

2
‖∇f(x)‖22 ≥ µ1 (f(x)− f∗) ≥ µ1µ2

2
‖x− x∗p‖22 (56)

i.e. ‖∇f(x)‖2 ≥
√
µ1µ2‖x− x∗p‖2.

Hence, f ∈ EB−
(√
µ1µ2

)
. Note that PL−(µ) ⊆ QG−(µ), therefore PL−(µ) ⊆ EB−(µ) (set

µ1 = µ2 = µ).

EB−(µ) ∩QG+(L)→ PL−(µ2/L): Given f ∈ EB−(µ) ∩QG+(L), ∀x ∈ Rd

‖∇f(x)‖22 ≥ µ2‖x− x∗p‖22 ≥
2µ2

L
(f(x)− f∗) (57)

i.e. f ∈ PL−(µ2/L).

Appendix D. Graph of upper conditions

SC+(L)→ PL+(L): Assume f ∈ SC+(L), hence ∀x, y ∈ Rd

f(y) ≤ f (x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖22

= f(x)− 1

2L
‖∇f(x)‖22 +

1

2L
‖∇f(x) + L (y − x)‖22 (58)

In particular, ∀x, y ∈ Rd

f∗ ≤ f(y) ≤ f(x)− 1

2L
‖∇f(x)‖22 +

1

2L
‖∇f(x) + L (y − x)‖22 (59)

and by choosing y = x− ∇f(x)
L , we have

f∗ − f(x) ≤ − 1

2L
‖∇f(x)‖22 , i.e.

1

2
‖∇f(x)‖22 ≤ L (f(x)− f∗) (60)

Hence, f ∈ PL+(L).
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PL+(L)→ ∗SC+(L): Assume f ∈ PL+(L), hence

f∗ − f(x) ≤ − 1

2L
‖∇f(x)‖22

≤ − 1

2L
‖∇f(x)‖22 +

1

2L

∥∥∇f(x) + L
(
x∗p − x

)∥∥2

2

f∗ ≤ f (x) + 〈∇f(x), x∗p − x〉+
L

2

∥∥x∗p − x∥∥2

2
(61)

Hence, f ∈ ∗SC+(L).

PL+(L)→ QG+(L): Assume f ∈ PL+(L) and consider the function g(x) =
√
f(x)− f∗:

since f ∈ PL+(L), we have ‖∇g(x)‖22 ≤ L
2 , ∀x ∈ Rd. Then,

g(x) =g(x)− g(x∗p) =

∫ 1

0
〈∇g(x∗p + t(x− x∗p)), x− x∗p〉 dt

≤
∫ 1

0

∥∥∇g(x∗p + t(x− x∗p))
∥∥

2

∥∥(x− x∗p)
∥∥

2
dt

≤
∫ 1

0

√
L

2

∥∥x− x∗p∥∥2
dt ≤

√
L

2

∥∥x− x∗p∥∥2
(62)

Therefore, by squaring on both sides,

f(x)− f∗ ≤ L

2
‖x− x∗p‖22. (63)

Note: this result is not explicit in the graph as it can be recover by following the existing edges.
However we needed to prove it here for the following result.

PL+(L)→ EB+(L): Assume f ∈ PL+(L1) ∩QG+(L2), then

‖∇f(x)‖22 ≤ 2L1(f(x)− f∗) ≤ L1L2‖x− x∗p‖22, (64)

hence f ∈ EB+(
√
L1L2). In particular, from the previous result we have that if f ∈ PL+(L), then

f ∈ QG+(L), hence f ∈ EB+(L) (take L1 = L2 = L).

EB+(L)→ RSI+(L): Given f ∈ EB+(L),

〈∇f(x), x− x∗p〉 ≤ ‖∇f(x)‖2 · ‖x− x∗p‖2 ≤ L‖x− x∗p‖22, (65)

therefore f ∈ RSI+(L).

∗SC+(L)→ QG+(L): For each x ∈ Rd, with x∗p ∈ X∗ its projection onto X∗, define

g(t) =
L
2 ‖t(x− x

∗
p)‖22 −

(
f(x∗p + t(x− x∗p))− f∗

)
t

, t ∈ (0,+∞).

We verify that

g′(t) =
L
2

∥∥t(x− x∗p)∥∥2

2
− 〈∇f(x∗p + t(x− x∗p)), x− x∗p〉+

(
f(x∗ + t(x− x∗p))− f∗

)
t2

≥ 0

(66)
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since f ∈ ∗SC+(L). Therefore, g is monotonically increasing on (0,+∞). Additionally, g can be
continuously extended in t = 0 by l’Hôpital’s rule:

lim
t→0+

g(t) = lim
t→0+

Lt‖(x− x∗p)‖22 − 〈∇f(x∗p + t(x− x∗p)), x− x∗p〉 = 0.

Therefore,

g(1) =
L

2
‖x− x∗p‖22 − (f(x)− f∗) ≥ g(0) = 0

i.e. f(x)− f∗ ≤ L
2 ‖x− x

∗
p‖22: f ∈ QG+(L).

∗SC+(L)→ RSI+(L): Let f ∈ ∗SC+(L1) ∩QG+(L2):

〈∇f(x), x− x∗p〉 ≤f(x)− f∗ +
L1

2

∥∥x− x∗p∥∥2

2
≤ L1 + L2

2

∥∥x− x∗p∥∥2

2
, (67)

therefore f ∈ RSI+(L1+L2
2 ). In particular, since ∗SC+(L) ⊆ QG+(L), then ∗SC+(L) ⊆ RSI+(L).

RSI+(L)→ ∗SC+(2L): For f ∈ RSI+(L), we have

〈∇f(x), x− x∗p〉 ≤ L
∥∥x− x∗p∥∥2

2
≤ f(x)− f∗ + L

∥∥x− x∗p∥∥2

2
(68)

i.e. f ∈ ∗SC+(2L).

RSI+(L)→ QG+(L): For every x ∈ Rd consider the line segment x(t) = x∗p + t(x − x∗p),
t ∈ [0, 1]; recall that ∀ t ∈ [0, 1] the projection of x(t) onto X∗ is still x∗p. Since f ∈ RSI+(L),
∀x ∈ Rd

〈∇f(x∗p + t(x− x∗p)), t(x− x∗p)〉 ≤ L‖t(x− x∗p)‖22 = Lt2‖x− x∗p‖22, (69)

Therefore, f ∈ QG+(L):

f(x)− f∗ =

∫ 1

0
〈∇f(x∗ + t(x− x∗p)), x− x∗p〉dt ≤

∫ 1

0
Lt
∥∥x− x∗p∥∥2

2
dt =

L

2

∥∥x− x∗p∥∥2

2
.

(70)

SC−(µ) and QG+(L)→ EB+
(
L+

√
L(L− µ)

)
: Assume f ∈ SC−(µ)∩QG+(L), with µ <

L, and µ can be non positive (we recall that f ∈ SC−(0) is convex). The case µ ≥ L is trivial as it
implies f(x)− f∗ = L

2 ‖x− x
∗
p‖2 ∀x ∈ Rd.

We have by definition: ∀x, y ∈ Rd

f(x)− f∗ + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22

SC−

≤ f(y)− f∗
QG+

≤ L

2

∥∥y − y∗p∥∥2

2
≤ L

2

∥∥y − x∗p∥∥2

2
;

(71)

in particular,

f(x)− f∗ + 〈∇f(x), y − x〉+
µ

2
‖y − x‖22 ≤

L

2

∥∥y − x∗p∥∥2

2
(72)
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and by choosing y =
Lx∗p−µx+∇f(x)

L−µ we have

Lµ
∥∥x− x∗p∥∥2

2
+ ‖∇f(x)‖22 + 2L〈∇f(x), x∗p − x〉 ≤ 2(L− µ) · (f∗ − f(x)) (73)

The RHS is non positive, then by removing it and factoring the LHS∥∥∇f(x) + L(x∗p − x)
∥∥2

2
≤ L(L− µ)

∥∥x− x∗p∥∥2

2
; (74)

finally, by triangle inequality,

‖∇f(x)‖2 − L
∥∥x∗p − x∥∥2

≤
√
L(L− µ)

∥∥x− x∗p∥∥2
(75)

‖∇f(x)‖2 ≤
(
L+

√
L(L− µ)

)∥∥x− x∗p∥∥2
(76)

Hence, f ∈ EB+
(
L+

√
L(L− µ)

)
. Note that for µ = 0 (i.e. f is convex), we have

QG+(L)→ EB+(2L).

SC−(µ) and ∗SC+(L)→ EB+ (L+ 2 max{−µ, 0}): Assume f ∈ SC−(µ) ∩ ∗SC+(L). In
particular f ∈ QG+(L), then all the previous results still hold. From (73) we have

Lµ
∥∥x− x∗p∥∥2

2
+ ‖∇f(x)‖22 + 2L〈∇f(x), x∗p − x〉 ≤ 2(L− µ) · (f∗ − f(x))

≤ 2(L− µ) ·
[
〈∇f(x), x∗p − x〉+

L

2
‖x− x∗2‖

2
2

]
(77)

thanks to f ∈ ∗SC+(L), i.e.

‖∇f(x)‖22 + 2µ〈∇f(x), x∗p − x〉 ≤ L(L− 2µ)
∥∥x− x∗p∥∥2

2
.

After rearranging the terms, we obtain
∥∥∇f(x) + µ(x∗p − x)

∥∥2

2
≤ (L − µ)2

∥∥x− x∗p∥∥2

2
and by

triangle inequality

‖∇f(x)‖2 − |µ|
∥∥x∗p − x∥∥2

≤ (L− µ)
∥∥x− x∗p∥∥2

, (78)

i.e.
‖∇f(x)‖2 ≤ (L+ 2 max{−µ, 0})

∥∥x− x∗p∥∥2
.

Finally f ∈ EB+ (L+ 2 max{−µ, 0}). In particular, under convex assumption (µ = 0), ∗SC+(L)→
EB+(L).

QG−(µ) and EB+(L)→ PL+
(
L2

µ

)
: Let f ∈ QG−(µ) ∩ EB+(L), we have:

1

2
‖∇f(x)‖22 ≤

1

2
L2
∥∥x− x∗p∥∥2

2
≤ 1

2
L2 2

µ
(f(x)− f∗) =

L2

µ
(f(x)− f∗), (79)

therefore, f ∈ PL+
(
L2

µ

)
.
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Appendix E. Rates of convergence

Under SC−(µ) and SC+(L) This is a known result and we refer to the proof in [9, Section 3.4.2].
Let’s assume f ∈ SC−(µ) ∩ SC+(L) with L > µ (the other case is trivial): ∀x, y, z ∈ Rd

f(y)+〈∇f(y), x−y〉+µ

2
‖x− y‖22

SC−(µ)

≤ f(x)
SC+(L)

≤ f(z)+〈∇f(z), x−z〉+L

2
‖x− z‖22 (80)

i.e. ∀x, y, z ∈ Rd

f(z)− f(y) + 〈∇f(z), x− z〉 − 〈∇f(y), x− y〉+
L

2
‖x− z‖22 −

µ

2
‖x− y‖22 ≥ 0. (81)

By minimizing the left hand side of the above expression with respect to the variable x, we find that
for

x =
Lz − µy +∇f(y)−∇f(z)

L− µ
(82)

the inequality becomes

f(y)− f(z) ≤ 1

L− µ

[
〈z − y, µ∇f(z)− L∇f(y)〉 − 1

2
‖∇f(y)−∇f(z)‖22 −

Lµ

2
‖y − z‖22

]
(83)

∀ y, z ∈ Rd. By swapping the roles of y and z, summing, and rearranging terms, we obtain the
well-known inequality (see, e.g. [28]): ∀ y, z ∈ Rd

〈z − y,∇f(z)−∇f(y)〉 ≥ 1

L+ µ

(
‖∇f(y)−∇f(z)‖2 + Lµ ‖y − z‖2

)
. (84)

Note that f ∈ SC−(µ) implies that X∗ = {x∗}. In conclusion,

‖xn+1 − x∗‖22 = ‖xn − x∗ − α∇f(xn)‖22
‖xn − x∗‖22 − 2α〈∇f(xn), xn − x∗〉+ α2 ‖∇f(xn)‖22

≤
(

1− 2αLµ

L+ µ

)
‖xn − x∗‖22 + α

(
α− 2

L+ µ

)
‖∇f(xn)‖22

=

(
κ− 1

κ+ 1

)2

‖xn − x∗‖22 (85)

for α = 2
L+µ .

Under PL−(µ) and SC+(L) Let’s assume f ∈ PL−(µ) ∩ SC+(L). Then,

f(xn+1)− f∗ ≤ f(xn)− f∗ − α
(

1− Lα

2

)
‖∇f(xn)‖22

≤ f(xn)− f∗ − 2µα

(
1− Lα

2

)
(f(xn)− f∗)

=

(
1− 1

κ

)
(f(xn)− f∗) (86)

for α = 1
L .
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Under ∗SC−(µ) and PL+(L) Assume f ∈ ∗SC−(µ) ∩ PL+(L). ∀ n ∈ N, let x∗n,p be the
projection of xn on X∗. Then,

d(xn+1, X
∗)2 ≤

∥∥xn+1 − x∗n,p
∥∥2

2
=
∥∥xn − x∗n,p∥∥2

2
− 2α〈xn − x∗n,p,∇f(xn)〉+ α2 ‖∇f(xn)‖22

≤
∥∥xn − x∗n,p∥∥2 − 2α

(
f(xn)− f∗ +

µ

2

∥∥xn − x∗n,p∥∥2

2

)
+ 2α2L (f(xn)− f∗)

= (1− µα)
∥∥xn − x∗n,p∥∥2

2
− 2α(1− Lα)(f(xn)− f∗) (87)

=

(
1− 1

κ

)
d(xn, X

∗)2 for α = 1
L .

Note this proof is quite similar to the proof of Theorem 3.1 in [13] applied directly to the
deterministic case.

Next, we show a similar proof that follows the same idea but doesn’t require ∗SC−(µ).

Under ∗SC−(0), RSI−(µ) and PL+(L) Assume f ∈ ∗SC−(0) ∩ RSI−(µ) ∩ PL+(L). From
star convexity, we have 〈∇f(x), x − xp〉 ≥ f(x) − f∗, and from restricted secant inequality
〈∇f(x), x− xp〉 ≥ µ‖x− xp‖2. Combining the two, we obtain

〈∇f(x), x− xp〉 ≥
1

2
(f(x)− f∗) +

µ

2
‖x− xp‖2.

With similar argument as above, denote x∗n,p the projection of xn on X∗, ∀n ∈ N. Then,

d(xn+1, X
∗)2 ≤

∥∥xn+1 − x∗n,p
∥∥2

2
=
∥∥xn − x∗n,p∥∥2

2
− 2α〈xn − x∗n,p,∇f(xn)〉+ α2 ‖∇f(xn)‖22

≤
∥∥xn − x∗n,p∥∥2 − 2α

(
1

2
(f(xn)− f∗) +

µ

2

∥∥xn − x∗n,p∥∥2

2

)
+ 2α2L (f(xn)− f∗)

= (1− µα)
∥∥xn − x∗n,p∥∥2

2
− α(1− 2Lα)(f(xn)− f∗)]

=

(
1− 1

2κ

)
d(xn, X

∗)2 (88)

for α = 1
2L .

Under RSI−(µ) and EB+(L) Assume f ∈ RSI−(µ)∩EB+(L), and for some n ∈ N, x∗p denotes
the projection of xn on X∗. Then

d(xn+1, X
∗)2 ≤

∥∥xn+1 − x∗p
∥∥2

2
=
∥∥xn − x∗p∥∥2

2
− 2α〈xn − x∗p,∇f(xn)〉+ α2 ‖∇f(xn)‖22

≤
∥∥xn − x∗p∥∥2 − 2αµ

∥∥xn − x∗p∥∥2

2
+ α2L2

∥∥xn − x∗p∥∥2

2

=
(
1− 2µα+ L2α2

) ∥∥xn − x∗p∥∥2

2
(89)

=

(
1− 1

κ2

)
d(xn, X

∗)2 for α = µ
L2 .
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Under SC−(µ) and QG+(L) Assume f ∈ SC−(µ) ∩QG+(L) with some L ≥ µ > 0. Note that
this implies that f has a unique minimum x∗.

Define g(x) = 1
2‖x − x

∗‖22 − 1
L(f(x) − f∗); then, g ∈ C1(Rd) and g(x) ≥ 0 = g∗, since

f ∈ QG+(L), with g(x∗) = 0. Let X∗ be the set of all minima of g, including the f minimizer x∗.
g ∈ SC+

(
1− 1

κ

)
with κ = µ

L : indeed, ∀x, y ∈ Rd

g(y)− g(x)− 〈∇g(x), y − x〉

=
1

2
‖y − x∗‖22 −

1

L
(f(y)− f∗)− 1

2
‖x− x∗‖22 +

1

L
(f(x)− f∗)− 〈(x− x∗)− 1

L
∇f(x), y − x〉

≤ − µ

2L
‖x− y‖22 +

1

2

(
‖y − x∗‖22 − ‖x− x∗‖22 − 2〈x− x∗, y − x〉

)
≤ − µ

2L
‖x− y‖22 +

1

2

(
‖y − x∗‖22 + ‖x− x∗‖22 − 2〈x− x∗, y − x〉

)
=

1

2

(
1− µ

L

)
‖x− y‖22 (90)

since f ∈ SC−(µ). This implies g ∈ EB+
(
1− 1

κ

)
:

‖∇g(x)‖2 =

∥∥∥∥(x− x∗)− 1

L
∇f(x)

∥∥∥∥
2

≤
(

1− 1

κ

)
d(x,X∗) ≤

(
1− 1

κ

)
‖x− x∗‖2

Therefore, in the GD algorithm with step size α = 1
L , we get

‖xn+1 − x∗‖2 =

∥∥∥∥xn − x∗ − 1

L
∇f(xn)

∥∥∥∥
2

≤
(

1− 1

κ

)
‖xn − x∗‖2 (91)

Hence the linear rate
(
1− 1

κ

)2.

Rates of convergence for any pair of upper and lower condition. We collected all the above
results in Table 2. For any pair of upper and lower condition f ∈ C+(L) ∩ C−(µ), we define κ = L

µ .
We will justify here all the entries.

The rates in the first column (f ∈ SC−(µ)) follows from the fact that if f ∈ SC+(L), we recover
the classical convergence rate for L-smooth and µ-strongly convex functions, while for any other
upper condition C+(L), we use the fact that C+(L) ⊆ QG+(L) and we have convergence rate of
(1− 1

κ)2.
In the first row (f ∈ SC+(L)), the rate of convergence 1− 1

κ holds for f ∈ PL−(µ) (as proven)
and f ∈ ∗SC−(µ) (since ∗SC−(µ) ⊂ PL−(µ)); the rate of convergence 1 − 1

κ2
instead holds for

f ∈ EB−(µ) (since EB−(µ) ∩ SC+(L) ⊂ PL−(µ
2

L )) and consequently also for f ∈ RSI−(µ)
(since RSI−(µ) ⊂ EB−(µ)).

We proved that for f ∈ RSI−(µ) ∩ EB+(L) the GD algorithm converges with rate 1 − 1
κ2

;
the same rate of convergence is also valid for f ∈ ∗SC−(µ) ⊂ RSI−(µ) and/or f ∈ PL+(L) ⊂
EB+(L). This justifies entries (2, 4), (3, 2) and (3, 4) in Table 2.

For entry (2, 2), we proved a convergence rate of 1 − 1
κ under assumption f ∈ ∗SC−(µ) ∩

PL+(L). We also completed the entry (2, 4) under star convexity. Since SC+(L) ⊂ PL+(L), this
rate also holds in (1, 4).

Similarly, under the additional assumption of star convexity, we have that f ∈ QG−(µ)∩ ∗SC(0) ⊂
RSI−(µ2 ), therefore if f ∈ QG−(µ) ∩ ∗SC(0) ∩ EB+(L), GD converges with linear rate 1− 1

4κ2
.
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Table 2: Linear rates for the GD algorithm for each pair of conditions, as function of κ = L
µ .

Rates marked with ∗/† hold under the additional assumption of star-convexity/convexity,
respectively. Rates are colored in green if corresponding to a continuous pair of conditions
and red otherwise.

Rates of cv SC−(µ) ∗SC−(µ) PL−(µ) RSI−(µ) EB−(µ) QG−(µ)

SC+(L)
(
κ−1
κ+1

)2
1− 1

κ 1− 1
κ 1− 1

κ2
/ 1− 1

2κ * 1− 1
κ2

1− 1
4κ *

PL+(L)
(
1− 1

κ

)2
1− 1

κ 1− 1
4κ * 1− 1

κ2
/ 1− 1

2κ * 1− 1
4κ2

* 1− 1
4κ *

EB+(L)
(
1− 1

κ

)2
1− 1

κ2
1− 1

4κ2
* 1− 1

κ2
1− 1

4κ4
* 1− 1

4κ2
*

∗SC+(L)
(
1− 1

κ

)2
1− 1

κ2
† 1− 1

4κ2
† 1− 1

κ2
† 1− 1

4κ4
† 1− 1

4κ2
†

RSI+(L)
(
1− 1

κ

)2
1− 1

4κ2
† 1− 1

16κ2
† 1− 1

4κ2
† 1− 1

16κ4
† 1− 1

16κ2
†

QG+(L)
(
1− 1

κ

)2
1− 1

4κ2
† 1− 1

16κ2
† 1− 1

4κ2
† 1− 1

16κ4
† 1− 1

16κ2
†

Following the same argument, for f ∈ QG−(µ) ∩ ∗SC(0) and upper conditions f ∈ PL+(L) or
f ∈ SC+(L), GD converges with linear rate 1− 1

4κ . Entries (2, 3), (2, 5), (3, 3) and (3, 5) follows
from PL−(µ) ⊂ QG−(µ) and EB−(µ) ∩QG+(L) ⊂ PL−(µ

2

L ).
If we assume f to be convex, the rates of convergence on the fourth line (f ∈ ∗SC+(L)) follow

from the fact that ∗SC+(L) ∩ SC−(0) ⊂ EB+(L). The rates on the last line (f ∈ QG+(L)) follow
from QG+(L) ∩ SC−(0) ⊂ EB+(2L); similarly on the fifth line (RSI+(L) ⊂ QG+(L)).

As a last remark, we show that the additional assumption of f being convex (or star convex)
is fundamental in some cases in order to obtain convergence of the GD algorithm. We will show
here that the sole pair of conditions SC+(L) ∩QG−(µ) doesn’t guarantee convergence of gradient
descent.

Let ε, η > 0. Consider the following function f ∈ C1(R):

f(x) =


1
2x

2 x < 1

− 1
2εx

2 + 1+ε
ε x− 1+ε

2ε 1 ≤ x < 1 + ε
1+ε

2 1 + ε ≤ x < 1 + ε+ η
1
2x

2 − (1 + ε+ η)x+ (1+ε+η)2

2 + 1+ε
2 1 + ε+ η ≤ x

(92)

By inspecting its second derivative (where defined) we can conclude that f ∈ SC+(1) ∩
SC−

(
−1
ε

)
.

Furthermore, 2f(x)
x2

reaches its minimum at x̄ = (1+ε+η)2+1+ε
1+ε+η , with 2f(x̄)

x̄2
= 1+ε

(1+ε+η)2+1+ε
> 0,

therefore f ∈ QG−
(

1+ε
(1+ε+η)2+1+ε

)
.

On the other hand, f ′(x) = 0 on [1 + ε, 1 + ε+ η], therefore if one of the iterates xj of the GD
algorithm falls into this interval, then xk ∈ [1 + ε, 1 + ε + η] ∀ k ≥ j and the algorithm fails to
converge.

In the following, we will see sublinear convergence analysis under only upper conditions.
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Under ∗SC−(0) and SC+(L) This proof is a very classical one [6], and it is based on studying
the monotonic properties of the Lyapunov function Vn = n (f(xn)− f∗) + 1

2αd(xn, X
∗)2. ∀n ∈ N,

let x∗n,p be the projection of xn onto X∗.

Vn+1 = (n+ 1) (f(xn+1)− f∗) +
1

2α
‖xn+1 − x∗n,p‖2

SC+(L)

≤ (n+ 1)

(
f(xn)− f∗ +

(
L

2
α2 − α

)
‖∇f(xn)‖2

)
+

1

2α

(
‖xn − x∗n,p‖2 − 2α〈∇f(xn), xn − x∗n,p〉+ α2 ‖∇f(xn)‖2

)
= Vn + (f(xn)− f∗) +

(
(n+ 1)

(
L

2
α2 − α

)
+
α

2

)
‖∇f(xn)‖2 − 〈∇f(xn), xn − x∗n,p〉

∗SC−(0)

≤ Vn +

(
(n+ 1)

(
L

2
α2 − α

)
+
α

2

)
‖∇f(xn)‖2

≤ Vn for α = 1
L

Therefore, Vn is decreasing and in particular

n(f(xn)− f∗) ≤ Vn ≤ V0 ≤
L

2
d(x0, X

∗)2 (93)

Leading to the desired rate

f(xn)− f∗ ≤ L

2n
d(x0, X

∗)2 (94)

Under ∗SC−(0) and PL+(L) ∀n ∈ N, let x∗n,p be the projection of xn onto X∗.

d(xn+1, X
∗)2 ≤ ‖xn+1 − x∗n,p‖2 = ‖xn − x∗n,p‖2 − 2α〈∇f(xn), xn − x∗n,p〉+ α2 ‖∇f(xn)‖2

≤ ‖xn − x∗n,p‖2 − 2α(f(xn)− f∗) + α2 × 2L(f(xn)− f∗) (95)

therefore,

2α(1− Lα)(f(xn)− f∗) ≤ d(xn, X
∗)2 − d(xn+1, X

∗)2. (96)

By summing the inequality above for k = 0, . . . , n, we have

2α(1− Lα)
n∑
k=0

(f(xk)− f∗) ≤ d(x0, X
∗)2 − d(xn+1, X

∗)2 ≤ d(x0, X
∗)2 (97)

and taking α = 1
2L ,

1

n+ 1

n∑
k=0

(f(xk)− f∗) ≤
2L

n+ 1
d(x0, X

∗)2 (98)
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we can conclude

min
k∈[|0,n|]

(f(xk)− f∗) ≤
2L

n+ 1
d(x0, X

∗)2 (99)

If additionally f ∈ SC−(0) (convex), we have the stronger result

f

(
1

n+ 1

n∑
k=0

xk

)
− f∗ ≤ 2L

n+ 1
d(x0, X

∗)2. (100)
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