
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

Escaping Saddle Points with Compressed SGD

Dmitrii Avdiukhin DAVDYUKH@IU.EDU

Grigory Yaroslavtsev GRIGORY@GRIGORY.US

Indiana University, Bloomington*

Abstract
Stochastic gradient descent (SGD) is a prevalent method for solving smooth nonconvex problems
arising in machine learning. Since SGD computation can be efficiently distributed across multiple
machines, communication often becomes the main bottleneck in applications. Gradient compression
methods can be used to alleviate this problem, and recent line of work shows that SGD with certain
compression methods convergence to an ε-first-order stationary point. In this work we extend these
result to convergence to an ε-second-order stationary point. By using Compressed SGD we show
that, compared to the uncompressed case:

• When stochastic gradient is not Lipschitz, total communication decreases by Õ(ε−3/4),

• When stochastic gradient is Lipschitz and ε = o(d−2/3), total communication decreases by Õ(ε
−3/4

/
√
d).

1. Introduction

Escaping from saddle points in nonconvex optimization is a topic of interest in a number of recent
optimization papers for machine learning [2, 7, 11, 17, 19]. Remarkably, first-order methods are able
to find approximate second-order stationary points in a number of iterations comparable to those
required to find first-order stationary points [11].

In practice, for massive machine learning workloads a large number of machines is required to
speed up the training process. Communication typically becomes the main bottleneck in training [5,
16] and hence a common solution is to apply gradient compression at every step [1, 9]. In this paper
we show that the main workhorse of distributed optimization for deep learning, stochastic gradient
descent (SGD), achieves fast guaranteed convergence to an approximate second-order stationary
point even when an optimal gradient compression is applied at every step. While it was shown
recently [9, 12] that this holds for first-order convergence, ours is the first analysis of second-order
convergence. In this sense, our results are similar to the breakthrough work of [7], who were the first
to show second-order convergence for uncompressed gradient descent methods.

Our main technical contribution is the analysis showing that compressed SGD can escape
from saddle points efficiently. Inspired by the ideas from [11] and [15] we present an algorithm
(Algorithm 1) which uses perturbed compressed gradients with error-feedback and converges to an
ε-second-order stationary point (see Theorem 6). Table 1 outlines communication improvements for
various choices of compression parameters. Unlike stochastic noise, which can’t behave adversarially,
errors arising from gradient compression can be highly correlated, introducing some amount of
slowdown in convergence compared to the optimal uncompressed methods of [11]. Despite this we

* Research supported by NSF award CCF-1657477 and Facebook Faculty Research Award.

© D. Avdiukhin & G. Yaroslavtsev.

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

are able to show substantial improvements in total communication for certain settings. It remains
open whether optimal rates of convergence can be achieved with compression.

2. Preliminaries

Function properties For a twice differentiable nonconvex function f , we consider the uncon-
strained minimization problem minx∈Rd f(x).

Assumption 1 We use the following standard [2, 6, 11, 18, 19] assumptions about the objective
function f :

Assumption 1.A f is fmax-bounded, has L-Lipschitz gradient and ρ-Lipschitz Hessian:

|f(x)− f(y)| ≤ fmax, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ‖∇2f(x)−∇2f(y)‖ ≤ ρ‖x− y‖

Lipschitz gradient is required to achieve fast convergence for nonconvex optimization problems.
In addition, Lipschitz Hessian allows one to show fast second-order convergence.

Assumption 1.B Unbiased stochastic gradient ∇F (x, θ), where θ is a randomness-controlling
parameter (e.g. a minibatch selected at a given iteration), with bounded variance:

Eθ [∇F (x, θ)] = ∇f(x), Eθ
[
‖∇F (x, θ)−∇f(x)‖2

]
≤ σ2

Assumption 1.C Lipschitz stochastic gradient. For any x,y, θ:

‖∇F (x, θ)−∇F (y, θ)‖ ≤ ˜̀‖x− y‖, ˜̀∈ [0; +∞]

Note that ˜̀can be +∞, corresponding to the case when this assumption doesn’t hold. From machine
learning perspective, Assumption 1.C means that for the same mini-batch, if the initial models are
close, their updates are also close. For neural networks, each network layer is a composition of an
activation function and a linear function, such assumption holds when each activation function is
Lipschitz (note however that ˜̀may grow exponentially with the number of layers).

Gradient compression Our goal is to optimize f in a distributed setting, when we have W
machines, each corresponding to a differentiable function fi such that f =

∑W
i=1 fi. Each machine

computes a stochastic gradient ∇Fi(x, θ) such that Eθ [∇Fi(x, θ)] = ∇fi(x). After that, the
gradients are gathered on the coordinator machine which computes the full stochastic gradient
∇F (x, θ) = 1

W
∑W

i=1∇F (x, θ). Using this gradient the coordinator can perform a stochastic
gradient step: xt+1 ← xt − η∇F (xt, θ), where xt is the previous iterate and η denotes the step size.

The key advantage of this approach is that by increasing the number of machines the computation
can be parallelized perfectly. However, with each machine required to send its gradient, communica-
tion becomes the main bottleneck. A popular solution to this issue is gradient compression: each
machine sends only an approximation of its gradient, e.g. a sign of each coordinate [3], k random
coordinates [15], the k largest coordinates [15], the compressed difference with the previous gradi-
ent [8], gradient quantization [1]. Then coordinator averages these approximations and broadcasts it
to all machines (possibly compressing it again).

We are interested in two properties of this protocol: how good the approximation is and how
much communication per machine it requires. The first property is formalized in the following
definition:

2

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Definition 1 A randomized function C(x) is a λ-compressor if

E
[
‖x− C(x)‖2

]
< λ‖x‖2

For example, a scaled sign function C(x) = ‖x‖1
d sign(x) is a (1 − 1

d)-compressor and returning
top k coordinates of a vector results in a (1− k

d)-compressor. However, it’s nontrivial to compute
compressors efficiently in a distributed setting, given that each machine stores only a part of the input
x(i) and computing x = 1

W
∑W

i=1 x
(i) explicitly would require O(d) communication per machine.

Addressing this question, the recent work of [9] uses a communication-efficient compressor with the
following property:

Lemma 2 ([9], Lemma 1, reformulated) There exists a 1 − k/d compressor C such that C(x)
requires only Õ(k) bits of communication per worker for any x.

This compressor returns k largest coordinates of the full stochastic gradient. The key idea is to
have the coordinator recover the indices of the k largest coordinates using COUNT SKETCH [4] and
then evaluate these coordinates on each machine. COUNT SKETCH allows one to achieve this with
Õ(k) communication per worker.

Stationary points While our goal is to find a local minimum, finding it is in general NP-hard [13].
Instead, as is standard in the literature, we can show convergence to an approximate first-order
stationary point or an approximate second-order stationary point.

Definition 3 For a differentiable function f , x is an ε-first-order stationary point (ε-FOSP) if
‖∇f(x)‖ ≤ ε.

An ε-FOSP can be a local maximum, a local minimum or a saddle point. While local minima often
correspond to good solutions, saddle points and local maxima are inherently suboptimal. Assuming
non-degeneracy, saddle points and local maxima have escaping directions, corresponding to Hessian’s
negative eigenvectors. Following [14] we refer to points with no escape directions (up to some
approximation) as approximate second-order stationary points:

Definition 4 ([14]) For a twice-differentiable, ρ-Hessian Lipschitz function f , x is an ε-second-order
stationary point (ε-SOSP) if ‖∇f(x)‖ ≤ ε and ∇2f(x) � −√ρε.

While one can consider two threshold parameters – εg for ∇f and εH for ∇2f – we follow
convention of [14] which selects εH = −√ρε, intuitively balancing first-order and second-order
variability. An important property of points which are not ε-SOSP is that they are unstable: adding a
small perturbation allows gradient descent to escape them [7]. Similar results were shown for other
gradient descent variations, e.g. stochastic [11] and accelerated [10] gradient descent. In this work
we will show that this property holds even for stochastic gradient descent with gradient compression.

3. Algorithm and analysis

Algorithm We present our algorithm in Algorithm 1. This algorithm is a compressed stochastic
gradient descent based on Algorithm 1 from [15]. However, in order to achieve second-order

3

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

convergence we add an artificial random noise ξt to gradient at every iteration (similarly to [11]). As
we show in Appendix B, this modification allows gradient descent to escape saddle points.

At every iteration t the algorithm computes stochastic gradient ∇F (xt, θt) and adds artificial
noise ξt to it. The resulting value is compressed and we update the current iterate xt using this value.
However, the error resulting from compression is not ignored: we calculate error feedback et+1 – the
difference between the computed value and the compressed value – and add it to the gradient in the
next iteration. [12] shows that carrying over the error term makes a difference for this algorithm’s
convergence to a first-order stationary point.

Algorithm 1: Compressed SGD
parameters: step size η, number of iterations T , artificial noise variance r2,
input :objective f , compressor function C, starting point x0

output :ε-SOSP of f
e0 ← 0d;
for t = 0 . . . T − 1 do

gt ← C(∇F (xt, θt) + ξt + et), ξt ∼ Nd(0d, r2);
xt+1 ← xt − ηgt ;
et+1 ← et +∇F (xt, θt) + ξt − gt;

end
return xT

Analysis To simplify the presentation, we introduce notation δ = (1−λ)/
√
λ. In the following

statements, Õ hides polynomial dependence on L, ρ, fmax, σ, ˜̀and polynomial dependence on all
parameters. The following result is similar to that of [15], but is slightly more general: it covers the
case when λ is close to 0 and doesn’t require an assumption of bounded gradients. The proof of the
Theorem is presented in Appendix A;

Theorem 5 (Convergence to ε-FOSP) Let f satisfy Assumption 1, C be a λ-compressor and δ =
(1−λ)√

λ
. Then for η = Õ

(
min(ε2, δε)

)
, after T = Õ

(
1
ε4

+ 1
δε3

)
iterations, at least half of visited

points are ε-FOSP.

The following theorem is our main result and shows that compressed SGD converges to an
ε-SOSP. The proof of the Theorem is presented in Appendix B;

Theorem 6 (Convergence to ε-SOSP) Let f satisfy Assumption 1, C be a λ-compressor and
δ = (1−λ)√

λ
. Let ησ = Õ(ε2) if Assumption C is satisfied and ησ = Õ

(
ε2

d

)
otherwise, ηλ =

Õ
(

min
(
δε, δ

2√ε
d

))
and η = min(ησ, ηλ). Then after T = Õ

(
1
ε2η

)
iterations, at least half of

visited points are ε-SOSP.

Convergence to ε-SOSP requires η ≤ ηλ, which may result in noticeably slower convergence
rate compared to ε-FOSP convergence. The reason for such behavior is that, for convergence to
ε-SOSP, compression introduces an error similar to that of the stochastic noise; however, unlike
the stochastic error, the compression is not Lipschitz even for deterministic gradients. For example,
consider the sign compressor used in [12]: C(x) = ‖x‖1

d sign(x). Two points x1 = (ε, . . . , ε) and
x2 = (−ε, . . . ,−ε) can be arbitrary arbitrarily close for small ε, but the difference between their
compressions is constant. See Lemma 22 in Appendix B for more details.

4

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Compressed SGD in distributed settings Below we consider different scenarios to illustrate how
convergence depends on the properties of the compressor. To estimate the total communication
in the compressed case, recall that by Lemma 2 there exists a (1− k

d)-compressor which requires
Õ(k) communication. By selecting λ = 1 − k

d , where k = o(d), we have δ = Θ
(
k
d

)
and

ηλ = Õ
(

min
(
kε
d ,

k2
√
ε

d3

))
. Therefore, the total number of iterations is Õ

(
1
ε4

+ d
kε3

+ d3

k2ε2
√
ε

)
and the total communication is Õ

(
k
ε4

+ d
ε3

+ d3

kε2
√
ε

)
.

Note that Lemma 2 considers a worst-case scenario. However, in practice it’s often possible to
achieve good compression at a low communication cost due to the fact that gradients often have
heavy coordinates, which are easy to recover. We formulate this beyond worst-case scenarios as the
following optional assumption:

Assumption 2 There exists a constant c < 1 such that for all t, C(∇F (xt, θt) + ξt + et) provides
a c compression and requires Õ(1) bits of communication per worker.

In other words, for all computed values C provides a constant compression and requires a
polylogarithmic amount of communication. This assumption can be satisfied under various conditions.
For example, some methods may take advantage of the situation when gradients between adjacent
iterations are close [8]. In cases when certain coordinates are much more prominent in the gradient
compared to others, top-k compressors show good performance.

Corollary 7 Algorithm 1 converges to ε-SOSP in a number of settings, as shown in Table 1.

Table 1: Convergence to ε-SOSP in various settings. Uncompressed setting corresponds to the
standard SGD convergence analysis. Compressed setting corresponds to using a compressor
(Lemma 2) of an appropriate size. Constant-size sketch is our beyond worst-case assumption
(Assumption 2) where we assume constant compression with Õ(1) communication. The last
column shows an improvement in total communication compared to the uncompressed case.
For Lipschitz stochastic gradients∇F , compression gives improvement for ε = o(d−2/3)

Setting λ Iterations
Total

communication
per worker

Total
communication
improvement

Uncompressed
Lipschitz∇F 0 Õ

(
1
ε4

)
Õ
(
d
ε4

)
−

Compressed
Lipschitz∇F

1−
√
dε3/4

(ε = o(d−2/3))
Õ
(

1
ε4

)
Õ
(

d
√
d

ε3+1/4

)
Õ
(

1
ε3/4
√
d

)
Constant-size sketch

Lipschitz∇F c < 1 Õ
(

1
ε4

+ d
ε3

)
Õ
(

1
ε4

+ d
ε3

)
Õ
(
min(d, 1ε)

)
Uncompressed

non-Lipschitz∇F 0 Õ
(
d
ε4

)
Õ
(
d2

ε4

)
−

Compressed
non-Lipschitz∇F 1− ε3/4 Õ

(
d
ε4

)
Õ
(

d2

ε3+1/4

)
Õ(1

ε3/4
)

Constant-size sketch
non-Lipschitz∇F c < 1 Õ

(
d
ε4

)
Õ
(
d
ε4

)
Õ (d)

5

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

References

[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1709–1720, 2017.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In Advances in neural
information processing systems, pages 2675–2686, 2018.

[3] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems. arXiv preprint arXiv:1802.04434, 2018.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002.

[5] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14), pages 571–582, 2014.

[6] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping from
saddle points. arXiv preprint arXiv:1902.00247, 2019.

[7] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on Learning Theory, pages 797–
842, 2015.

[8] Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. Sega: Variance reduction via
gradient sketching. In Advances in Neural Information Processing Systems, pages 2082–2093,
2018.

[9] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. Communication-
efficient distributed sgd with sketching. In Advances in Neural Information Processing Systems,
pages 13144–13154, 2019.

[10] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pages 1042–1085.
PMLR, 2018.

[11] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. arXiv preprint
arXiv:1902.04811, pages 1–31, 2019.

[12] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feed-
back fixes signsgd and other gradient compression schemes. arXiv preprint arXiv:1901.09847,
2019.

[13] Yurii Nesterov. Squared functional systems and optimization problems. In High performance
optimization, pages 405–440. Springer, 2000.

6

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

[14] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[15] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Advances in Neural Information Processing Systems, pages 4447–4458, 2018.

[16] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In
Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[17] Yue Sun, Nicolas Flammarion, and Maryam Fazel. Escaping from saddle points on riemannian
manifolds. In Advances in Neural Information Processing Systems, pages 7276–7286, 2019.

[18] Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle
points in almost linear time. In Advances in Neural Information Processing Systems, pages
5530–5540, 2018.

[19] Dongruo Zhou, Pan Xu, and Quanquan Gu. Finding local minima via stochastic nested variance
reduction. arXiv preprint arXiv:1806.08782, 2018.

7

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Appendix A. Convergence to ε-FOSP

In this section we prove Theorem 5, showing convergence to an approximate first-order stationary
point. Results and proofs are inspired by [12], with the key difference in that we show how to avoid
using the bounded gradient assumption: E

[
‖∇F‖2

]
≤ G2 and handle the case of λ-compressors

with λ� 1.

Definition 8 (Noise and compression parameters) We use the following notation:
• ζt = ∇F (xt, θt)−∇f(xt) is a stochastic gradient noise. This noise has variance σ2

• ξt is an artificial Gaussian noise added at every iteration. This noise has variance r2

• ψt = ζt + ξt is the overall noise. This noise has variance χ2 = σ2 + r2.
• We assume that compression of the gradients is done using a λ-compressor C. In order to

simplify the derivations we introduce an auxiliary parameter δ = (1−λ)/
√
λ

In order to perform the analysis, similarly to [12], we introduce an auxiliary sequence of noisy
iterates {yt} defined below. These iterates allow one to remove the impact of the compression error
so that we can analyze it separately from the noise.

Definition 9 (Noisy iterates) Let the sequence of noisy iterates {yt} be defined as yt = xt − ηet.

Recall that et+1 = ∇f(xt) + ψt + et − gt and gt = C(∇f(xt) + ψt + et) and thus

C(∇f(xt) + ψt + et) = ∇f(xt) + ψt + et − et+1.

Hence for the {yt} sequence we have:

yt+1 = xt+1 − ηet+1

= xt − ηC(∇f(xt) + ψt + et)− ηet+1 (xt+1 = xt − ηC(∇f(xt) + ψt + et))

= xt − η(∇f(xt) + ψt + et − et+1)− ηet+1

= xt − η(∇f(xt) + ψt + et)

= xt − ηet − η(∇f(xt) + ψt)

= yt − η(∇f(xt) + ψt)

Thus {yt} iterates remove the impact of the compression error from the analysis.

A.1. Compression error estimation

Recall that the compression error terms et in Algorithm 1 represent the difference between stochastic
gradient (SG) and compressed SG. Similarly to how SG noise leads to increase in the number of
iterations compared to non-stochastic gradient descent, the presence of et also increases the number
of iterations, and therefore it’s important to bound their norm.

Lemma 10 (Compression error estimation) Let xt, et be defined as in Algorithm 1 and let χ2 be
as in Definition 8. Then under Assumption 1, for any t we have

E
[
‖et‖2

]
≤ 2λ

1− λ

t−1∑
i=0

(
1 + λ

2

)t−i
E
[
‖∇f(xi)‖2 + χ2

]
,

8

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

In particular, letting δ = (1−λ)/
√
λ we get a result similar to Lemma 3 from [12]:

E
[
‖et‖2

]
≤ 4

δ2
(max(E

[
‖∇f(xi)‖2

]
) + χ2)

Proof The proof is similar to proof of Lemma 3 from [12]. The main difference is that we don’t rely
on the bounded gradient assumption.

By definition of et+1:

E
[
‖et+1‖2

]
= E

[
‖et +∇f(xt) + ψt − C(et +∇f(xt) + ψt)‖2

]
≤ λE

[
‖et +∇f(xt) + ψt‖2

]
By using inequality ‖a+ b‖2 ≤ (1 + ν)‖a‖2 + (1 + 1

ν)‖b‖2 for any ν, and by telescoping:

E
[
‖et+1‖2

]
≤ λ((1 + ν)E

[
‖et‖2

]
+ (1 +

1

ν
)E
[
‖∇f(xt) + ψt‖2

]
)

≤
t∑
i=0

λt−i+1(1 + ν)t−i(1 +
1

ν
)E
[
‖∇f(xi) + ψi‖2

]
≤ 1

ν

t∑
i=0

(λ(1 + ν))t−i+1 E
[
‖∇f(xi) + ψi‖2

]

By selecting ν = 1−λ
2λ , we have λ(1 + ν) = 1+λ

2 . Therefore:

E
[
‖et+1‖2

]
≤ 2λ

1− λ

t∑
i=0

(
1 + λ

2
)t−i+1E

[
‖∇f(xi) + ψi‖2

]
=

2λ

1− λ

t∑
i=0

(
1 + λ

2
)t−i+1E

[
‖∇f(xi)‖2 + χ2

]

For the sum of ‖et‖2, we have the following, simplified expression.

Corollary 11 Under assumptions of Lemma 10, we have
t∑

τ=0

E
[
‖eτ‖2

]
≤ 4

δ2

t∑
τ=0

(E
[
‖∇f(xi)‖2

]
+ χ2)

Proof
t∑

τ=0

E
[
‖eτ‖2

]
≤ 2λ

1− λ

t∑
i=0

(
1 + λ

2
)t−i+1E

[
‖∇f(xτ)‖2 + χ2

]
≤ 2λ

1− λ

t∑
τ=0

τ∑
i=0

(
1 + λ

2
)τ−i+1E

[
‖∇f(xi)‖2 + χ2

]
≤ 2λ

1− λ

t∑
i=0

(
E
[
‖∇f(xi)‖2 + χ2

] t∑
τ=i

(
1 + λ

2
)τ−i+1

)

9

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Bounding λ
1−λ

∑(
1+λ
2

)τ
with 2λ

(1−λ)2 = 2
δ2

, we have:

t∑
τ=0

E
[
‖eτ‖2

]
≤ 4

δ2
≤ 2η3L2

δ2

t∑
i=0

E
[
‖∇f(xi)‖2 + χ2

]

A.2. Descent Lemma

The following descent lemma is a key tool in the analysis as it allows us to bound gradient norms
across multiple iterations.

Lemma 12 (Descent lemma) Let f satisfy Assumption 1. Let χ2, δ be as in Definition 8. For
η < 1

4L min(δ, 1), for any T we have:

T−1∑
τ=0

E
[
‖∇f(xτ)‖2

]
≤ 4(f(y0)− E [f(yT)])

η
+ ηTχ2

(
2L+

8L2η

δ2

)
Using this lemma, we’ll later show that for sufficiently large T , multiple visited points have small
gradients (note that the left-hand side divided by T we obtain an average squared gradient norm),
making them ε-FOSP. On the right-hand side the first term is bounded by 4fmax/η, while the other
two terms can be bounded by selecting a sufficiently small η. The second term arises from stochastic
gradient noise, while the last term appears because of compression.
Proof The proof is similar to proof of Theorem II from [12].

E [f(yt+1)|xt, et] ≤ f(yt) + 〈∇f(yt),E [yt+1 − yt|xt, et]〉+
L

2
E
[
‖yt+1 − yt‖2|xt, et

]
= f(yt)− η〈∇f(yt),∇f(xt)〉+

Lη2

2
E
[
‖∇f(xt) + ψt‖2|xt, et

]
≤ f(yt)− η‖∇f(xt)‖2 − η〈∇f(yt)−∇f(xt),∇f(xt)〉+

Lη2

2
‖∇f(xt)‖2 +

Lχ2η2

2

≤ f(yt)− η(1− Lη

2
)‖∇f(xt)‖2 +

Lχ2η2

2
− η〈∇f(yt)−∇f(xt),∇f(xt)〉

By using inequality |〈a, b〉| ≤ ‖a‖
2

2 + ‖b‖2
2 and Lipschitz gradient assumption, we have:

E [f(yt+1)|xt, et] ≤ f(yt)− η(1− Lη

2
)‖∇f(xt)‖2 +

Lχ2η2

2
+
η

2
‖∇f(yt)−∇f(xt)‖2 +

η

2
‖∇f(xt)‖2

≤ f(yt)− η(
1

2
− Lη

2
)‖∇f(xt)‖2 +

Lχ2η2

2
+
ηL2

2
‖yt − xt‖2

≤ f(yt)− η(
1

2
− Lη

2
)‖∇f(xt)‖2 +

Lχ2η2

2
+
η3L2

2
‖et‖2

10

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Using telescoping and taking the expectation, we bound f(yt+1):

E [f(yt+1)] ≤ E [f(yt)]− η(
1

2
− Lη

2
)E
[
‖∇f(xt)‖2

]
+
Lχ2η2

2
+ η3L2

t∑
τ=0

E
[
‖et‖2

]

Bounding sum of ‖et‖2 by Corollary 11, we have:

E [f(yt+1)]

≤ f̃0 − η(
1

2
− Lη

2
)

t∑
τ=0

E
[
‖∇f(xτ)‖2

]
+
Lχ2η2(t+ 1)

2
+

2η3L2

δ2

t∑
i=0

E
[
‖∇f(xi)‖2 + χ2

]
≤ f̃0 − η(

1

2
− Lη

2
)

t∑
τ=0

E
[
‖∇f(xτ)‖2

]
+
Lχ2η2(t+ 1)

2
+

2η3L2

δ2

t∑
τ=0

E
[
‖∇f(xτ)‖2

]
+

2η3L2

δ2
(t+ 1)χ2

≤ f̃0 − η(
1

2
− Lη

2
− 2η2L2

δ2
)

t∑
τ=0

E
[
‖∇f(xτ)‖2

]
+
Lχ2η2(t+ 1)

2
+

2η3L2χ2(t+ 1)

δ2

Using that η < 1
4L min (δ, 1), we bound the coefficient before

∑t
τ=0 E

[
‖∇f(xτ)‖2

]
with η

4 :

E [f(yT)] ≤ f̃0 −
η

4

T−1∑
τ=0

E
[
‖∇f(xτ)‖2

]
+ η2χ2T

(
L

2
+

2L2η

δ2

)
After regrouping the terms, we get the required result:

T−1∑
τ=0

E
[
‖∇f(xτ)‖2

]
≤ 4(f(y0)− E [f(yT)])

η
+ ηχ2T

(
2L+

8L2η

δ2

)

A.3. Convergence to ε-FOSP

Theorem 13 (Convergence to ε-FOSP) Let f satisfy Assumption 1. Then for η = Õ
(
min(ε2, δε)

)
,

after T = Θ̃
(

1
ε4

+ 1
δε3

)
iterations, at least half of visited points are ε-FOSP.

Proof Proof by contradiction. For η < 1
4L min(δ, 1), if less than half points are ε-FOSP, then by

Lemma 12:

Tε2

2
≤

T∑
τ=0

E
[
‖∇f(xτ)‖2

]
≤ 4fmax

η
+ ηχ2T

(
2L+

8L2η

δ2

)
It suffices to guarantee that all terms are at most Tε

2

6 :

2Lηχ2T ≤ Tε2

6
⇐⇒ η ≤ ε2

12Lχ2
= Θ̃(ε2)

8L2χ2η2T

δ2
≤ Tε2

6
⇐⇒ η ≤ δε

Lχ
√

48
= Θ̃(δε)

4fmax

η
≤ Tε2

6
⇐⇒ T ≥ 24fmax

ε2η
= Θ̃

(
1

ηε2

)
= Θ̃

(
1

ε4
+

1

δε3

)

11

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Therefore, after Θ̃
(

1
ε4

+ 1
δε3

)
iterations at least half of points are ε-FOSP.

Appendix B. Convergence to ε-SOSP

By rescaling we can assume that ε ≤ 1. Recall that δ = 1−λ√
λ

by Definition 8. We introduce the
following auxiliary notation:

Definition 14 (Step sizes)

Min. step size for SGD ησ =
1

L
min

(
ε2

σ2
,
ε2

dσ2
+

√
ρε

˜̀2

)
= Õ

(
min

(
ε2,

ε2

d
+

√
ε

˜̀2

))
Min. step size for compressed SGD ηλ = min

(
δε

Lσ
,
δ2
√
ε

Ld

)
= Õ

(
min

(
δε

L
,
δ2
√
ε

d

))

Intuitively, selecting step size η ≤ ησ suffices to show convergence of SGD [11]. In addition,
selecting η ≤ ηλ allows us to extend the results to compressed SGD. When ˜̀= +∞, ησ = Õ

(
ε2

d

)
,

and when ˜̀ is a constant, ησ = Õ(ε2).
Our choice of parameters is the following (cη, cI , cR, cF , cr hide polylogarithmic dependence

on all parameters):

Step size η = cη min(ησ, ηλ)

Iterations required for escaping I = cI
1

η
√
ρε

Escaping radius R = cR

√
ε

ρ

Objective change after escaping F = cF

√
ε3

ρ

Noise radius r = cr
ε√
Lη

(1)

Table 2: Convergence to ε-SOSP for various settings.
Settings λ η I R F r

Uncompressed
Lipschitz∇F 0 Õ

(
ε2
)

Õ
(
ε3/2
)

Õ (
√
ε) Õ

(√
ε3
)

Õ (1)

Compressed
Lipschitz∇F 1− 1

d Õ
(

min
(
ε2, εd ,

√
ε

d3

))
Õ
(

1
η
√
ε

)
Õ (
√
ε) Õ

(√
ε3
)

Õ
(

ε√
η

)
Uncompressed

non-Lipschitz∇F 0 Õ
(
ε2

d

)
Õ
(
dε3/2

)
Õ (
√
ε) Õ

(√
ε3
)

Õ
(√

d
)

Compressed
non-Lipschitz∇F 1− 1

d Õ
(

min
(
ε2

d ,
√
ε

d3

))
Õ
(

1
η
√
ε

)
Õ (
√
ε) Õ

(√
ε3
)

Õ
(

ε√
η

)

12

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Recall that χ2 = σ2 + r2 = σ2 + crε2

Lη by Definition 8 and fmax = f(x0)− f(x∗). We will show
that after I iterations the objective decreases by F . Therefore, the objective decreases on average by
F
I = Ω̃(ε2η) per iteration resulting in Õ

(
fmax

ε2η

)
iterations overall. See Table 1 for the number of

iterations and total communication in various settings.

B.1. Proof outline

Our proof is mainly based on the ideas from [11]. We introduce "Improve or localize" lemma
(Lemma 15): if after the limited number of iterations the objective doesn’t sufficiently improve,
we conclude that we didn’t move far from the original point. Similarly to [11], we introduce a
notion of coupling sequences: two gradient descent sequences having the same distribution such that,
as long as we start from a saddle point, at least one of these sequences escapes, and therefore its
objective improves. Since distributions of these sequences match distribution of sequence generated
by gradient descent, we conclude that the algorithm sufficiently improves the objective.

Our analysis differs from [11] in several ways. The first difference is that, aside from xt,
our equations have another sequence yt (xt mainly participate as arguments of ∇f(·), while yt
participate as argument of f(·) and in distances). This introduces the following challenge: if some
relation holds for yt, it doesn’t necessary holds for xt. For example, if we have a bound on ‖yt−y′t‖,
we don’t necessarily have a bound on ‖xt − x′t‖, and it needs to be established separately.

Another difference is that we have to split our analysis into two parts: large gradient case and
small gradient case. When our initial gradient is large, then we either escape the saddle points or
nearby gradients are also large, and by Lemma 12 the objective improves (see Lemma 18). Otherwise,
we use "Improve or localize" Lemma as described above. In the latter case, similarly to [11], we
have to bound errors which arise from the fact that the function is not quadratic and gradients are not
deterministic (see Definition 20). However, we have an additional error term stemming from gradient
compression (see Definition 20); to bound this term (see Lemma 22), we need bounded ‖et‖, and for
that we use our assumptions that gradients are small.

B.2. Improve or localize

We first show that, if gradient descent moves far enough from the initial point, then function value
sufficiently decreases. The following lemma considers the general case, while Corollary 16 considers
the simplified form, obtained by substituting parameters from Equation 1.

Lemma 15 (Improve or localize) Under Assumption 1, for η < 1
4L min(δ, 1), for yt, χ, δ defined

as in Definition 8, we have

f(y0)− E [f(yT)] ≥
E
[
‖yT − y0‖2

]
8ηT

− η2χ2T

(
L+

2L2η

δ2

)
− ηχ2

Proof Let ψt = ζt + ξt. Note that yt+1 = yt − η(∇f(xt) + ψt).

E

[
‖

T∑
t=0

ψt‖2
]

= E

[
T∑
t=0

E
[
‖ψt‖2

]]
=

T∑
τ=0

χ2 = Tχ2

13

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

E
[
‖yT − y0‖2

]
= η2E

[
‖
T−1∑
i=0

(∇f(xi) + ψi)‖2
]

≤ 2η2E

[
‖
T−1∑
i=0

∇f(xi)‖2 + ‖
T−1∑
i=0

ψi‖2
]

≤ 2η2T

T−1∑
i=0

E
[
‖∇f(xi)‖2

]
+ 2η2χ2T

Since η < 1
4L min(δ, 1), by Lemma 12:

E
[
‖yT − y0‖2

]
≤ 2η2T

(
4(f(y0)− E [f(yT)])

η
+ ηχ2T

(
2L+

8L2η

δ2

))
+ 2η2χ2T

≤ 2ηT

(
4(f(y0)− E [f(yT)]) + η2χ2T

(
2L+

8L2η

δ2

)
+ ηχ2

)
≤ 2ηT

(
4(f(y0)− E [f(yT)]) + η2χ2T

(
4L+

8L2η

δ2

)
+ 4ηχ2

)

After regrouping the terms, we have:

f(y0)− E [f(yT)] ≥
E
[
‖yT − y0‖2

]
8ηT

− η2χ2T

(
L+

2L2η

δ2

)
− ηχ2,

To guarantee that the sum of these terms is at most F2 , it suffices to select parameters so that
cη + c2r + cIcη ≤ cF/4.

Corollary 16 Under Assumption 1, for F , I chosen as specified in Equation 1, for any T ≤ I we
have:

f(y0)− E [f(yT)] ≥
√
ρε

8cI
E
[
‖yT − y0‖2

]
− F

2

Proof With our choice of parameters, we can bound negative terms on the right-hand side of
Lemma 15.

Bounding ηχ2.

ηχ2 = ησ2 + ηr2 ≤ cη
ε2

L
+ c2r

ε2

L
= (cη + c2r)

√
ε3
√
ρ
·
√
ρε

L
≥ (cη + c2r)

√
ε3
√
ρ
,

where we use that
√
ρε ≤ L, since otherwise all ε-FOSP are ε-SOSP.

14

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Bounding η2χ2TL.

η2χ2TL ≤ ηχ2L
√
ρε
≤ ηχ2,

which is equal to the term estimated above.

Bounding η2χ2T · 2L
2η
δ2

.

η3χ2TL2

δ2
≤ cIη

2χ2L2

δ2
√
ρε

≤
cIη

2L2
(
σ2 + crε2

Lη

)
δ2
√
ρε

≤ cI
δ2
√
ρε

(
η2λL

2σ2 + crηλLε
2
)
≤ 2cIcη

√
ε3
√
ρ

Corollary 17 Under Assumption 1, for F ,R, I chosen as specified in Equation 1, if there exists
t ∈ [0, I] such that ‖yt − y0‖ > R, then f(y0)− E [f(yt)] ≥ F .

Proof By Lemma 15:

f(y0)− E [f(yt)] ≥
R2

2ηI
− F

2
=
c2Rεη

√
ρε

2cIηρ
− F

2
=

(
c2R

2cIcF
− 1

2

)
F ≥ F ,

where the last inequality holds when 3cIcF ≤ c2R.

B.3. Large gradient case: ‖∇f(x0)‖ ≥ 3LR

Lemma 18 (Large gradient case) Under Assumption 1 for F ,R, I chosen as specified in Equa-
tion 1, if ‖∇f(x0)‖ > 3LR, then after at most I iterations the objective decreases by F .

Proof If there exists t ≤ I such that ‖yt − y0‖ > R, then by Corollary 17, the objective decreases
by at least F .

First we show by induction that ‖∇f(xt)‖ ≥ ‖∇f(x0)‖
3 and ‖∇f(xt)‖ ≤ 2‖∇f(x0)‖ for all

t ≤ I.

‖∇f(xt)‖ = ‖∇f(x0)− (∇f(x0)−∇f(xt))‖
≥ ‖∇f(x0)‖ − ‖∇f(x0)−∇f(xt)‖
≥ ‖∇f(x0)‖ − L‖x0 − xt‖
≥ ‖∇f(x0)‖ − L‖y0 − yt‖ − L‖yt − xt‖
≥ ‖∇f(x0)‖ − LR− η‖et‖

15

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

In the equation above, we have to bound ‖et‖

E [‖et+1‖] ≤
√
λ‖∇f(xt) + ψt + et‖ (By definition of λ-compressor)

≤
√
λ‖∇f(xt) + ψt‖+

√
λ‖et‖ (By triangle inequality)

≤
t−1∑
i=0

√
λ
t−i
‖∇f(xi) + ψi‖ (By telescoping)

≤
t−1∑
i=0

√
λ
t−i

(‖∇f(xi)‖+ χ) (By triangle inequality)

Since ‖∇f(xi)‖ ≤ 2‖∇f(x0)‖, for sufficiently small η, we have ‖et‖ ≤ ‖∇f(x0)‖
3 , and therefore

‖∇f(xt)‖ ≥ ‖∇f(x0)‖ − LR− η‖et‖ ≥
‖∇f(x0)‖

3

The upper bound is similar:

‖∇f(x0)‖ ≤ ‖∇f(x0)‖+ LR+ η‖et‖ ≤ 2‖∇f(x0)‖

By Lemma 12, we know:

T−1∑
τ=0

E
[
‖∇f(xτ)‖2

]
≤ 4(f(y0)− E [f(yI)])

η
+ ηχ2I

(
2L+

8L2η

δ2

)
Therefore:

f(y0)− E [f(yI)] ≥
ηI
4

(
L2R2 − ηχ2(2L+

8L2η

δ2
)

)
≥ cηη

4η
√
ρε

(
c2RL

2ε

ρ
− 10cηε

2

)
≥ cηη

4η
√
ρε

(
c2Rε

2 − 10cηε
2
)

(since L ≥ √ρε)

≥ F ,

where the last inequality holds when cη(c2R − 10cη) ≥ cF .

B.4. Small Gradient Case: ‖∇f(x0)‖ < 3LR

B.4.1. COUPLING SEQUENCES

Let H = ∇2f(x0); we use x>Hx as a quadratic approximation of f near x0. Let v1 be the
eigenvector corresponding to the smallest eigenvalue γ of H . Then we construct coupling sequences
xt and x′t in the following way: xt is constructed as described in Algorithm 1; x′t has the same

16

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

stochastic randomness θ as xt, and its artificial noise ξ′t is the same as ξt with exception of the
coordinate corresponding to v1, which has an opposite sign.

e′0 = e0

ξt ∼ N (0, r2) ξ′t = ξt − 2〈v1, ξt〉v1
gt = C(∇F (xt, θt) + ξt + et) g′t = C(∇F (x′t, θt) + ξ′t + e′t)

yt = xt − ηet y′t = x′t − ηe′t
xt+1 = xt − ηgt x′t+1 = x′t − ηg′t
et+1 = ∇F (xt, θt) + ξt + et − gt e′t+1 = ∇F (x′t, θt) + ξ′t + e′t − g′t

(2)

The notable fact is that both sequences correspond to the same distribution.

Lemma 19 For all t, xt and yt from Equation 2 have the same distribution as x′t and y′t.

Proof By definition of yt and y′t, it suffices show whether xt and et have the same distributions as
x′t and e′t.

Proof by Induction. y0 = y′0 = x0 − ηe0.
We want to show that if the statement holds for t, then it holds for t+ 1. To show that xt+1 has

the same distribution it remains to show that gt and g′t have the same distribution:
• Since xt and x′t have the same distribution, ∇F (xt, θt) and ∇F (x′t, θt) have the same distri-

bution.
• Since N (0, r2) is symmetric and ξ′t is the same as ξt with exception of one coordinate, which

has an opposite sign, ξt and ξ′t have the same distribution.
• et and e′t have the same distribution.
Similarly, et+1 has the same distribution as e′t+1, since ∇F (xt, θt), ξt, et and gt have the same

distribution as∇F (x′t, θt), ξ′t, e
′
t and g′t.

Since our sequences have the same distribution, we have E [f(xt)] = E [f(x′t)]. We want to show
that in a few iterations y′t − yt becomes sufficiently large and, therefore, at least one of yt and y′t is
far from x0. By applying Lemma 15 we will show that the objective sufficiently decreases.

B.4.2. EXPRESSING THE DIFFERENCE BETWEEN COUPLING SEQUENCES

In order to capture the difference between the two coupling sequences we introduce the following
notation:

x̂t = x′t − xt êt = e′t − et ζ̂t = ζ ′t − ζt ξ̂t = ξ′t − ξt

We split x̂t into 4 terms: x̂t = −(∆t + Et + Zt + Ξt), corresponding to different sources of
approximation error, defined as follows:

17

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Definition 20 Let δi =
∫ 1
0 ∇

2f(αx′i + (1− α)xi)dα−H . Then

∆t = η
t−1∑
i=0

(I − ηH)t−i−1δix̂i

Et = η

t−1∑
i=0

(I − ηH)t−i−1(êi − êi+1)

Zt = η

t−1∑
i=0

(I − ηH)t−i−1ζ̂i

Ξt = η
t−1∑
i=0

(I − ηH)t−i−1ξ̂i,

Recall that ζt is an SGD noise, ξt is an artificial noise, et is the compression error.
In the simplest case, the objective is quadratic and we have an access to an uncompressed

deterministic gradient. When it’s not the case, the introduced terms show how the actual algorithm
behavior is different:

• ∆t corresponds to quadratic approximation error.
• Et corresponds to compression error.
• Zt corresponds to difference arising from SGD noise.
• Ξt corresponds to difference arising from artificial noise.

Intuitively, Ξt is a good term, and other terms are negligible (‖∆t + Et + Zt‖ < 1
2‖Ξt‖).

We’ll now prove the expansion.

x̂t+1 = x′t+1 − xt+1

= y′t+1 + ηe′t+1 − (yt+1 + ηet+1) (By definition of yt and y′t)

= ηêt+1 + (y′t − yt)− η
(
(∇f(x′t)−∇f(xt)) + (ζ ′t − ζt) + (ξ′t − ξt)

)
(By update equation for yt)

= η(êt+1 − êt) + x̂t − η
(

(δt +H)x̂t + ζ̂t + ξ̂t

)
(By definition of δt and yt)

= η(êt+1 − êt) + (I − ηH)x̂t − η
(
δtx̂t + ζ̂t + ξ̂t

)
= (I − ηH)x̂t − η

(
δtx̂t + (êt − êt+1) + ζ̂t + ξ̂t

)

Using telescoping, we get the required expression. Since y′t − yt = x̂t − ηêt:

x̂t = −(∆t + Et + Zt + Ξt) ⇐⇒ y′t − yt = −(∆t + (Et + ηêt) + Zt + Ξt),

and we’ll use y′t − yt in Corollary 17.

B.4.3. BOUNDING ACCUMULATED COMPRESSION ERROR

Compared to SGD analysis, an additional term Et + ηêt appears. This term corresponds to accumu-
lated error arising from compression, and we have to bound its norm.

18

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Definition 21 Following [11], we introduce the following term which is proportional to ‖yt‖:

βt =

√√√√ t−1∑
i=0

(1 + ηγ)2i

In [11] it was shown that

β(t) = Θ

(
(1 + ηγ)t
√
ηγ

)
Lemma 22 (Bounding accumulated compression error) Under Assumption 1, let χ and δ be as
in Definition 20, Et and êt be as in Definition 20, βt be as in Definition 21 and η and R as in
Equation 1. Assume that max(‖yt − y0‖, ‖y′t − y0‖) < R for all t and ‖∇f(x0)‖ ≤ 2LR. Let −γ
be the smallest negative eigenvalue of∇2f(x0) such that γ ≥

√
ρε
2 . Then under Assumptions A, B, D

we have:

E [‖Et + ηêt‖] ≤
6η3/2Lχβt
δ
√
γ

Proof Expanding sum in Et and using that ê0 = 0:

Et = η

t−1∑
i=0

(I − ηH)t−1−i(êi − êi+1) (By Definition 20)

= η(−êt +
t−1∑
i=1

(I − ηH)t−1−i((I − ηH)− I)êi) (By telescoping)

= −ηêt + η2H
t−1∑
i=1

(I − ηH)t−1−iêi

We can now estimate ‖Et + ηêt‖. Since −γ is the smallest negative eigenvalue of H , we have
‖I − ηH‖ ≤ (1 + ηγ).

‖Et + ηêt‖ = ‖η2H
t−1∑
i=1

(I − ηH)t−1−iêi‖

≤ η2L
∑
i

(1 + ηγ)t−1−i‖êi‖ (By gradient Lipschitzness λmax(H) ≤ L)

≤ η2L
∑
i

(1 + ηγ)t−1−i‖e′i − ei‖ (By definition of êi)

≤ η2L
∑
i

(1 + ηγ)t−1−i(‖e′i‖+ ‖ei‖) (By triangle inequality)

19

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

in the equation above, we have to bound ‖et‖:

E [‖et+1‖] ≤
√
λ‖∇f(xt) + ψt + et‖ (By definition of λ-compressor)

≤
√
λ‖∇f(xt) + ψt‖+

√
λ‖et‖ (By triangle inequality)

≤
t−1∑
i=0

√
λ
t−i
‖∇f(xi) + ψi‖ (By telescoping)

≤
t−1∑
i=0

√
λ
t−i

(‖∇f(xi)‖+ χ) (By triangle inequality)

≤
t−1∑
i=0

√
λ
t−i

(‖∇f(yi)‖+ ‖∇f(yi)−∇f(xi)‖+ χ) (By triangle inequality)

≤
t−1∑
i=0

√
λ
t−i

(LR+ L‖yi − xi‖+ χ) (By theorem assumption and Lipschitz condition)

≤
t−1∑
i=0

√
λ
t−i

(LR+ η‖ei‖+ χ) (By definition of yi)

We’ll show by induction that ‖et‖ ≤ 6χ
δ . By selecting small enough constant cR in the definition

of R, we have LR ≤ χ. Using the induction hypothesis, η‖ei‖ ≤ 6χηδ ≤ χ by selecting a
sufficiently small cη in the definition of η.

Therefore,

E [‖et+1‖] ≤
t−1∑
i=0

√
λ
t−i

3χ (Using bounds on LR and ηet)

≤ 3
√
λχ

1−
√
λ

(Taking a sum of the geometric series)

≤ 3
√
λ(1 +

√
λ)χ

1− λ

≤ 6χ

δ

Substituting this into the inequality for ‖Et + ηêt‖:

E [‖Et + ηêt‖] ≤
6η2Lχ

δ

∑
i

(1 + ηγ)t−1−i ≤ 6η2Lχβt
δ
√
ηγ

,

where we estimated the series in the following way:

t−1∑
i=0

(1 + ηγ)t−1−i ≤ (1 + ηγ)t

ηγ
≤ βt√

ηγ

20

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

B.4.4. ESCAPING FROM A SADDLE POINT

We now show that, if a starting point is a saddle point, we move sufficiently far from it.

Lemma 23 (Non-localization) Under Assumption 1, let χ and δ be as in Definition 20, βt be as in
Definition 21 and η and r as in Equation 1. Then for any t

E
[
‖y′t − yt‖

]
= Θ

(
βtηr√
d

)
Proof Since Ξt is a sum of Gaussians with variances 4(1 + ηγ)2(t−i−1) η

2r2

d , its total variance is

4
η2r2

d

t−1∑
i=0

(1 + ηγ)2i = 4
η2r2

d
β2t

and therefore E [‖Ξt‖] =
√

8
π
βtηr√
d

.

We show that terms aside from Ξt are negligible, namely that ‖∆t + (Et + ηêt) + Zt‖ ≤ 1
2‖Ξt‖.

We prove the inequality by induction. The inequality holds for t = 0 since all terms are 0.
Assume that inequality holds for t, namely

E [‖x̂t‖] ≤ 2E [‖Ξt‖] ≤
4ηrβt√

d

It suffices to show that each of ‖∆t‖, ‖Zt‖ and ‖Et‖ is less than 1
10‖Ξt‖.

Bounding ∆i. By Hessian Lipschitz property, E [‖δi‖] ≤ 2ρR, and by induction hypothesis
E [‖x̂i‖] ≤ 4ηrβt√

d
for i ≤ t. Therefore:

E [∆t] = E

[
η
t−1∑
i=0

(I − ηH)t−i−1δix̂i

]
(By definition 20)

≤ η
t−1∑
i=0

‖I − ηH‖t−i−1 · E [‖δi‖ · ‖x̂i‖] (Bounding norms of all terms)

≤ 2η

t−1∑
i=0

(1 + ηγ)t−i−1ρRE [‖x̂i‖] (Using bound on ‖δi‖)

≤ 8ηρRI βtηr√
d

(By induction hypothesis)

≤ 8ηρcR

√
ε

ρ

cI
η
√
ρε

ηrβt√
d

(ExpandingR and I by equation 1)

= 8cIcR
ηrβt√
d

which is less than 1
10E [‖Ξt‖] when cIcR ≤ 1

100 .

21

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Bounding ‖Et + ηêt‖ By Lemma 22 we know that

E [‖Et + ηêt‖] ≤
6η3/2Lχβt
δ
√
γ

Using χ ≤ 2r, to show that E [‖Et + ηêt‖] ≤ 1
10E [‖Ξt‖], it suffices to guarantee that

6η3/2Lχβt
δ
√
γ

≤ βtηr

10
√
d
⇐⇒ √

η ≤
δ
√
γr

60
√
dχL

which holds when (using bounds on χ and γ)

η ≤
δ2
√
ρε

2 · 602dL2

Bounding ‖Zt‖. First, we consider the case when Assumption 1.C doesn’t hold (i.e. ˜̀ = +∞).
Since ζt|ζ0, . . . , ζt−1 is a Gaussian distribution and Zt is also a sum of independent random variables:

E
[
‖Zt‖2

]
≤ η2

t−1∑
i=0

(1 + ηγ)2(t−i−1)2η2σ2 ≤ 2η4β2t σ
2

Therefore, E [‖Zt‖] ≤ 2η2σβt. To prove E [‖Zt‖] < 1
10E [‖Ξt‖], it suffices to show that

2ησβt ≤
ηrβt

10
√
d
⇐⇒ 20σ

√
d ≤ r ⇐⇒ 400σ2d ≤ c2r

ε2

Lη
⇐⇒ η ≤ c2rε

2

400σ2Ld
,

which holds when 100cη ≤ c2r .
Finally, we consider the case when Assumption 1.C holds (i.e. ˜̀ < +∞). Since stochastic

gradient is Lipschitz, we have ζ̂i ≤ 2˜̀R and:

E
[
‖Zt‖2]

]
= ‖η

t−1∑
i=0

(I − ηH)t−i−1ζ̂i‖2 (By definition 20)

≤ η2I
t−1∑
i=0

‖(I − ηH)t−i−1ζ̂i‖2 (By Cauchy-Schwarz)

≤ η2I
t−1∑
i=0

‖(1 + ηγ)t−i−1‖2 · ‖ζ̂i‖2 (Since γ is the smallest negative eigenvalue of H)

and therefore E [‖Zt‖] ≤ 2η ˜̀
√
I βtηr√

d
To guarantee that E [‖Zt‖] ≤ 1

10E [‖Ξt‖], it suffices to show
that

2η ˜̀
√
I βtηr√

d
≤ ηrβt

10
√
d
⇐⇒ η ˜̀

√
I ≤ 1

20
⇐⇒

c2Iη
˜̀2

√
ρε
≤ 1

400
⇐⇒ η ≤

√
ρε

400c2I
˜̀2
,

which holds when 400c2Icη ≤ 1.

22

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Theorem 24 Under Assumption 1, for η as in Equation 1, after Õ
(

1
ηε2

)
iterations of Algorithm 1,

at least half of visited points are ε-SOSP.

Note that the fraction of ε-SOSP can be made arbitrary large.
Proof First we show that, if λmin(∇2f(x0)) > −

√
ρε
2 , then for some t ≤ I

f(x0)− E [f(xt)] ≥ F

By Lemma 23:

E
[
‖y′t − yt‖

]
≥ 4

βtηr√
d
≥ 4

η(1 + ηγ)t√
dηγ

· ε√
Lη
≥ 4

σε√
Ldγ

(1 + ηγ)t

Substituting t = I, we have (1 + ηγ)I ≥ (1 + η
√
ρε)cI/η

√
ρε ≥ ecI . By selecting cI ≥ c log dLρ2R

σε
for some c, we have E [‖y′t − yt‖] ≥ 2R, and therefore:

max(E [‖y0 − yI‖] ,E
[
‖y0 − y′I‖

]
) ≥ 1

2
E
[
‖y′I − yI‖

]
≥ R

Since by Lemma 19 yt and y′t have the same distribution, E [‖y0 − yI‖] = E [‖y0 − y′I‖], and
therefore

E [‖y0 − yI‖] ≥ R,

By Corollary 17:
f(x0)− E [f(xI)] ≥ F ,

and therefore the objective decreases by F after I iterations.
We split all iterations into chunks of size I . For each chunk [s, s+ I] we consider the following

cases:
• If ‖∇f(xs)‖ ≥ 2LR, then by Lemma 18 the objective decreases by F , and therefore there

are at most O(fmax

F) such chunks.

• If λmin(∇2f(xs)) ≤ −
√
ρε
2 , then, as shown above, the objective also decreases by F .

• If ‖∇f(xs)‖ ≤ 2LR and λmin(∇2f(xs)) ≥ −
√
ρε
2 , then, by Hessian-Lipschitz property, by

selecting sufficiently small R we guarantee that xt is an ε-SOSP for all t ∈ [s, s + I). By
Lemma 15, objective increases by at most F2 .

If after T iterations less than half of points are ε-SOSP, then the objective decreases by T
I (F − F2),

which is greater than fmax for T ≥ 2fmax

I .

Appendix C. Choice of parameters

Proposition 25 (Corollary 7 restated) For various settings of Algorithm 1 we have the convergence
rate to ε-SOSP as shown in Table 3.

Proof

23

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Table 3: Convergence to ε-SOSP in various settings. Uncompressed setting corresponds to the
standard SGD convergence analysis. Compressed setting corresponds to using a compressor
(Lemma 2 of an appropriate size). Constant-size sketch is our beyond worst-case assumption
(Assumption 2) where we assume constant compression with Õ(1) communication. The
last column shows an improvement in total communication compared to the uncompressed
case. For Lipschitz stochastic gradients ∇F , compression provides improvement when
ε = o(d−2/3)

Setting λ
Communication

per round
per worker

Iterations
Total

communication
per worker

Total
communication
improvement

Uncompressed
Lipschitz∇F 0 O(d) Õ

(
1
ε4

)
Õ
(
d
ε4

)
−

Compressed
Lipschitz∇F

1−
√
dε3/4

(ε = o(d−2/3))
O(d3/2ε3/4) Õ

(
1
ε4

)
Õ
(

d
√
d

ε3+1/4

)
Õ
(

1
ε3/4
√
d

)
Constant-size sketch

Lipschitz∇F c < 1 Õ(1) Õ
(

1
ε4

+ d
ε3

)
Õ
(

1
ε4

+ d
ε3

)
Õ
(
min(d, 1ε)

)
Uncompressed

non-Lipschitz∇F 0 O(d) Õ
(
d
ε4

)
Õ
(
d2

ε4

)
−

Compressed
non-Lipschitz∇F 1− ε3/4 O(dε3/4) Õ

(
d
ε4

)
Õ
(

d2

ε3+1/4

)
Õ(1

ε3/4
)

Constant-size sketch
non-Lipschitz∇F c < 1 Õ(1) Õ

(
d
ε4

)
Õ
(
d
ε4

)
Õ (d)

Uncompressed case. To simplify the presentation, let α = 1 when Assumption 1.C holds and let
α = d otherwise. Therefore, ησ = Õ(ε

2

α).

In uncompressed case, C(x) = x and λ = 0. In this case, ηλ =∞, η = ησ = Õ
(
ε2

α

)
and the

number of iterations is Õ
(
α
ε4

)
.

Since x requires Θ(d) memory, the total communication is Õ
(
αd
ε4

)
.

Compressed, Lipschitz stochastic gradient. By selecting λ = 1 − k
d , where k = o(d), we

have δ = Θ
(
k
d

)
and ηλ = Õ

(
min

(
kε
d ,

k2
√
ε

d3

))
. Therefore, the total number of iterations is

Õ
(

1
ε4

+ d
kε3

+ d3

k2ε2
√
ε

)
and the total communication is Õ

(
k
ε4

+ d
ε3

+ d3

kε2
√
ε

)
.

To balance the first and the third terms: k
ε4

= d3

ε2
√
ε
, we select k = d3/2ε3/4, which results in total

communication being Õ
(

d
√
d

ε3+1/4

)
. Compared with communication in unconstrained case, namely

Õ
(
d
ε4

)
, we achieve 1

ε3/4
√
d

improvement, which improves communication when ε = o(d−2/3).

Compressed, non-Lipschitz stochastic gradient. The total number of iterations is Õ
(
d
ε4

+ d
kε3

+ d3

k2ε2
√
ε

)
and the total communication is Õ

(
kd
ε4

+ d
ε3

+ d3

kε2
√
ε

)
.

24

ESCAPING SADDLE POINTS WITH COMPRESSED SGD

Balancing the first and the third terms, we select k = dε3/4. The total communication is
Õ
(

d2

ε3+1/4

)
, which gives improvement of ε−3/4 compared with unconstrained case.

Good sketch case. Lemma 2 considers the worst case, which doesn’t always arise in practice.
Assume that we have a a c-compressor C some for constant c which requires Õ(1) memory of
communication. In this case, the total communication is Õ

(
α
ε4

+ d
ε3

)
. In non-Lipschitz case, we

obtain d improvement, and in Lipschitz case, we obtain min(d, 1ε) improvement.

25

	Introduction
	Preliminaries
	Algorithm and analysis
	Convergence to -FOSP
	Compression error estimation
	Descent Lemma
	Convergence to -FOSP

	Convergence to -SOSP
	Proof outline
	Improve or localize
	Large gradient case: f(x0) 3 LR
	Small Gradient Case: f(x0) < 3 LR
	Coupling Sequences
	Expressing the difference between coupling sequences
	Bounding accumulated compression error
	Escaping from a saddle point

	Choice of parameters

