
OPT2020: 12th Annual Workshop on Optimization for Machine Learning

LEAD: Least-Action Dynamics for Min-Max Optimization

author names withheld

Under Review for OPT 2020

Abstract
Adversarial formulations in machine learning have rekindled interest in differentiable games.
Specifically, the development of efficient optimization methods for two-player min-max games
is an active area of research with a timely impact on emerging adversarial techniques, including
generative adversarial networks (GANs). Existing methods for this type of problem typically employ
intuitive, carefully hand-designed mechanisms for controlling the problematic rotational dynamics
commonly encountered during optimization. In this work, we take a more principled approach
to address this issue by casting min-max optimization as a physical system. We propose LEAD
(Least-Action Dynamics), a novel optimizer that uses the principle of least-action from physics to
discover an efficient optimizer for min-max games. We subsequently provide convergence analysis
of this novel second-order optimizer in quadratic min-max games using the Lyapunov theory. Finally,
we empirically test our method on synthetic problems and GANs to demonstrate improvements over
baseline methods.

1. Introduction

Much of the advances in traditional machine learning can be attributed to the success of gradient-based
methods. Modern machine learning formulations such as Generative Adversarial Networks (GANs)
[12], multi-task learning, and multi-agent settings [30] in reinforcement learning [5] require joint
optimization of two or more objectives. In these game settings, best practices and methods developed
for single-objective optimization perform poorly [2, 10]. Notably they exhibit problematic rotational
dynamics about the Nash Equilibria [25], which can slow down convergence. Recent work in game
optimization [1, 2, 21, 23, 25, 32] demonstrates that one way of addressing these rotational dynamics
is to use second-order information. These works intuitively introduce additional second-order terms
in the optimization algorithm to suppress these rotations, thus improving convergence.

Instead, in this work, we attempt to tackle these dynamics by taking a principled, physical
approach into the problem. By likening the gradient-based optimization of two-player (zero-sum)
games to a physical system’s dynamics, we introduce additional "counter-rotational" forces to curb
the problematic rotations. We then employ the principle of least action from physics, a variational
principle, to discover a natural and efficient (continuous-time) dynamics of this modeled system.
Next, by discretizing these continuous-time dynamics using implicit and symplectic Euler methods,
we derive two novel second-order game optimization algorithms: implicit Least Action Dynamics
(iLEAD) and symplectic Least Action Dynamics (sLEAD).

We then employ tools from dynamical systems theory, namely Lyapunov functions, to prove
linear convergence of our optimizer in both continuous and discrete-time, in the quadratic min-max
game setting. We then empirically demonstrate that sLEAD improves the performance of GANs on

c© .

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

tasks such as 8-Gaussians and CIFAR-10 while comparing the it performance against other first and
second-order methods in these settings.

2. Background

Problem Setting In this work, we study the optimization problem of two-player zero-sum games
minX maxY f (X,Y) where f : Rn × Rn → R, and is assumed to be continuous and twice
differentiable w.r.t. X,Y ∈ R. In developing our framework below, we assume X , Y to be scalars.
We later demonstrate both analytically (Appendix G, H) and empirically, that our results hold for the
more general case of vectorial X and Y . Additionally, we assume f (X,Y) to be convex-concave,
with the Nash Equilibrium of the game occurring at X = 0, Y = 0.

Mechanics and Optimization In our attempt to find an efficient update scheme or trajectory to
optimize the min-max objective f (X,Y), we note from classical physics the following: under the
influence of a net force F , the trajectory of motion of a physical object of mass m, is determined by
Newton’s 2nd Law, mẌ = F , where we have abused notation to express the object’s coordinate as
Xt ≡ X . As stated by the Principle of Least Action1 [18], nature "selects" the particular trajectory
of motion obtained from solving mẌ = F , over other possibilities as a quantity called Action is
extremized along it. Hence, the ability to model our game optimization task in terms of an object
moving under a force allows for a natural discovery of an efficient optimization path through the
least action principle, according to mẌ = F .

As detailed in Appendix A, we argue that the physical dynamics of a charged particle experiencing
vortex ([4]), magnetic and frictional forces as evaluated through Newton’s 2nd Law, represent a
"naturally efficient" optimization trajectory for minimax games in the form:

mẌ = −µẊ −∇Xf − 2q (∇XY f) Ẏ

mŸ = −µẎ +∇Y f + 2q (∇XY f) Ẋ
(1)

As discussed in Appendix A, the vortex force in our physical system mimics the typical "rotations"
of minimax optimization, while the magnetic and frictional forces serve as effective counter-rotations
and momentum (in the optimization sense) respectively.

2.1. Optimizers on Discretization

In order to discretize the continuous-time trajectory of Eq.(1), we make use of Euler’s implicit and
explicit discretization schemes, (δ: discretization step-size, k: iteration step) through Ẋ = VX , to
obtain two discretized algorithms, namely implicit Least Action Dynamics (iLEAD) and symplectic
Least Action Dynamics (sLEAD). To state, here symplectic2 discretization corresponds to using a
combination of explicit and implicit steps [31].

Proposition 1 The continuous-time EOMs (1) can be discretized in an implicit way as,

xk+1 = xk + βimp∆xk − ηimp∇xf(xk+1, yk+1)− αimp∇xyf(xk+1, yk+1)∆yk+1

yk+1 = yk + βimp∆yk + ηimp∇yf(xk+1, yk+1) + αimp∇yxf(xk+1, yk+1)∆xk+1

(2)

1. Also referred to as the Principle of Stationary Action.
2. sLEAD does not preserve the symplectic structure of Eq.(1), and hence is not symplectic in the strict sense.

2

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

where αimp, βimp and ηimp are hyper-parameters dependent on µ, q and δ (Proof in Appendix C). We
refer to these discrete update rules as implicit Least Action Dynamics (iLEAD).

Proposition 2 The continuous-time EOMs (1) can be discretized in a symplectic way as,

xk+1 = xk + βsym∆xk − ηsym∇xf (xk, yk)− αsym∇xyf (xk, yk) ∆yk

yk+1 = yk + βsym∆yk + ηsym∇yf (xk, yk) + αsym∇yxf (xk, yk) ∆xk
(3)

where, as above, αsym, βsym, ηsym are hyper-parameters dependent on µ, q and δ (Proof in Appendix
D). We refer to these discrete update rules as symplectic Least Action Dynamics (sLEAD).

In the following, we will be using iLEAD to establish convergence guarantees of our method
in discrete-time, while our experiments are instead performed using sLEAD. This is distinction is
due to the fact that implicit methods are not practical to implement. Despite this distinction, we
demonstrate that sLEAD still improves convergence in min-max optimization.

3. Convergence Analysis

3.1. Lyapunov Stability of Quadratic min-max Games

We now study the behavior of our method iLEAD on the quadratic min-max game,

f (X,Y) =
h

2
X2 − h

2
Y 2 +XY , (4)

where h is the strong monotonicity. (Refer to Appendix G and H, for an extension of the following
results to the general bilinear game f (X,Y) = XTAY.)

3.2. Continuous Time Analysis

A general way to prove the stability of a dynamical system is to use a Lyapunov function [14, 22].
The scalar function Et : Rm × Rn → R, is a Lyapunov function of the continuous-time dynamics of
Eq.(1), if ∀ t (i) Et(X,Y) ≥ 0 and, (ii) Ėt(X,Y) ≤ 0. The Lyapunov function Et can be perceived
to be a generalization of the total energy of the system and the requirement (ii) ensures that this
generalized energy decreases along the trajectory of evolution, leading the system to convergence as
we show next.

Theorem 1 For the quadratic min-max game of Eq.(4), Et as defined in Eq.(22) is a Lyapunov
function for the dynamics of Eq.(1) under the choice q =

(
2 + µ2

)
/µ, with Ėt ≤ −ρEt for some

positive definite constant ρ dependent on µ and h. Hence, X2 + Y 2 ≤ E0
1+h exp (−ρt)

Thus, the continuous-time dynamics of Eq.(1) for the quadratic game are convergent at a linear rate
ρ, to the Nash equilibrium (0, 0). (Proof in Appendix E).

3.3. Discrete Time Analysis

To perform Lyapunov analysis on our discrete-time dynamics of iLEAD (Eq.(2)), we note that a
function Ek is a discrete Lyapunov function if ∀ k ∈ N, (i) Ek ≥ 0, and (ii) Ek − Ek−1 ≤ 0.

3

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Theorem 2 For the quadratic min-max game of Eq.(4), Ek as defined in Eq.(33), is a discrete
Lyapunov function of the implicit dynamics of iLEAD (Eq.(2)) under the choice q =

√
5
(
2+µ2

µ

)
with Ek ≤

(
C
C+δµ

)
Ek−1. This leads iLEAD to converge linearly to the Nash equilibrium (0, 0) as

x2k + y2k ≤
µ2

C

(
C
C+δµ

)k
E0, where C = µ2

(
2
√

5 + 4h
)

+ 4
√

5, and δ is the discretization step-size
(Proof in Appendix F).

4. Experiments

4.1. Comparison of Computational Cost

We define the Jacobian of the gradient vector-field ξ = (∇xf(x, y),−∇yf(x, y)) as,

J =

[
∇2
xf (x, y) ∇xyf (x, y)

−∇yxf (x, y) −∇2
yf (x, y)

]
. (5)

Now, consider player x. An sLEAD update for the same requires the computation of the term
∇xyf (xk, yk) (yk − yk−1), thereby involving only one out of the three distinct blocks of the full
Jacobian J (5). On the other hand, original implementation of SGA [2] for example, requires
the full computation of two Jacobian-vector products Jξ, J>ξ. Similarly, CGD [29] involves
the computation of

(
1 + η∇2

xyf(xk, yk)∇2
yxf(xk, yk)

)−1 along with the Jacobian-vector product
∇2
xyf(xk, yk)∇yf(xk, yk). While the inverse term in [29] is approximated using conjugate gradient

method for implementation, this still involves the computation of ten Jacobian-vector products. See
Fig.1 (Left) for a comparison with several first and second-order methods on the task of 8-Gaussians.

4.2. Generative Adversarial Networks

We test sLEAD+Adam on the task of CIFAR-10 [17] image generation with a non-zero-sum
formulation (non-saturating) on a DCGAN architecture similar to [13] . As shown in Fig. 1 (Right),
we observe that sLEAD outperforms all the other methods in terms of the Frechet Inception Distance
(FID)3 , reaching a score of 19.27. Furthermore, on a ResNet architecture similar to [11], sLEAD
with Spectral Normalization (SN) [26] achieves an FID score 11.98. In comparison, on the same
architecture vanilla SN achieves an FID score of 12.81. We give a detailed description of these
experiments in Appendix I along with comparison of the Inception Score [28].

5. Related work

Authors in [25] provides a discussion on how the eigenvalues of the Jacobian govern the local
convergence properties of GANs. They argue that the presence of eigenvalues with zero real-part and
large imaginary part results in oscillatory behavior. To mitigate this issue, they propose Consensus
Optimization (CO). Authors in [2, 8, 20, 21] use the Hamiltonian of the gradient vector-field.
To improve the convergence in games, Symplectic Gradient Adjustment (SGA) is proposed that
disentangles the convergent parts of the dynamics from the rotational [2] . Another line of attack
taken in [29] is to use second-order information as a regularizer of the dynamics and motivate the use

3. The FID [15] is a metric for evaluating the quality of generated samples using GANs. Lower FID corresponds to
better sample quality.

4

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

CGD

WGP+Extra+OMD

sLEAD+Adam (ours)

WGP

Adam

Frechet Inception Distance (FID)
0 5 10 15 20 25 30

CGD

WGP+Extra+OMD
CO

Extra+Adam
sLEAD+Adam (ours)

WGP

OMD
Adam

0 20 40 60 80 100
Time per iteration (ms)

Adam Non-Saturating Loss
<latexit sha1_base64="XePQJ9BFM6CUKJiR9EoNQsbtboM=">AAACCHicbZDLSgMxFIYz9VbrbdSlC4NFcGOZEUFxVXHjQqSivUA7lEyatqGZZEjOiGXo0o2v4saFIm59BHe+jelloa0HAh//fw4n5w9jwQ143reTmZtfWFzKLudWVtfWN9zNrYpRiaasTJVQuhYSwwSXrAwcBKvFmpEoFKwa9i6GfvWeacOVvIN+zIKIdCRvc0rASk13twHsAdLzFonwtZKHtwQSbT3ZwVfKmEHTzXsFb1R4FvwJ5NGkSk33q9FSNImYBCqIMXXfiyFIiQZOBRvkGolhMaE90mF1i5JEzATp6JAB3rdKC7eVtk8CHqm/J1ISGdOPQtsZEeiaaW8o/ufVE2ifBimXcQJM0vGidiIwKDxMBbe4ZhRE3wKhmtu/YtolmlCw2eVsCP70ybNQOSr4lm+O88WzSRxZtIP20AHy0QkqoktUQmVE0SN6Rq/ozXlyXpx352PcmnEmM9voTzmfP7qgmcA=</latexit><latexit sha1_base64="XePQJ9BFM6CUKJiR9EoNQsbtboM=">AAACCHicbZDLSgMxFIYz9VbrbdSlC4NFcGOZEUFxVXHjQqSivUA7lEyatqGZZEjOiGXo0o2v4saFIm59BHe+jelloa0HAh//fw4n5w9jwQ143reTmZtfWFzKLudWVtfWN9zNrYpRiaasTJVQuhYSwwSXrAwcBKvFmpEoFKwa9i6GfvWeacOVvIN+zIKIdCRvc0rASk13twHsAdLzFonwtZKHtwQSbT3ZwVfKmEHTzXsFb1R4FvwJ5NGkSk33q9FSNImYBCqIMXXfiyFIiQZOBRvkGolhMaE90mF1i5JEzATp6JAB3rdKC7eVtk8CHqm/J1ISGdOPQtsZEeiaaW8o/ufVE2ifBimXcQJM0vGidiIwKDxMBbe4ZhRE3wKhmtu/YtolmlCw2eVsCP70ybNQOSr4lm+O88WzSRxZtIP20AHy0QkqoktUQmVE0SN6Rq/ozXlyXpx352PcmnEmM9voTzmfP7qgmcA=</latexit><latexit sha1_base64="XePQJ9BFM6CUKJiR9EoNQsbtboM=">AAACCHicbZDLSgMxFIYz9VbrbdSlC4NFcGOZEUFxVXHjQqSivUA7lEyatqGZZEjOiGXo0o2v4saFIm59BHe+jelloa0HAh//fw4n5w9jwQ143reTmZtfWFzKLudWVtfWN9zNrYpRiaasTJVQuhYSwwSXrAwcBKvFmpEoFKwa9i6GfvWeacOVvIN+zIKIdCRvc0rASk13twHsAdLzFonwtZKHtwQSbT3ZwVfKmEHTzXsFb1R4FvwJ5NGkSk33q9FSNImYBCqIMXXfiyFIiQZOBRvkGolhMaE90mF1i5JEzATp6JAB3rdKC7eVtk8CHqm/J1ISGdOPQtsZEeiaaW8o/ufVE2ifBimXcQJM0vGidiIwKDxMBbe4ZhRE3wKhmtu/YtolmlCw2eVsCP70ybNQOSr4lm+O88WzSRxZtIP20AHy0QkqoktUQmVE0SN6Rq/ozXlyXpx352PcmnEmM9voTzmfP7qgmcA=</latexit><latexit sha1_base64="XePQJ9BFM6CUKJiR9EoNQsbtboM=">AAACCHicbZDLSgMxFIYz9VbrbdSlC4NFcGOZEUFxVXHjQqSivUA7lEyatqGZZEjOiGXo0o2v4saFIm59BHe+jelloa0HAh//fw4n5w9jwQ143reTmZtfWFzKLudWVtfWN9zNrYpRiaasTJVQuhYSwwSXrAwcBKvFmpEoFKwa9i6GfvWeacOVvIN+zIKIdCRvc0rASk13twHsAdLzFonwtZKHtwQSbT3ZwVfKmEHTzXsFb1R4FvwJ5NGkSk33q9FSNImYBCqIMXXfiyFIiQZOBRvkGolhMaE90mF1i5JEzATp6JAB3rdKC7eVtk8CHqm/J1ISGdOPQtsZEeiaaW8o/ufVE2ifBimXcQJM0vGidiIwKDxMBbe4ZhRE3wKhmtu/YtolmlCw2eVsCP70ybNQOSr4lm+O88WzSRxZtIP20AHy0QkqoktUQmVE0SN6Rq/ozXlyXpx352PcmnEmM9voTzmfP7qgmcA=</latexit>

LSD Saturating Loss
<latexit sha1_base64="h3CFwpJ9CG5f3OjruBTt46Fr7qI=">AAACA3icbZC7SgNBFIZn4y3G26qdNoNBsAq7IihWAS0sUkRiLpAsYXYymwyZnV1mzophCdj4KjYWitj6Ena+jZNkC038YeDjP+dw5vx+LLgGx/m2ckvLK6tr+fXCxubW9o69u9fQUaIoq9NIRKrlE80El6wOHARrxYqR0Bes6Q+vJvXmPVOaR/IORjHzQtKXPOCUgLG69kEH2AOkldo1rhFIlLFlH1circddu+iUnKnwIrgZFFGmatf+6vQimoRMAhVE67brxOClRAGngo0LnUSzmNAh6bO2QUlCpr10esMYHxunh4NImScBT93fEykJtR6FvukMCQz0fG1i/ldrJxBceCmXcQJM0tmiIBEYIjwJBPe4YhTEyAChipu/YjogilAwsRVMCO78yYvQOC25hm/PiuXLLI48OkRH6AS56ByV0Q2qojqi6BE9o1f0Zj1ZL9a79TFrzVnZzD76I+vzB+cIl6Y=</latexit><latexit sha1_base64="h3CFwpJ9CG5f3OjruBTt46Fr7qI=">AAACA3icbZC7SgNBFIZn4y3G26qdNoNBsAq7IihWAS0sUkRiLpAsYXYymwyZnV1mzophCdj4KjYWitj6Ena+jZNkC038YeDjP+dw5vx+LLgGx/m2ckvLK6tr+fXCxubW9o69u9fQUaIoq9NIRKrlE80El6wOHARrxYqR0Bes6Q+vJvXmPVOaR/IORjHzQtKXPOCUgLG69kEH2AOkldo1rhFIlLFlH1circddu+iUnKnwIrgZFFGmatf+6vQimoRMAhVE67brxOClRAGngo0LnUSzmNAh6bO2QUlCpr10esMYHxunh4NImScBT93fEykJtR6FvukMCQz0fG1i/ldrJxBceCmXcQJM0tmiIBEYIjwJBPe4YhTEyAChipu/YjogilAwsRVMCO78yYvQOC25hm/PiuXLLI48OkRH6AS56ByV0Q2qojqi6BE9o1f0Zj1ZL9a79TFrzVnZzD76I+vzB+cIl6Y=</latexit><latexit sha1_base64="h3CFwpJ9CG5f3OjruBTt46Fr7qI=">AAACA3icbZC7SgNBFIZn4y3G26qdNoNBsAq7IihWAS0sUkRiLpAsYXYymwyZnV1mzophCdj4KjYWitj6Ena+jZNkC038YeDjP+dw5vx+LLgGx/m2ckvLK6tr+fXCxubW9o69u9fQUaIoq9NIRKrlE80El6wOHARrxYqR0Bes6Q+vJvXmPVOaR/IORjHzQtKXPOCUgLG69kEH2AOkldo1rhFIlLFlH1circddu+iUnKnwIrgZFFGmatf+6vQimoRMAhVE67brxOClRAGngo0LnUSzmNAh6bO2QUlCpr10esMYHxunh4NImScBT93fEykJtR6FvukMCQz0fG1i/ldrJxBceCmXcQJM0tmiIBEYIjwJBPe4YhTEyAChipu/YjogilAwsRVMCO78yYvQOC25hm/PiuXLLI48OkRH6AS56ByV0Q2qojqi6BE9o1f0Zj1ZL9a79TFrzVnZzD76I+vzB+cIl6Y=</latexit><latexit sha1_base64="h3CFwpJ9CG5f3OjruBTt46Fr7qI=">AAACA3icbZC7SgNBFIZn4y3G26qdNoNBsAq7IihWAS0sUkRiLpAsYXYymwyZnV1mzophCdj4KjYWitj6Ena+jZNkC038YeDjP+dw5vx+LLgGx/m2ckvLK6tr+fXCxubW9o69u9fQUaIoq9NIRKrlE80El6wOHARrxYqR0Bes6Q+vJvXmPVOaR/IORjHzQtKXPOCUgLG69kEH2AOkldo1rhFIlLFlH1circddu+iUnKnwIrgZFFGmatf+6vQimoRMAhVE67brxOClRAGngo0LnUSzmNAh6bO2QUlCpr10esMYHxunh4NImScBT93fEykJtR6FvukMCQz0fG1i/ldrJxBceCmXcQJM0tmiIBEYIjwJBPe4YhTEyAChipu/YjogilAwsRVMCO78yYvQOC25hm/PiuXLLI48OkRH6AS56ByV0Q2qojqi6BE9o1f0Zj1ZL9a79TFrzVnZzD76I+vzB+cIl6Y=</latexit>

Real Data
<latexit sha1_base64="FdT6eyhhlhIAYBmyLILbsl13xrE=">AAAB+XicbZDJSgNBEIZ7XGPcRj16aQyCpzAjguIpoAePUcwCSQg1nUrSpGehuyYYhryJFw+KePVNvPk2dpaDJv7Q8PFXFVX9B4mShjzv21lZXVvf2Mxt5bd3dvf23YPDqolTLbAiYhXregAGlYywQpIU1hONEAYKa8HgZlKvDVEbGUePNEqwFUIvkl0pgKzVdt0m4RNlDwiK3wLBuO0WvKI3FV8Gfw4FNle57X41O7FIQ4xIKDCm4XsJtTLQJIXCcb6ZGkxADKCHDYsRhGha2fTyMT+1Tod3Y21fRHzq/p7IIDRmFAa2MwTqm8XaxPyv1kipe9XKZJSkhJGYLeqmilPMJzHwjtQoSI0sgNDS3spFHzQIsmHlbQj+4peXoXpe9C3fXxRK1/M4cuyYnbAz5rNLVmJ3rMwqTLAhe2av7M3JnBfn3fmYta4485kj9kfO5w9roZN6</latexit><latexit sha1_base64="FdT6eyhhlhIAYBmyLILbsl13xrE=">AAAB+XicbZDJSgNBEIZ7XGPcRj16aQyCpzAjguIpoAePUcwCSQg1nUrSpGehuyYYhryJFw+KePVNvPk2dpaDJv7Q8PFXFVX9B4mShjzv21lZXVvf2Mxt5bd3dvf23YPDqolTLbAiYhXregAGlYywQpIU1hONEAYKa8HgZlKvDVEbGUePNEqwFUIvkl0pgKzVdt0m4RNlDwiK3wLBuO0WvKI3FV8Gfw4FNle57X41O7FIQ4xIKDCm4XsJtTLQJIXCcb6ZGkxADKCHDYsRhGha2fTyMT+1Tod3Y21fRHzq/p7IIDRmFAa2MwTqm8XaxPyv1kipe9XKZJSkhJGYLeqmilPMJzHwjtQoSI0sgNDS3spFHzQIsmHlbQj+4peXoXpe9C3fXxRK1/M4cuyYnbAz5rNLVmJ3rMwqTLAhe2av7M3JnBfn3fmYta4485kj9kfO5w9roZN6</latexit><latexit sha1_base64="FdT6eyhhlhIAYBmyLILbsl13xrE=">AAAB+XicbZDJSgNBEIZ7XGPcRj16aQyCpzAjguIpoAePUcwCSQg1nUrSpGehuyYYhryJFw+KePVNvPk2dpaDJv7Q8PFXFVX9B4mShjzv21lZXVvf2Mxt5bd3dvf23YPDqolTLbAiYhXregAGlYywQpIU1hONEAYKa8HgZlKvDVEbGUePNEqwFUIvkl0pgKzVdt0m4RNlDwiK3wLBuO0WvKI3FV8Gfw4FNle57X41O7FIQ4xIKDCm4XsJtTLQJIXCcb6ZGkxADKCHDYsRhGha2fTyMT+1Tod3Y21fRHzq/p7IIDRmFAa2MwTqm8XaxPyv1kipe9XKZJSkhJGYLeqmilPMJzHwjtQoSI0sgNDS3spFHzQIsmHlbQj+4peXoXpe9C3fXxRK1/M4cuyYnbAz5rNLVmJ3rMwqTLAhe2av7M3JnBfn3fmYta4485kj9kfO5w9roZN6</latexit><latexit sha1_base64="FdT6eyhhlhIAYBmyLILbsl13xrE=">AAAB+XicbZDJSgNBEIZ7XGPcRj16aQyCpzAjguIpoAePUcwCSQg1nUrSpGehuyYYhryJFw+KePVNvPk2dpaDJv7Q8PFXFVX9B4mShjzv21lZXVvf2Mxt5bd3dvf23YPDqolTLbAiYhXregAGlYywQpIU1hONEAYKa8HgZlKvDVEbGUePNEqwFUIvkl0pgKzVdt0m4RNlDwiK3wLBuO0WvKI3FV8Gfw4FNle57X41O7FIQ4xIKDCm4XsJtTLQJIXCcb6ZGkxADKCHDYsRhGha2fTyMT+1Tod3Y21fRHzq/p7IIDRmFAa2MwTqm8XaxPyv1kipe9XKZJSkhJGYLeqmilPMJzHwjtQoSI0sgNDS3spFHzQIsmHlbQj+4peXoXpe9C3fXxRK1/M4cuyYnbAz5rNLVmJ3rMwqTLAhe2av7M3JnBfn3fmYta4485kj9kfO5w9roZN6</latexit>

LSD Non-Saturating Loss
<latexit sha1_base64="ZnD2gaMaynywXRicigGaJwPkD1Q=">AAACB3icbZDLSgMxFIYz9VbrbdSlIMEiuLHMiKC4KujCRZFK7QXaUjJp2oZmkiE5I5ahOze+ihsXirj1Fdz5NqaXhbYeCHz8/zmcnD+IBDfged9OamFxaXklvZpZW9/Y3HK3dypGxZqyMlVC6VpADBNcsjJwEKwWaUbCQLBq0L8c+dV7pg1X8g4GEWuGpCt5h1MCVmq5+w1gD5AUSlf4RsnjEoFYW0t2cUEZM2y5WS/njQvPgz+FLJpWseV+NdqKxiGTQAUxpu57ETQTooFTwYaZRmxYRGifdFndoiQhM81kfMcQH1qljTtK2ycBj9XfEwkJjRmEge0MCfTMrDcS//PqMXTOmwmXUQxM0smiTiwwKDwKBbe5ZhTEwAKhmtu/YtojmlCw0WVsCP7syfNQOcn5lm9Ps/mLaRxptIcO0BHy0RnKo2tURGVE0SN6Rq/ozXlyXpx352PSmnKmM7voTzmfP6unmSY=</latexit><latexit sha1_base64="ZnD2gaMaynywXRicigGaJwPkD1Q=">AAACB3icbZDLSgMxFIYz9VbrbdSlIMEiuLHMiKC4KujCRZFK7QXaUjJp2oZmkiE5I5ahOze+ihsXirj1Fdz5NqaXhbYeCHz8/zmcnD+IBDfged9OamFxaXklvZpZW9/Y3HK3dypGxZqyMlVC6VpADBNcsjJwEKwWaUbCQLBq0L8c+dV7pg1X8g4GEWuGpCt5h1MCVmq5+w1gD5AUSlf4RsnjEoFYW0t2cUEZM2y5WS/njQvPgz+FLJpWseV+NdqKxiGTQAUxpu57ETQTooFTwYaZRmxYRGifdFndoiQhM81kfMcQH1qljTtK2ycBj9XfEwkJjRmEge0MCfTMrDcS//PqMXTOmwmXUQxM0smiTiwwKDwKBbe5ZhTEwAKhmtu/YtojmlCw0WVsCP7syfNQOcn5lm9Ps/mLaRxptIcO0BHy0RnKo2tURGVE0SN6Rq/ozXlyXpx352PSmnKmM7voTzmfP6unmSY=</latexit><latexit sha1_base64="ZnD2gaMaynywXRicigGaJwPkD1Q=">AAACB3icbZDLSgMxFIYz9VbrbdSlIMEiuLHMiKC4KujCRZFK7QXaUjJp2oZmkiE5I5ahOze+ihsXirj1Fdz5NqaXhbYeCHz8/zmcnD+IBDfged9OamFxaXklvZpZW9/Y3HK3dypGxZqyMlVC6VpADBNcsjJwEKwWaUbCQLBq0L8c+dV7pg1X8g4GEWuGpCt5h1MCVmq5+w1gD5AUSlf4RsnjEoFYW0t2cUEZM2y5WS/njQvPgz+FLJpWseV+NdqKxiGTQAUxpu57ETQTooFTwYaZRmxYRGifdFndoiQhM81kfMcQH1qljTtK2ycBj9XfEwkJjRmEge0MCfTMrDcS//PqMXTOmwmXUQxM0smiTiwwKDwKBbe5ZhTEwAKhmtu/YtojmlCw0WVsCP7syfNQOcn5lm9Ps/mLaRxptIcO0BHy0RnKo2tURGVE0SN6Rq/ozXlyXpx352PSmnKmM7voTzmfP6unmSY=</latexit><latexit sha1_base64="ZnD2gaMaynywXRicigGaJwPkD1Q=">AAACB3icbZDLSgMxFIYz9VbrbdSlIMEiuLHMiKC4KujCRZFK7QXaUjJp2oZmkiE5I5ahOze+ihsXirj1Fdz5NqaXhbYeCHz8/zmcnD+IBDfged9OamFxaXklvZpZW9/Y3HK3dypGxZqyMlVC6VpADBNcsjJwEKwWaUbCQLBq0L8c+dV7pg1X8g4GEWuGpCt5h1MCVmq5+w1gD5AUSlf4RsnjEoFYW0t2cUEZM2y5WS/njQvPgz+FLJpWseV+NdqKxiGTQAUxpu57ETQTooFTwYaZRmxYRGifdFndoiQhM81kfMcQH1qljTtK2ycBj9XfEwkJjRmEge0MCfTMrDcS//PqMXTOmwmXUQxM0smiTiwwKDwKBbe5ZhTEwAKhmtu/YtojmlCw0WVsCP7syfNQOcn5lm9Ps/mLaRxptIcO0BHy0RnKo2tURGVE0SN6Rq/ozXlyXpx352PSmnKmM7voTzmfP6unmSY=</latexit>

Real Data Adam Non-Sat

sLEAD+Adam Sat sLEAD+Adam Non-Sat

SGA

Figure 1: Left: Computational cost per iteration run of several well-known methods for GAN optimization.
The numbers are reported on the 8-Gaussians generation task and averaged over 1k iterations.
In the above, OMD: Optimistic Mirror Descent, WGP: WGAN + Gradient Penalty, EG: Extra-
gradient, CO: Consensus Optimization, OMD: Optimistic Mirror Descent, SGA: Symplectic
Gradient Adjustment and CGD: Competitive Gradient Descent. We observe that per-iteration time
complexity of our method is very similar to extra-gradient and WGAN with Gradient Penalty and
is much cheaper than other second order methods such as CGD and SGA. Right: Performance of
several other methods reported after 100 epochs on a DCGAN architecture. FID is computed over
50k samples. Results on CGD (competative gradient descent) and WGP+Extra+OMD (WGAN
with gradient penalty, extra-gradient and optimistic mirror descent) are reported from [29] and [24]
respectively.

of Competitive Gradient Descent (CGD). In [32], Follow the Ridge (FtR) is proposed. They motivate
the use of a second order term for one of the players (follower) as to avoid the rotational dynamics in
a sequential formulation of the zero-sum game. Another approach taken by [10], demonstrate how
applying negative momentum over GDA can improve convergence in min-max games. Authors in
[6] show that extrapolating the next value of the gradient using previous history, aids convergence.

6. Conclusion

In this paper, we leverage tools from physics and dynamical systems theory to propose a novel second-
order optimization scheme for zero-sum games, to address the problematic rotational dynamics
encountered in their training. By casting min-max game optimization as a physical system, we
use the Principle of Least Action to “naturally” discover an effective optimization algorithm in this
setting. Using Lyapunov theory, we prove our proposed optimizer to be convergent at a linear rate in
the case of quadratic min-max games. We supplement our theoretical analysis with experiments in the
quadratic as well as GAN settings, demonstrating improvements over baseline methods. Specifically
for GAN training, we observe that our method outperforms other second-order methods, proposed
to tackle the rotations, in terms of sample quality and computational efficiency. We believe our
analysis helps bridge the gap between the usage of tools developed for physics and game optimization.
Despite performing our analysis in a simplified setting, our promising empirical results on problems
beyond this domain encourages us to believe our approach holds promise.

5

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

References

[1] Jacob Abernethy, Kevin A Lai, and Andre Wibisono. Last-iterate convergence rates for min-max
optimization. arXiv preprint arXiv:1906.02027, 2019.

[2] D Balduzzi, S Racaniere, J Martens, J Foerster, K Tuyls, and T Graepel. The mechanics of
n-player differentiable games. In ICML, volume 80, pages 363–372. JMLR. org, 2018.

[3] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018.

[4] MV Berry and Pragya Shukla. Curl force dynamics: symmetries, chaos and constants of motion.
New Journal of Physics, 18(6):063018, 2016.

[5] Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 38(2):156–172, 2008.

[6] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans
with optimism. In International Conference on Learning Representations, 2018.

[7] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pages 122–130.
International Foundation for Autonomous Agents and Multiagent Systems, 2018.

[8] Ian Gemp and Sridhar Mahadevan. Global convergence to the equilibrium of gans using
variational inequalities. arXiv preprint arXiv:1808.01531, 2018.

[9] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.
A variational inequality perspective on generative adversarial networks. In International
Conference on Learning Representations, 2018.

[10] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel
Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game
dynamics. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1802–1811, 2019.

[11] Xinyu Gong. sngan.pytorch, 2019. https://github.com/GongXinyuu/sngan.
pytorch.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777, 2017.

[14] Wolfgang Hahn, Hans H Hosenthien, and H Lehnigk. Theory and application of Liapunov’s
direct method. Prentice-Hall Englewood Cliffs, NJ, 1963.

6

https://github.com/GongXinyuu/sngan.pytorch
https://github.com/GongXinyuu/sngan.pytorch

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pages 6626–6637, 2017.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[18] LD Landau and EM Lifshitz. Course of theoretical physics. vol. 1: Mechanics. Oxford, 1960.

[19] Lev Davidovich Landau, JS Bell, MJ Kearsley, LP Pitaevskii, EM Lifshitz, and JB Sykes.
Electrodynamics of continuous media, volume 8. elsevier, 2013.

[20] Alistair Letcher, David Balduzzi, Sébastien Racaniere, James Martens, Jakob N Foerster, Karl
Tuyls, and Thore Graepel. Differentiable game mechanics. Journal of Machine Learning
Research, 20(84):1–40, 2019.

[21] Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Stochastic hamiltonian gradient methods for smooth games.
ICML, 2020.

[22] Aleksandr Mikhailovich Lyapunov. The general problem of the stability of motion. International
journal of control, 55(3):531–534, 1992.

[23] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding local nash equilibria
(and only local nash equilibria) in zero-sum games. arXiv preprint arXiv:1901.00838, 2019.

[24] Panayotis Mertikopoulos, Bruno Lecouat, Houssam Zenati, Chuan-Sheng Foo, Vijay
Chandrasekhar, and Georgios Piliouras. Optimistic mirror descent in saddle-point problems:
Going the extra (gradient) mile. arXiv preprint arXiv:1807.02629, 2018.

[25] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Advances
in Neural Information Processing Systems, pages 1825–1835, 2017.

[26] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[27] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[28] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems,
pages 2234–2242, 2016.

[29] Florian Schäfer and Anima Anandkumar. Competitive gradient descent. In Advances in Neural
Information Processing Systems, pages 7623–7633, 2019.

[30] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In
Advances in Neural Information Processing Systems, pages 527–538, 2018.

7

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

[31] Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic
discretization of high-resolution differential equations. In Advances in Neural Information
Processing Systems, pages 5745–5753, 2019.

[32] Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally: A
follow-the-ridge approach. In International Conference on Learning Representations, 2019.

8

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Appendix A. Description of the Physical System

In our attempt to cast game optimization as a physical system, we take inspiration from Polyak’s
heavy-ball momentum [27] method4 in single objective minimization of an objective f (x),

xk+1 = xk + β (xk − xk−1)− η∇xf (xk) , (6)

which in continuous-time translates to (detailed derivation in Appendix B),

mẌ = −∇Xf (X) . (7)

Comparing Eqns.(7) and mẌ = F , we notice that in this case F = −∇Xf (X), i.e. f (X) acts as a
potential function [18]. This thus lends the interpretation that Polyak’s heavy-ball method Eq.(6)
can be interpreted as an object (ball) of mass m rolling down under a potential f (X) to reach the
minimum.

Armed with this observation, we notice that, while a straightforward extension of Eq.(7) to
two-dimensions is not of much use5; the following generalization closely resembles Gradient
Descent-Ascent (in continuous-time) on our min-max objective f (X,Y),

mẌ = −∇Xf (X,Y)

mŸ = ∇Y f (X,Y) .
(8)

As it turns out, Eq.(8) corresponds to the equations of motion (mẌ = F) of an object moving under
a curl force [4]: F curl = (−∇Xf,∇Y f) in the 2-dimensional XY plane. To investigate the nature
of the above trajectory (8), we consider the prototypical min-max objective, f (X,Y) = XY . In this
"bilinear" setting, the mass m object is found to spin away from the origin (Nash Equilibrium) over
time.

While the system with a curl force (Eq.(8)) by itself does not seem to hold much promise in
regards to providing an (efficient) optimization trajectory converging to the Nash Equilibrium, it
nevertheless acts as a foundation. The physical nature of the formulation allows us to select from the
extensive set of other physical forces to be added to the right-hand side of Eq.(8). This provides for
a more physical and systematic way to "counter" the rotational effects of F curl, to exhibit desired
convergent behavior possibly. To this end, we consider the simplest force known to produce rotatory
motion on a particle of charge q: a magnetic force,

Fmag = qẊ × (∇×A) (9)

Here, A is the magnetic vector potential generating a magnetic field as, B = ∇×A [19]. In order
to make a prudent choice of Fmag, we take note that desirable counter-rotations are observed if A is
itself chosen to be a rotating vector field, like of the type F curl. Specifically, since we are attempting
to counteract or negate the rotational effects of F curl, we choose A = −F curl. This results in,

Fmag =
(
−2q (∇XY f) Ẏ , 2q (∇XY f) Ẋ

)
(10)

The final ingredient we add to our system is a (velocity-dependent) frictional force F fric =(
µẊ, µẎ

)
, where µ is the friction coefficient. Eq.(8). The reason behind adding friction stems from

4. Arbitrary momentum coefficient results in incorporating friction in the equivalent physical system
5. Corresponds to single-objective minimization w.r.t. two variables

9

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

the fact that a) F curl causes a particle’s speed of motion to increase over time [4] while, b) Fmag does
not cause any change in its speed of motion. Hence, under the influence of curl and magnetic forces,
our mass m particle will keep increasing in speed over time, thus preventing convergence to a point.
It is in this regard that a dissipative force such as friction comes of use.

Assimilating all the above forces F curl, Fmag and F fric, the equations of motion (EOMs) of our
crafted system then becomes,

mẌ = −µẊ −∇Xf − 2q (∇XY f) Ẏ

mŸ = −µẎ +∇Y f + 2q (∇XY f) Ẋ
(11)

Without loss of generality, we hereon assume our physical object to be of massm = 1. By discretizing
Eq.(1), we obtain our novel optimization algorithms for min-max games in Section section 2.1.

Appendix B. Derivation of Eq. 6

Proof Polyak’s heavy ball method with unit momentum in the minimization of a single objective
f (x) is given by,

xk+1 = xk + (xk − xk−1)− η∇xf (xk) , (12)

where η is the learning rate. One can rewrite this equation as,

(xk+δ − xk)− (xk − xk−δ)
∆2

= − η

δ2
∇xf (xk) , (13)

where δ is the discretization step-size. In the limit δ, η → 0, Eq.(13) then becomes (xk → X (t) ≡
X),

mẌ = −∇Xf (X) (14)

This is equivalent to Newton’s 2nd Law of motion (mẌ = F) of a particle of mass m = δ2/η, if we
identify F = −∇Xf (X).

Appendix C. Proof of Proposition 1

Proof The EOMs of the quadratic game in continuous-time (Eq.(1)), can be discretized in a purely
implicit way as (m = 1),

xk+1 − xk = δvxk+1 (15a)

yk+1 − yk = δvyk+1 (15b)

vxk+1 − vxk = −qδ∇xyf (xk+1, yk+1) v
y
k+1 − µδv

x
k+1 − δ∇xf (xk+1, yk+1) (15c)

vyk+1 − v
y
k = qδ∇xyf (xk+1, yk+1) v

x
k+1 − µδv

y
k+1 + δ∇yf (xk+1, yk+1) , (15d)

where δ is the discretization step-size. Plugging in Eqns.(15b), (15d) in Eqns.(15a), (15c) then give
us,

xk+1 = xk + βimp∆xk − ηimp∇xf(xk+1, yk+1)− αimp∇xyf(xk+1, yk+1)∆yk+1

yk+1 = yk + βimp∆yk + ηimp∇yf(xk+1, yk+1) + αimp∇xyf(xk+1, yk+1)∆xk+1

(16)

10

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

where ∆xk+1 = xk+1 − xk, and,

βimp =
1

1 + µδ
, ηimp =

δ2

1 + µδ
, αimp =

qδ

1 + µδ
. (17)

Appendix D. Proof of Proposition 2

Proof The EOMs of the quadratic game in continuous-time (Eq.(1)), can be discretized in a
symplectic [31] way as,

xk+1 − xk = δvxk+1, (18a)

yk+1 − yk = δvyk+1, (18b)

vxk+1 − vxk = −qδ∇xyf (xk, yk) v
y
k − µδδv

x
k − δ∇xf (xk, yk) (18c)

vyk+1 − v
y
k = qδ∇xyf (xk, yk) v

x
k − µδv

y
k + δ∇yf (xk, yk) (18d)

where δ is the discretization step-size. Now, using Eqns.(18a) and (18b) above, we can further
re-express Eqns.(18c), (18d) as,

xk+1 = xk + βsym∆xk − ηsym∇xf (xk, yk)− αsym∇x,yf (xk, yk) ∆yk

yk+1 = yk + βsym∆yk + ηsym∇yf (xk, yk) + αsym∇x,yf (xk, yk) ∆xk
(19)

where ∆xk = xk − xk−1, and,

βsym = 1− µδ, ηsym = δ2, αsym = qδ (20)

Appendix E. Proof of Theorem 1

Proof For the class of functions in (4), Eq.(1) translates to,

Ẍ = −qẎ − µẊ − hX − Y
Ÿ = qẊ − µẎ − hY +X

(21)

The Lyapunov function for the above EOMs is then defined to be,

Et =
1

2

(
Ẋ + µX + µY

)2
+

1

2

(
Ẏ + µY − µX

)2
+

1

2

(
Ẋ2 + Ẏ 2

)
+ (1 + h)

(
X2 + Y 2

)
≥ 0 ∀ t

(22)

11

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Next, by Eq.(21), we can compute the time derivative of Et as,

Ėt = Ẋ
(
Ẍ + µẊ + µẎ

)
+ µX

(
Ẍ + µẊ + µẎ

)
+ µY

(
Ẍ + µẊ + µẎ

)
+ Ẏ

(
Ÿ + µẎ − µẊ

)
+ µY

(
Ÿ + µẎ − µẊ

)
− µX

(
Ÿ + µẎ − µẊ

)
+ ẊẌ + Ẏ Ÿ + 2 (1 + h)

(
ẊX + Ẏ Y

)
= Ẋ

(
−qẎ − hX − Y + µẎ

)
+ µX

(
−qẎ − hX − Y + µẎ

)
+ µY

(
−qẎ − hX − Y + µẎ

)
+ Ẏ

(
qẊ − hY +X − µẊ

)
+ µY

(
qẊ − hY +X − µẊ

)
− µX

(
qẊ − hY +X − µẊ

)
+ Ẋ

(
−qẎ − µẊ − hX − Y

)
+ Ẏ

(
qẊ − µẎ − hY +X

)
+ 2 (1 + h)

(
ẊX + Ẏ Y

)
=
(
2− µq + µ2

)
XẎ +

(
2− µq + µ2

)
Ẏ Y − µ (1 + h)Y 2 − µẊ2

−
(
2− µq + µ2

)
ẊY +

(
2− µq + µ2

)
ẊX − µ (1 + h)X2 − µẎ 2

(23)

Now, by choosing to set,

q =
2 + µ2

µ
(24)

Eq.(23) reduces to,

Ėt = −µ (1 + h)
(
X2 + Y 2

)
− µ

(
Ẋ2 + Ẏ 2

)
≤ 0 ∀ t (25)

as both µ and h > 0. Specifically, we observe that for (X,Y) 6= (0, 0),

Ėt < 0,

∴ Et → 0, as t→∞,
hence, X2 + Y 2 ≤ Et → 0, as t→∞

(26)

guaranteeing asymptotic stability of our algorithm, i.e. convergence to the Nash Equilibrium
(X,Y) = (0, 0) as t→∞. With this result in hand, let us now consider the following expression,

− ρEt −
ρµ

2

(
X − Ẋ

)2
− ρµ

2

(
Y − Ẏ

)2
− ρµ

2

(
Ẋ − Y

)2
− ρµ

2

(
X + Ẏ

)2
(27)

where ρ is a constant and is determined as,

0 ≤ ρ ≤ min

{
µ (1 + h)

µ2 + µ+ (1 + h)
,

µ

1 + µ

}
(28)

It can then be checked that on expansion, Eq.(27) becomes,

⇒ −ρ
(
µ2 + µ+ (1 + h)

) (
X2 + Y 2

)
− ρ (1 + µ)

(
Ẋ2 + Ẏ 2

)
≤ −ρEt (29)

12

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Now, using Eq.(25) and the condition (28), we can then go on to write,

Ėt = −µ (1 + h)
(
X2 + Y 2

)
− µ

(
Ẋ2 + Ẏ 2

)
≤ −ρ

(
µ2 + µ+ (1 + h)

) (
X2 + Y 2

)
− ρ (1 + µ)

(
Ẋ2 + Ẏ 2

)
≤ −ρEt

(30)

On integrating the above, one then gets,

⇒ dEt
Et
≤ −ρdt

⇒ Et ≤ E0 exp (−ρt)
⇒ (1 + h)

(
X2 + Y 2

)
≤ Et ≤ E0 exp (−ρt)

⇒ X2 + Y 2 ≤ E0
1 + h

exp (−ρt)

(31)

This exhibits that our continuous-time optimizer in the quadratic min-max game (Eq.(21)), is
convergent to the Nash equilibrium (0, 0) at a linear rate ρ, as determined from Eq.(28).

Appendix F. Proof of Theorem 2

Firstly, we recall that the continuous-time EOMs of the quadratic min-max game (4), can be
discretized implicitly as:

xk − xk−1 = δvxk

yk − yk−1 = δvyk
vxk − vxk−1 = −qδvyk − µδv

x
k − hδxk − δyk

vyk − v
y
k−1 = qδvxk − µδv

y
k − hδyk + δxk

(32)

We next define our discrete time Lyapunov function to be,

Ek =
1

2

vxk + 2

√√
5

3

xk
µ

+ 2

√√
5

3

yk
µ

2

+
1

2

vyk + 2

√√
5

3

yk
µ
− 2

√√
5

3

xk
µ

2

+
1

2

(
(vxk)2 +

(
vyk
)2)

+ 2
√

5

(
1 +

2h√
5

)(
x2k + y2k

)
≤ 3

2

(
(vxk)2 +

4
√

5

3µ2
x2k +

4
√

5

3µ2
y2k

)
+

3

2

((
vyk
)2

+
4
√

5

3µ2
y2k +

4
√

5

3µ2
x2k

)

+
1

2

(
(vxk)2 +

(
vyk
)2)

+ 2
√

5

(
1 +

2h√
5

)(
x2k + y2k

)
= 2

(
(vxk)2 +

(
vyk
)2)

+ 2
√

5

(
2

µ2
+ 1 +

2h√
5

)(
x2k + y2k

)

(33)

13

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

where we have used the Cauchy–Schwarz inequality (assuming uj are scalars): n∑
j

uj

2

≤ n

 n∑
j

u2j

Therefore,

Ek − Ek−1 ≤ 2
(

2
(
vxk − vxk−1

)
vxk −

(
vxk − vxk−1

)2)
+ 2

(
2
(
vyk − v

y
k−1
)
vyk −

(
vyk − v

y
k−1
)2)

+
√

5

(
4

µ2
+ 2

(
1 +

2h√
5

))(
2 (xk − xk−1)xk − (xk − xk−1)2

)
+
√

5

(
4

µ2
+ 2

(
1 +

2h√
5

))(
2 (yk − yk−1) yk − (yk − yk−1)2

)
(34)

Plugging our implicitly discretized dynamics of Eq.(32) in the above, we then get,

Ek − Ek−1 ≤ −4qδvxkv
y
k − 4µδ (vxk)2 − 4hδvxkxk − 4δykv

x
k

− 2
(
qδvyk + µδvxk + hδxk + δyk

)2
+ 4qδvxkv

y
k − 4µδ

(
vyk
)2 − 4hδvykyk + 4δxkv

y
k

− 2
(
qδvxk − µδv

y
k − hδyk + δxk

)2
+ 2
√

5

(
4

µ2
+ 2

(
1 +

2h√
5

))
δxkv

x
k −
√

5

(
4

µ2
+ 2

(
1 +

2h√
5

))
(δvxk)2

+ 2
√

5

(
4

µ2
+ 2

(
1 +

2h√
5

))
δykv

y
k −
√

5

(
4

µ2
+ 2

(
1 +

2h√
5

))(
δvyk
)2

(35)

If we now impose the condition µrδ ≥ 1, then that allows us to rewrite Eq.(35) as,

µδ (Ek − Ek−1) ≤ −4qµδ2vxkv
y
k − 4µ2δ2 (vxk)2 − 4hµδ2xkv

x
k − 4µδ2ykv

x
k

− 2
(
qδvyk + µδvxk + hδxk + δyk

)2
+ 4qµδ2vxkv

y
k − 4µ2δ2

(
vyk
)2 − 4hµδ2ykv

y
k + 4µδ2xkv

y
k

− 2
(
qδvxk − µδv

y
k − hδyk + δxk

)2
+
√

5δ2
(

4

µ2
+ 2

(
1 +

2h√
5

))
(2µxk − vxk) vxk

+
√

5δ2
(

4

µ2
+ 2

(
1 +

2h√
5

))(
2µyk − vyk

)
vyk

(36)

We now further choose to set,

q =
√

5

(
2 + µ2

µ

)
(37)

14

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

leading the xkvxk and ykv
y
k terms in Eq.(36) to drop off to leave us with,

µδ (Ek − Ek−1) ≤
(
−6µ2δ2 − 2q2δ2 −

√
5δ2
(

4

µ2
+ 2 +

4h√
5

))(
(vxk)2 +

(
vyk
)2)

+ 8µδ2
(
xkv

y
k − ykv

x
k

)
− 2δ2

(
1 + h2

) (
x2k + y2k

)
≤
(
−6µ2δ2 − 2q2δ2 −

√
5δ2
(

4

µ2
+ 2 +

4h√
5

))(
(vxk)2 +

(
vyk
)2)

+ 8µδ2
(
xkv

y
k − ykv

x
k

)
− 2δ2

(
x2k + y2k

)
(38)

Next, by adding to the R.H.S of the above, two positive semi-definite terms of the form,(
δxk − 4µδvyk

)2
+ (δyk + 4µδvxk)2 = δ2

(
x2k + y2k

)
− 8µδ2

(
xkv

y
k − ykv

x
k

)
+ 16µ2δ2

((
vyk
)2

+ (vxk)2
) (39)

give us,

µδ (Ek − Ek−1) ≤ δ2
(

10µ2 − 2q2 −
√

5

(
4

µ2
+ 2 +

4h√
5

))(
(vxk)2 +

(
vyk
)2)

− δ2
(
x2k + y2k

)
≤ δ2

(
10µ2 − 10

(
4

µ2
+ 4 + µ2

)

−
√

5

(
4

µ2
+ 2 +

4h√
5

))(
(vxk)2 +

(
vyk
)2)− δ2 (x2k + y2k

)
≤ δ2

(
−40

µ2
− 40− 4

√
5

µ2
− 2
√

5− 4h

)(
(vxk)2 +

(
vyk
)2)

− δ2
(
x2k + y2k

)
⇒ Ek − Ek−1 ≤ −

δ

µ

(
4
√

5

(
2
√

5 + 1

µ2

)
+ 2
√

5
(

4
√

5 + 1
)

+ 4h

)(
(vxk)2 +

(
vyk
)2)

− δ

µ

(
x2k + y2k

)
≤ − δ

µ

[(
(vxk)2 +

(
vyk
)2)

+
(
x2k + y2k

)]

(40)

Multiplying both sides of the above expression by,

√
5

(
4

µ2
+ 2 +

4h√
5

)
(41)

15

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

we get,

√
5

(
4

µ2
+ 2 +

4h√
5

)
(Ek − Ek−1) ≤ −

√
5δ

µ

(
4

µ2
+ 2 +

4h√
5

)(
(vxk)2 +

(
vyk
)2)

−
√

5δ

µ

(
4

µ2
+ 2 +

4h√
5

)(
x2k + y2k

)
≤ − δ

µ

[
2
(

(vxk)2 +
(
vyk
)2)

+
√

5

(
4

µ2
+ 2 +

4h√
5

)(
x2k + y2k

)]

≤ − δ
µ
Ek

(42)

Therefore, we finally have from Eq.(42),

Ek ≤
(

1− δµ

µ2(2
√

5 + 4h) + δµ+ 4
√

5

)
Ek−1 (43)

Therefore, the rate of convergence of iLEAD in the quadratic min-max game is given by,

Ek ≤
(

1− δµ

µ2(2
√

5 + 4h) + δµ+ 4
√

5

)k
E0

⇒ x2k + y2k ≤
1√
5

(
2 +

4h√
5

)−1(
1− δµ

µ2(2
√

5 + 4h) + δµ+ 4
√

5

)k
E0

≤ µ2

C − 4
√

5

(
C

C + δµ

)k
E0

(44)

where C = µ2
(
2
√

5 + 4h
)

+ 4
√

5. This, completes our Proof on the convergence of iLEAD in the
quadratic min-max setting, to the Nash equilibrium (0, 0) as k →∞.

Appendix G. Lyapunov stability of the general bilinear game (Continuous time)

Proof In the following, we consider a general bilinear game of the form, f (X,Y) = XTAY, where
X ≡

(
X1, · · · , Xn

)
, Y ≡

(
Y 1, · · · , Y n

)
are taken to be equi-dimensional parameter vectors, with

An×n being a constant positive-definite matrix. This is the vectorial generalization of Eq.(4) with h
set to 0. For such a game, we can correspondingly generalize our continuous-time EOMs of Eq.(1)
as,

Ẍ = −µẊ− AY − qAẎ

Ÿ = −µẎ + ATX + qAT Ẋ
(45)

16

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

We consequently define our continuous-time Lyapunov function in this case to be,

Et =
1

2

(
Ẋ + µX + µAY

)T (
Ẋ + µX + µAY

)
+

1

2

(
Ẏ + µY − µATX

)T (
Ẋ + µY − µATX

)
+

1

2

(
ẊT Ẋ + ẎT Ẏ

)
+ XTAATX + YTATAY

≥ 0 ∀ t

(46)

The time-derivative of this Et is then given by,

Ėt =
(
Ẋ + µX + µAY

)T (
Ẍ + µẊ + µAẎ

)
+
(
Ẏ + µY − µATX

)T (
Ÿ + µẎ − µAT Ẋ

)
+
(
ẊT Ẍ + ẎT Ÿ

)
+ 2

(
XTAAT Ẋ + YTATAẎ

)
=
(
ẊT + µXT + µYTAT

)(
(−q + µ)AẎ − AY

)
+
(
ẎT + µYT − µXTA

)(
(q − µ)AT Ẋ + ATX

)
+ ẊT

(
−qAẎ − µẊ− AY

)
+ ẎT

(
qAT Ẋ− µẎ + ATX

)
+ 2

(
XTAAT Ẋ + YTATAẎ

)
= (µ (q − µ)− 2)

(
YTAT Ẋ−XTAẎ

)
− (µ (q − µ)− 2)

(
XTAAT Ẋ + YTATAẎ

)
− µ

(
XTAATX + YTATAY

)
− µ

(
ẊT Ẋ + ẎT Ẏ

)

(47)

where we have used the fact that XTAY being a scalar, implies XTAY = YTATX. Setting
q = (2/µ) + µ in the above, then leads to,

Ėt = −µ
(
XTAATX + YTATAY

)
− µ

(
ẊT Ẋ + ẎT Ẏ

)
= −µ

(∣∣∣∣ATX
∣∣∣∣2 + ||AY||2

)
− µ

(∣∣∣∣∣∣Ẋ∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏ∣∣∣∣∣∣2) ≤ 0 ∀ t

(48)

exhibiting that the Lyapunov function, Eq.(46) is asymptotically stable at all times t.

17

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Appendix H. Rate of convergence of the general bilinear game (Continuous time)

Proof Consider the following expression, where Et is our general bilinear game Lyapunov function
Eq.(46) :

− ρEt −
ρµ

2

∣∣∣∣∣∣X− Ẋ
∣∣∣∣∣∣2 − ρµ

2

∣∣∣∣∣∣Y − Ẏ
∣∣∣∣∣∣2 − ρµ

2

∣∣∣∣∣∣Ẋ− AY
∣∣∣∣∣∣2 − ρµ

2

∣∣∣∣∣∣ATX + Ẏ
∣∣∣∣∣∣2

= −ρEt −
ρµ

2

(
||X||2 + ||Y||2

)
+ ρµ

(
XT Ẋ + YT Ẏ

)
− ρµ

(∣∣∣∣∣∣Ẋ∣∣∣∣∣∣2 + ||Y||2
)

− ρµ
(
XTAẎ − ẊTAY

)
− ρµ

2

(∣∣∣∣ATX
∣∣∣∣2 + ||AY||2

)
= −ρ (1 + µ)

(∣∣∣∣∣∣Ẋ∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏ∣∣∣∣∣∣2)− ρ

2

(
µ2 + µ

) (
||X||2 + ||Y||2

)
− ρ

2

(
µ2 + µ+ 2

) (∣∣∣∣ATX
∣∣∣∣2 + ||AY||2

)
≤ −ρEt

(49)

where ρ is some positive definite constant. This implies that the above expression is negative semi-
definite by construction given µ ≥ 0. Now, for a general square matrix A, we can perform a singular
value decomposition (SVD) as A = VTSU. Here, U and V are the right and left unitaries of A, while
S is a diagonal matrix of singular values (si) of A. Using this decomposition in Eq.(49), allows us to
write,

− ρ (1 + µ)

(∣∣∣∣∣∣Ẋ∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏ∣∣∣∣∣∣2)− ρ

2

(
µ2 + µ

) (
||X||2 + ||Y||2

)
− ρ

2

(
µ2 + µ+ 2

) (∣∣∣∣ATX
∣∣∣∣2 + ||AY||2

)
= −ρ (1 + µ)

(∣∣∣∣∣∣VẊ
∣∣∣∣∣∣2 +

∣∣∣∣∣∣UẎ
∣∣∣∣∣∣2)− ρ

2

(
µ2 + µ

) (
||VX||2 + ||UY||2

)
− ρ

2

(
µ2 + µ+ 2

) (
||SVX||2 + ||SUY||2

)
= −ρ (1 + µ)

(∣∣∣∣∣∣Ẋ ∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏ∣∣∣∣∣∣2)− ρ

2

(
µ2 + µ

) (
||X ||2 + ||Y||2

)
− ρ

2

(
µ2 + µ+ 2

) (
||SX||2 + ||SY||2

)
= −

n∑
j=1

ρ (1 + µ)

(∣∣∣∣∣∣Ẋ j∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏj∣∣∣∣∣∣2)

−
n∑
j=1

ρ

2

((
1 + s2j

) (
µ2 + µ

)
+ 2s2j

) (∣∣∣∣X j∣∣∣∣2 +
∣∣∣∣Yj∣∣∣∣2)

(50)

18

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

where we have made use of the relations UTU = UUT = In = VTV = VVT, and additionally
performed a basis change, as X = VX and Y = UY. Now, we know from Eq.(48) that,

Ėt = −µ
(∣∣∣∣ATX∣∣∣∣2 + ||AY ||2

)
− µ

(∣∣∣∣∣∣Ẋ∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏ ∣∣∣∣∣∣2)

= −µ
(∣∣∣∣UTSVX

∣∣∣∣2 +
∣∣∣∣VTSUY

∣∣∣∣2)− µ(∣∣∣∣∣∣VẊ∣∣∣∣∣∣2 +
∣∣∣∣∣∣UẎ ∣∣∣∣∣∣2)

= −µ
(
||SX||2 + ||SY||2

)
− µ

(∣∣∣∣∣∣Ẋ ∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏ∣∣∣∣∣∣2)

= −
n∑
j=1

µs2j

(∣∣∣∣X j∣∣∣∣2 +
∣∣∣∣Yj∣∣∣∣2)− n∑

j=1

µr

(∣∣∣∣∣∣Ẋ j∣∣∣∣∣∣2 +
∣∣∣∣∣∣Ẏj∣∣∣∣∣∣2)

(51)

Comparing the above expression with Eq.(50), we note that a choice of ρ as,

ρ ≤ min

 µ

1 + µ
,

2µs2j(
1 + s2j

)
(µ2 + µ) + 2s2j

 ∀ j ∈ [1, n] (52)

implies,

Ėt ≤ −ρE
⇒ Et ≤ E0 exp (−ρt)

⇒ XTAATX + Y TATAY ≤ E0 exp (−ρt)
⇒ X TS2X + YTS2Y ≤ E0 exp (−ρt)

⇒
n∑
j=1

s2j
(
X j + Yj

)
≤ E0 exp (−ρt)

∴ X j + Yj ≤ E0
s2j

exp (−ρ) ∀ j

(53)

This completes our Proof of convergence (continuous-time) of the generalized iLEAD (Eq.(45))
in the general bilinear game f (X,Y) = XTAY. It is to be noted, that the (continuous-time)
fastest rate of convergence ρ, in the case of the above general bilinear game f (X,Y) = XTAY, is
determined by the smallest eigenvalue sj of A, (Eq.(52)).

Appendix I. Experiments Details and implementation

In this Section, we refer to the reproducible code for all the plots that are available in the paper.

I.1. Mixture of Eight Gaussians Experiment

Dataset The real data is generated by 8-Gaussian distributions that are uniformly distributed around
the unit circle. The code to generate the data is included in the source code related to Figure 1 (Left).

19

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Adam sLEAD WGP OMD WGP+Ex+OMD CO Extra+Adam CGD
IS 6.24 7.1 6.5 5.74 7.3 7.1 6.38 7.2

Table 1: Comparison of several first order and second order methods in terms of the Inception Score
(IS). We report published results on Optimistic Mirror Descent (reported from [9], Table 1),
WGAN+GP+Extra-gradient+OMD (reported from [24]), Consensus Optimization (reported
from [25]), Extra(gradient)+Adam (from [9]) and Competative Gradient Descent (from
[29]).

Architecture The architecture for Generator and Discriminator, each consists of four layers of
affine transformation, followed by ReLU non-linearity. The weight initialization is default PyTorch’s
initialization scheme.

Other Details We use the Adam [16] optimizer on top of our algorithm in the reported results.
Furthermore, we use batchsize of 128.

I.2. CIFAR 10

Dataset The CIFAR10 dataset is available for download at the following link; https://www.cs.
toronto.edu/~kriz/cifar.html

Architecture The discriminator has four layers of convolution with LeakyReLU and batch
normalization. Also, the generator has four layers of deconvolution with ReLU and batch normalization.

Other Details For the baseline we use Adam with the first moment set to 0.5 and second moment
set to 0.99. Generator’s learning rate is 0.0002 and discriminator’s learning rate is 0.0001. The same
learning rate and momentum were used to train sLEAD model. We also add the mixed derivative
term with αd = 0.3 and αg = 0.0.

The baseline is a DCGAN with non-saturating loss (non-zero sum formulation). In our experiments,
we calculate the inception score using TensorFlow’s inception model on 8000 generated samples and
reported the mean and the variance of the inception score over those samples.

Inception Score The performance of generative models is often computed and compared using
the Inception Score[28] and the FID. However, it has been shown that inception score is not a reliable
metric to evaluate the performance of generative models [3]. Despite that, we provide a comparison
of the inception score in table I.2 for the DCGAN architecture described above.

7. For FtR, we have provided the update for the second player given the first player performs gradient descent on f .

20

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

LEAD: LEAST-ACTION DYNAMICS FOR MIN-MAX OPTIMIZATION

Coefficient Momentum Gradient Interaction-xy Interaction-xx
GDA ∆xk+1 = 1 0 −η∇xf −η∇xf 0

sLEAD ∆xk+1 = 1 β∆xk −η∇xf −α∇2
xyf∆yk 0

SGA[2] ∆xk+1 = 1 0 −η∇xf −ηγ∇2
xyf∇yf 0

CGD[29] ∆xk+1 = C−1 0 −η∇xf −η2∇2
xyf∇yf 0

CO[25] ∆xk+1 = 1 0 −η∇xf −ηγ∇2
xyf∇yf −ηγ∇2

xxf∇xf
FtR[32] ∆yk+1 = 1 0 ηy∇yf ηx

(
∇2
yyf
)−1∇2

yxf∇xf 0
LOLA[7] ∆xk+1 = 1 0 −η∇xf −2ηα∇xyf∇yf 0

Table 2: Comparison of several second-order methods in game optimization. Each update rule,
corresponding to a particular row, can be constructed by adding cells in that row from
Columns 4 to 7 and then multiplying that by the value in Column 1. Furthermore, ∆xk =
xk − xk−1, while C =

(
I + η2∇2

xyf∇2
yxf
)
. We compare the update rules of the first

player7 for the following methods: Gradient Descent-Ascent (GDA), symplectic Least
Action Dynamics (sLEAD, ours), Symplectic Gradient Adjustment (SGA), Competitive
Gradient Descent (CGD), Consensus Optimization (CO), Follow-the-Ridge (FtR) and
Learning with Opponent Learning Awareness (LOLA), in a zero-sum game.

21

	Introduction
	Background
	Optimizers on Discretization

	Convergence Analysis
	Lyapunov Stability of Quadratic min-max Games
	Continuous Time Analysis
	Discrete Time Analysis

	Experiments
	Comparison of Computational Cost
	Generative Adversarial Networks

	Related work
	Conclusion
	Description of the Physical System
	Derivation of Eq. 6
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 2
	Lyapunov stability of the general bilinear game (Continuous time)
	Rate of convergence of the general bilinear game (Continuous time)
	Experiments Details and implementation
	Mixture of Eight Gaussians Experiment
	CIFAR 10

