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Abstract

In this paper, we consider a zeroth-order stochastic gradient langevin dynamics (ZSGLD), which seeks
approximate global minimizer in the derivative-free optimization scenario under adequately regular non-
convex assumption. As a variant of the popular stochastic gradient langevin dynamics (SGLD), our recursion
shares the additional properly scaled isotropic Gaussian noise but adopts a biased estimate of the gradient at
each time-step. Our appropriately proposed one-point gradient estimator takes the advantage of both efficient
zeroth-order approximation and the potential to escape local minima when embedded into SGLD recursion.
We provide a nonasymptotic analysis to guarantee a finite-time convergence of ZSGLD in 2-Wasserstein
distance with a general setting. The feasibility of the constraints in our theory is also validated given practical
settings.

1. Introduction

Derivative-free optimization (DFO), also known as zeroth-order derivative optimization, has sparked new
interest in recent years as a large number of practical machine learning applications require the optimization
of black-box functions of which derivatives are inaccessible or computationally expensive. In such costly op-
timization scenarios, the evaluation of objective function usually requires a complex deterministic simulation
based on solving the equations (for example, nonlinear eigenvalue problems, ordinary or partial differential
equations) modeled from the original problems, and the sheer noise introduced into the simulation procedure
which calls for legacy or proprietary codes makes the model neither pellucid nor reliable [16].

A number of strategies has been studied for DFO in diverse settings. In the literature of simulation
optimization, there exist a huge bunch of such algorithms for solving both simulation and optimization tasks,
see for example [5] for optimization and [1] for approximate sampling. The similarities between the task
of optimization and that of averaging have been recently exploited in the papers (Dalalyan, 2014; Durmus
and Moulines, 2016; Durmus et al., 2016) aiming to establish fast and accurate theoretical guarantees for
sampling from and averaging with respect to the density using the Langevin Monte Carlo algorithm.

In the context of bandit optimization, a line of works [27] estimates the gradient with respect to policy
parameters via finite-difference-like methods for black-box policy search, which is designed for model-free
reinforcement learning settings. [28] considers zero-order stochastic convex optimization with two function
evaluations per round. Moreover, to overcome the scalability of DFO to high dimensionality, [25] presents a
sequential random embeddings (SRE) to reduce the embedding gap while running optimization algorithms in
the low-dimensional spaces. On the other hand, the accuracy of posterior estimation plays an essential role
in a bunch of black-box optimization problems. In some cases, the mismatch in posteriors may not hurt in
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terms of decision making, and we will still end up with good decisions. Unfortunately, in other cases, this
mismatch together with its induced feedback loop will degenerate in a significant loss of performance.

In another line of works, stochastic gradient Langevin dynamics (SGLD) provides a fairy approximation
to the global minima under non-convex learning frameworks with diverse guarantees. The approach seems to
simply add properly scaled isotropic Gaussian noise to an unbiased estimate of the gradient at each iteration
but turns out to be effective to escape local minima and suffices to guarantee asymptotic global convergence
for appropriately regular non-convex objectives [17].

To leverage the approximate global convergence property of SGLD in derivative-free scenarios, we
propose zeroth-order stochastic gradient langevin dydamics (ZSGLD) to fill this void with theoretical
convergence guarantees.

2. Related Work

There has been a line of works developing effective derivative-free algorithms for optimization, both local and
global. In traditional local optimization scenario, pattern search methods [9, 22] evaluate the cost function
in a stencil-based fashion determined by a set of directions with intrinsic properties meant to be desirable
from a geometric/algebraic point of view. [13] introduced a novel class of derivative-free optimization
methods by applying certain non-commutative maps to approximate the gradient of the objective function
with convergence guarantees. From the view of global search, the genetic algorithm (GA) [23], the particle
swarm algorithm [2], and the differential evolution algorithm (DE) [15, 29] are the other popular derivative
free optimization tools which are ubiquitously set in complicated industrial applications. However, these
zeroth-order methods tend to be trapped in some spurious local minima.

Another line of work improving the performance of global optimization and posterior estimation has
been based on Stochastic Gradient Langevin Dynamics (SGLD) [17]. Stochastic average gradient Langevin
dynamics (SAGA-LD) and stochastic variance-reduced gradient Langevin dynamics (SVRG-LD) was pro-
posed in [12] to boost the convergence rate of SGLD, followed by SVRG-LD™ from [30] for a lower
gradient complexity. In the light of theoretical analysis for diverse Langevin dynamics approaches, previous
works [8, 20] provided guarantees for the distributions of iterates to converge rapidly to Gibbs measure and for
the stationary distribution to concentrate around the global minimizers under large enough inverse temperature
parameter [4]. [10, 11] demonstrated nonasymptotic rates of convergence for discretized Langevin iteration
on convex functions and for sampling from log-concave densities. Another projected Langevin scheme while
still in the convex literature was then analyzed by [6]. Recently, the convergence rates of SVRG-LD and
SAGA-LD to the target distribution in 2-Wasserstein distance is analyzed in [7]. It turns out that SAGA-LD
has a lower gradient complexity than SVRG-LD. [26] provided finite-time guarantees to reach approximate
global minima with SGLD for both empirical and population loss by nonasymptotic analysis.

3. Notation

We use NV (u, 02) to denote Gaussian distribution with mean y and variance 2. We use X ~ 1, to show that
the X is subjected to distribution p,, and X ~ Y to denote that two random variables X and Y have the
same probability law. Let Ex (-) be the expectation with respect to random variable X. If not specified, E(-)
takes expectation over all possible random variables. Other notations will be introduced when they are used.



4. Models and Algorithms

In this section, we present the details of construction of the gradient estimator for derivative-free optimization
problems and our zeroth-order Langevin Monte Carlo Algorithm.

4.1. Gradient Estimator for Stochastic Derivative-free Optimization

We study stochastic derivative-free optimization in the context of limited computational budget and prohibitive
access to the objective (loss) function. We define L : X — R to be a black-box function over domain
X C RY, and possibly non-differentiable or noisy. In machine learning scenario, L can always be formalized
as

L(z) = Epll(@,&)] = [ (e, P9, @
Q
where E is a random variable on probability space €2, from which i.i.d. training samples (51, 52, e En) are
drawn. In our case only the stochastic zeroth-order oracle is available:
Ym = L(zm) + €, e~ N(0,0%) 4.2)

such that evaluation of L is noisy although the expected value is correct and the gradient needs to be
properly approximate. After designed m queries of the stochastic zeroth-order oracle in Eq. (4.2) by a
sequence { X, X1, ..., X;—1} of random variables , we focus on the unconstrained (X = R%) derivative-free
optimization problem

min{L(x) : z € X} 4.3)

through a minimization of the 2-Wasserstein distance between measures of X,,, and the minimizer z* of Eq.
(4.3),

W(L(X,), L(z*)) = (inf E|| X, — 2*?)"/?, (4.4)

which leads to a minimization of excess risk under mild assumptions [26]. Next, to give well-defined
properties of our estimator and the convergence rate of our ZSGLD recursion, we impose assumptions usually
used in Langevin dynamics literature as follows (the details will be discussed in Section 6.1).

Assumption 4.1 The loss function L takes nonnegative real values, and the value at zero is bounded, that is,
there exist constants R, S > 0, so that

ILO) <R, [IVLO)[ <5 4.5)

Assumption 4.2 The initial iterate Xq is configured with a probability law with a strictly positive and
bounded density function fo w.r.t. Lebesgue measure on R, so that

to :/ e”xH2f0(:v)dx (4.6)
R4
is finite.

Assumption 4.3 The loss function L satisfies (a, b)-dissipativeness [19], that is, there exist a > 0 and
b > 0, such that for all x € R¢,

(z,L(z)) > allz|* - b. (4.7)



Assumption 4.4 The gradient function of L, V L(-), is T-Lipschitzian, namely, for a constant T > 0,
IVL(z) = VL) < Tz —yl, Yo,y € R (4.8)

Similar to [14], below we introduce single point gradient estimates through sampling via a probing distribution
w. Let 11 be a constant distribution supported on R and the random variable u ~ i, of which the probability-
density function is denoted as p. Before giving the gradient estimator for V L, we first construct a smoothed
version of function L,

L =By [L(z 4 u)], (4.9)

which suppress the magnitude |L(z) — L(z)| and enables VL(z) to be unbiasedly estimated. Then for any
differentiable function f : R? — R, Stein-Hudson identity gives

ELf (w)] = —E[f (u)Vlogp(w)], -~ p. (4.10)
By setting f(u) = L(z + w) in Eq. (4.10) and combining Eq. (4.9), we can obtain
VL(2) = —Eyu[L(x + u)V log p(u)] 4.11)

Hence we can intuitively pose an unbiased estimator / : R x Q¢ — R? for vi@:) with a control variate
term reducing variance,

~

h(z,u) = (y —y")Viogp(u), 4.12)

where y = L(z) + €,y = L(x + u) + €/, u ~ p. The control variate like y together with 3 decorrelates

dependency of the estimator on the magnitude of |L(z)|, which also helps give a finite-time convergence

guarantee for ZSGLD in Section 4.2. The fitness of the estimator is concluded in the following result.

Proof From the independence of e and u, Eh(z, u) = E[(L(z)+€)V log p(u)]—E[(L(z+u)+€ )V log p(u)] =
L(z)E[Vl1ogp(u)] — E[L(z + u)V logp(u)]. Under the regularity assumptions above, swapping of inte-

gration and differentiation is allowed. Thus we have E[V log p(u f p(u Vp u) du = f Vp(u)du =

V [ p(u)du = 0. Combining with the previous equation, the proposmon holds |

However, the estimator is biased to V L(x), while our ZSGLD recursion still gives reasonable finite-time
convergence rate. The effect of the estimator on the recursion and related results are illustrated in the
following sections.

4.2. Zeroth-order Stochastic Gradient Langevin Dynamics

We focus on the derivation and analysis of ZSGLD recursion in this section. In case of difficulties in accessing
the gradient of objective function, we use the Stein-Hudson gradient estimator h instead to obtain our main
recursion:

~ 2
Xpni1 = Xon = V(X thm) + 4 /%cm, m € N. (4.13)
where {(, }5°_, are mutually independent standard Gaussian random vectors in R%, {u,, }%°_, are mutually

independent random vectors in R? drawn from probing distribution p, and for a fixed m, X,,, : © — R¢
is a random variable on space =. We denote by p > 0 the inverse temperature parameter, and by v > 0
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the step length. We assume that Xy, u, {Gn, }oo_o are mutually independent random vectors in R%. In
this formulation, queries to the stochastic zeroth-order oracle can be obtained by a sequence of random
iterates { X, X1, ..., X;n, ...}, where X,,, only depends on { Xy, ..., X;n—1}, {¥0, ---; Ym—1} and randomness
introduced by probing distribution. From a perspective of stochastic differential equation (SDE) [4], the
above recursion can be regarded as a (zeroth-order) Euler-Maruyama [21] discretized version of Langevin
diffusion with a gradient estimator,

dX (t) = —VL(X(t))dt + \/de(w, >0, (4.14)

where X (t) is a stochastic process on [0,00) x Z, B(t) denotes the standard Brownian motion in R
The —V L(x) term is usually referred as the drift coefficient. Given regularity assumptions in Section 4.1,
according to detailed study in [8], (4.14) will converge rapidly to the unique invariant distribution w
exp(—pL). The upshot of the connection between (A.2) and (A.3) is that we can first prove the ZSGLD
tracks the Langevin diffusion (4.14) with respect to distribution in 2-Wasserstein sense, then by using the
fact that distributions of X (¢) converges to Gibbs measure and w with large p concentrates around the
global minimizer of L [20], along with the triangle inequality for 2-Wasserstein distance, we are able to give
convergence guarantee for ZSGLD.

5. Main Theory

In this section, we will present extensive theoretical results to demonstrate the convergence rate of ZSGLD
in 2-Wasserstein distance. Firstly, based on regularity assumptions and properties of the Stein-Hudson
gradient estimator, we show bounds on the possible gradient norm of L, second-order moment error and
first-order moment error brought by h. To quantify the closeness between X,,, and X (t), we then upsample
the discrete-time stochastic process X,, with step size v by interpolation. As a result, the second-order
moment error from the value of a inner point to the end point is given, which also contains an upper bound on
the second-order moment about the origin of X,,,. Finally we present the overall bound on 2-Wasserstein
distance between iterate distribution of (A.2) and Gibbs measure.

Let P, := L(X}),Q; := L(X(t)). According to the bounded initial value and gradient of L, a simple
but useful linear bound is given as follows.

Lemma 5.1 Under Assumption A.1 and A.4, we have a linear bound on |V L

|IVL(z)|| < T|z|| + S,  VzeR< (5.1)

Remark 5.2 Lemma B.1 is essentially a natural result from the T'-Lipschitzian assumption, also a conse-
quence of bounded second-order derivative if L is second-order differentiable. We pose no finite bound of
either |L(x)| or V L(x) while (B.4) controls the growth of the gradient norm within a linear speed.

The following result gives a quadratic bound on the expected squared error of h.

Lemma 5.3 For each x € R%,

Elh(z,u) — VL(@)|* < Hi || + Hs|lz| + Hs, (5.2)



where

Hy = 4TE||u||?(|V log p(u)||* + 2T, (5.3)
Hy = 4TS(E[u|?||Vlog p(u)||* + 1), (5.4)
Hy = 252E||u]?||V log p(u)|* + 4T SE|Jul|* |V log p(u)*

+ 4AT?E||lul|*||V log p(u) ||* + 40°E||V log p(u) ||* + 252 (5.5)

Next the bound on the first-order moment error is illustrated.

Lemma 5.4 For each x € R?,

El[h(z,u) — VL)|| < Ha|lz|| + Hs, (5.6)
where
Hy = T(E[lull[[VIogp(u)|| + 1), (5.7)
Hy = TE||u|]?||V log p(u)[| + SE||ul[[|V log p(u)
+ f/(;EHVlogp(u)H +S. (5.8)

Then, we present a crucial lemma that describe the accumulative bias introduced by zeroth-order gradient
estimator in ZSGLD recursion in the form of an interpolation error.

Lemma 5.5 (Second-order Moment Error by Interpolation) V¢ > 0, let

X(t) = Xo - /0 WX (La/7)7), i(a))dg + /0 dB(q), (5.9)

be a continuous version of the discretized recursion using straightforward interpolation, where u(q) =
U, when ¢ € [m7y,(m + 1)y). Then, for all m € N,m > 0 and some q € [my,(m + 1)), when

2(a — H.
% > Ellull[|[V1ogp(u)|| 4+ 1, there exists constants 0 < § < (aH4) and o > 0, so that for any
5
0<y<1A 2a—Hq)—0Hs we have

2T2+H1+2MH4+(H2/2+SH4+TH5)(5’

E|X(g) — X (m7)|”

6d

< 372< ((Hi + R*) + Hipa) - (K1(8) V K2(0)) + % + Hn) + (5.10)



where we define
Hg = Hy + 2H,T + 272,

H.
H; = =2 4+ SH, + TH;,

2
2(TH5+SH4)+H2
H8: 2 )
Hy = Hs + 2SH;5 + 252,
Hs + 2RS
H10=%7 Hy = Hz + 52,
2(THs + Hs + SHy) + H.
K, (6) = 21 s DRSS

2d
+2SHs5 +25% +2b+ —,
p

Hs + H
%H%HH%’
K2(5)270+

2a — 2H4 — Hg — (H5 +H7)(5'

The following main theorem shows that even if we pose a biased estimation, we are still able to reach
reasonable rate of convergence.

(5.11)

Theorem 5.6 When it holds that

a
2 > Bllul |V log p(u)| + 1, (5.12)
there exists constants § < 2(‘1;];{4) ,a > 0,8 >0, sothat form € Nandany 0 < v < 2T2+H1+2]\3[(I(31—&I-{(%;/62H-SSH4+TH5)6’
we have
~ 1 ~
W(Pp,w) < (1 Ci(e, 0)v% + 1/ Ca(B,6))my
+ Cye s, (5.13)
where
3pT? 9
Ci(a,0) = =5—{ ((H1+ R%) + Hiar) (K1(8) V K5(9))

H 2d
+m+H11+>,
a p

2 283

Ci(a,8) = (12 +8 <m +2b+ 2;) m’y) (+/Ci(, 0) + Cy1 (e, 0)),
Ca(B,6) = (12 +8 <To +2b+ 2;) mv) - (v/Ca(B,8) + C1(B,9)),

ca(6.0) =5 ( (#0427 ) (ks v s + 52+ ).

ap

d 3
Cy = \/QC’LS <ngo + log || folloo + §log >,

T b
030:$+S\FO+R+§1og3. (5.14)
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See Section B for a detailed proof of Lemma B.1, B.2, B.3, B.4 and Theorem 5.6.

6. Discussions and Examples

In this section, we will first give extensive illustration to the feasibility of the regularity assumptions proposed
in Section 4.1. To show how our theory works more intuitively, we take a specific probing distribution y as
an example that enable our algorithm to work while satisfying all the aforementioned conditions.

6.1. Feasibility of Assumptions

For general non-convex optimization study, assumption A.1 and A.4 are trivial to guarantee a further analysis.
In the following we focus on the exponential integrability assumption (A.2) and dissipative assumption (A.3).
On one hand, when Xj is randomly initialized with the natural Gaussian distribution Xo~N (0 oI ) of

which 02 < 1/2, Eq. (A.5) gives ty = \ﬁ Jxa exp{w}d < f Jra exp{ E"Hx” Hz < oo
for some constant €, > 0. Hence the former assumption is easy to be satisfied. On the other hand when we

construct the function L with 2-norm regularization as L(x) = Lo(x) + 2, where Ly is Ty-Lipschizian.
2

0 T,
As a result, (A.6) holds for L with @ = = and b = =%. Thus, our analysis applies to a wide range of loss

functions with 2-norm regularization of weights. From a higher point of view, dissipativity implies that
critical points (where (z, L(z)) = 0) of a dynamical system described by @(t) = —V L(x) (2(0) = z¢) will

fall into an absorbing set which turns out to be a ball centered at the origin with radius 4/ —. However, their
a

distribution can be arbitrary. From all above, the assumption A.3 only poses little restriction on the objective
function.

Another important difference between our assumptions and those of non-convex global optimization is
the bounded variance of inexact gradient. In our derivative-free scenario, the gradient in SGLD is replaced
with the proposed gradient estimator of which the variance bound and bias bound are proved as our theoretical
results.

6.2. Examples of Probing Distribution

Below we will take Gaussian distribution as an example, instead of the abstract distribution y, for the probing
distribution which plays a crucial role in our one-point gradient estimation, to show how this usual distribution
meet our requirements and enable the theory to work.

For u € R?, we consider the Gaussian distribution

d

i=1

pi(u'") = exp 557 [ 6.1)

N 2mo

where o > 0 denotes the variance of u(*) (i=1,2,...,d). In this configuration, we note that ||V log p(u)|| =
| = u/o?| = |lu||/o% Our gradient estimator gives h(z,u) = (3’ — y)u/o?. Next we check that the
expectation terms with respect to u in H; (2 = 1,2, ..., 10) are bounded. Firstly, from standard Gaussian tail



inequalities P{|u| > s} < 2 exp{—%}, Vi e {1,2,...,d},Vt > 0, and furthermore a union bound of the
inequalities over {1,2, ..., d}, i.e., P{max; [u()| > s} < 2d exp{—%}, we have for all even n € N,

El[ul|™ < 6™(2dlog d)"?*P{max [u)| < o1/21log d}
+/ s"d"?P{max |[u| > s}ds
ov2logd ¢

< o™(2dlog d)"? + 2d3H! / s"e 5127 g
ov/2logd
o"(2dlog d)V? + 2d3 " n(2log d)™/?

<
< (1+0)o™(dlogd)™?. (6.2)

Hence the terms E||ul|||V log p(u)]], E||V log p(u)||?, E|jul|?||V log p(u)||?, and E||u||*||V log p(u)||? are
proved to be bounded. Furthermore, by Jensen’s inequality for f(x) = —+/z, we have for all odd n’ € N,

E|ful|™ < \/Ellul|2", (6.3)

where the right-hand side have been upper bounded by Eq. (6.2). Therefore, terms like E||V log p(u)||,
E|u|?||V log p(w)||, and E||u||?||V log p(u)||? are all bounded. To guarantee a finite-time convergence of
the example, we need one more step to check condition (5.12). It follows that

1
Eflul[[[V1og p(u)]| = gIEHUII2 =d. (6.4)

Hence it requires a > T'(d + 1) to hold for our algorithm, it is reasonable since a and T" are decorrelated
with the dimension d. Thus the example of Gaussian probing distribution is validated.

7. Conclusion

In this paper, we propose a simple yet provably efficient one-point gradient estimator which takes the
advantage of both zeroth-order approximation and the potential to escape local minima of SGLD. For such
a zeroth-order SGLD, we provide a nonasymptotic analysis to guarantee a finite-time convergence in 2-
Wasserstein distance with a general setting. In addition, our work provides more insight into the combination
of derivative-free optimization and global optimization in simulation-based real-world systems.
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Appendix A. Proof Sketch

We lay out a proof sketch of the main theory. Our proof utilizes several technical tools including the theory
of Markov diffusion operators and associated functional inequalities, properties of stochastic differential
equations, and transportation cost properties. Given an estimator / : R x Q¢ — R? of the VL (z):

h(w,u) = (y — y')V log p(u), (A.1)

where y = L¢(w) + €,y = Le(w + u) + €, u ~ p. The zeroth-order SGLD recursion can be described as
follows:

- 2
Xyt = Xom — V(X tm) + 4 /%gm, m=0,1,2, .. (A.2)

where {(,}°_, are mutually independent standard Gaussian random vectors in R? and {u,,}5°_, are

mutually independent random vectors in R? drawn from distribution z. We denote by p > 0 the inverse
temperature parameter. We assume that X, u, {(n }0°_ are mutually independent standard Gaussian random
vectors in R?. From a perspective of stochastic differential equation [4], the above recursion can be regarded
as a (zeroth-order) discretized version of Langevin diffusion,

dX (t) = —VL(X(t))dt + \/EdB(t). (A.3)

X () is a stochastic process on [0, 00) x =.
To guarantee the convergence of our discretized recursion, we impose assumptions usually used in
Langevin dynamics literature as follows.

Assumption A.1 The loss function L takes nonnegative real values, and the value at zero is bounded, that
is, there exist constants R, S > 0, so that

ILO) <R, [IVLO)| <S. (A4)

Assumption A.2 The initial iterate X is configured with a probability law with a strictly positive and
bounded density function fo w.r.t. Lebesgue measure on R, so that

70 :/ e”mHng(x)dx (A.5)
R4
is finite.

Assumption A.3 The loss function L satisfies (a,b)-dissipativeness [19], that is, there exist a > 0 and
b > 0, such that for all x € R4,

(2, L(z)) = allz]}? — b. (A6)
Assumption A.4 The gradient function of L, V L(-), is T-Lipschitzian, namely, for a constant T'; 0,

IVL(z) = VL(y)| < T|z —yl, Va,yeR™ (A7)
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Appendix B. Proof of Main Results
B.1. Notation

Consider the stochastic optimization problem

minimize L(z) :=Ep[l(z,&)] = / l(z,§)P(dE). (B.1)

Q

As it is prohibitive to get access to P, we choose to minimize
1 n
Le(x) = — Z; (2, &), (B.2)
1=

the empirical risk of a hypothesis w € R? on a dataset £ = ({1, ..., &,) € Q" In our case only the stochastic
zeroth-order oracle is available:

y=L(x)+e,  e~N(0,0%). (B.3)

We use X ~ Y to denote that two random variables X and Y have the same probability law. Let Ex(-) be
the expectation with respect to random variable X . If not specified, [E(-) takes expectation over all possible
random variables. Let P,,, := £(X}), Q; := L£(X(¢)), and w be the Gibbs distribution measure, that is, the
unique invariant distribution to which distributions of X () converge to.

The following results shows that even if we pose a biased estimation g(w,u) = (y — y')V log p(u)
(where y = L¢(w) + €,y = Le(w + u) + €, u ~ p) of VL¢(w), we are still able to reach reasonable rate
of convergence.

Lemma B.1 Under Assumption A.1 and A.4, we have a linear bound on ||V L||,
IVL(z)| < T|z|| + S,  VaxeR%L (B.4)
Proof For any x € R?, from Assumption A.4, we have
|\VL(z) — VL(0)|| < T|z|. (B.5)

Notice that |V L(z)||—||VL(0)|| < ||VL(x)—VL(0)|. Therefore,
|

L(z)|| < Tl +[VLO)|| < Tlz[[+S5.

Lemma B.2 For each x € RY,

E|[h(z,u) — VL(2)|[* < Hi||z|* + Hs||z| + Hs, (B.6)

where
Hy = AT?E||ul|?||V log p(u)||* + 2772, (B.7)
Hy = 4TS (E|ul?||V log p(u)||* + 1), (B.8)

Hs = 25°E|Ju|]?||V log p(w)||* + AT SE||u]|*||V log p(w)||?
+ AT?E|ju|| ||V log p(u)||? + 40°E||V log p(u)||* + 252, (B.9)
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Proof
E|h(z,u) — VL(z)|* = E|(L(z) + € = L@ + u) — ¢)Vlog p(u) — VL(z)||?
< 2E||(L(z) — L(z + u) + € — €)Vilogp(u)||* + 2E||VL(z)|?
= 2E(|L(z) — L(z + u)|* + 20%)||Vlog p(u)||* + 2E||V L(2)|®
< 2E(||VL(x + 6(w)u)||?||ul® + 20|V log p(u)||? + 2(T||z|| + S)?
< 2E((Tla + 5(uw)ull + 8)?[[ull® + 20°) ||V log p(u)||* + 2(T|z[| + S)?
< 2B((2T2(|[2]* + [[6(u)ull®) + 2TS(||2]| + [|6(w)ull) + S?)[[u]l? + 20°)[|V log p(w)||?
+ 2(T2 ||z || + 2T7°S||=| + S?)
= Hllz||* + Hz||z|| + Hz. (B.10)
|

Lemma B.3 For each z € R?,

E|h(x,u) = VL@)| < Hy|zl| + Hs, (B.11)
where
Hy = T(E[[ull[[V1ogp(u)| + 1), (B.12)
20
Hs = TE||u|*(|V log p(u)|| + SE[|u]|[|V log p(u)|| + FEIIVIng(u)II + 5 (B.13)

Proof Following the triangle inequality of the Euclidean norm, we have
E|[h(z,u) — VL)| = E||(L(z) — L(z +u) + ¢ — £')Vlogp(u) — VL(z)|
<E|L(z) — L(x +u) + & — €'||Viogp(u)| + E||VL(z)|, (B.14)
the second term in B.14 can be upper-bounded by the linear bound of the norm of the gradient,
E|VL(z)| < Tljz] + S (B.15)

According to the triangle inequality and the mean-value theorem, for any u € R%, there exists 6(u) € (0, 1)
so that

2
E|L(z) — L(z 4+ u) + € — £'l[[VIog p(u) | < E[|VL(z + 6(w)u)ull[[V log p(u)|| + %EHV log p(u)]|
(B.16)

20
< E(Tlla + o(u)ull + S)[ulll[V log p(u)]| + —=E|[V log p(u)]|

VT

< TE[[ull|Vlog p(w)|| - [[]| + TE|[ul|?[[pV log p(u)]|

20
+ TE|[ull[[V1og p(u)[| + —=E[[V log p(u)| (B.17)

N3
The second term in B.16 comes from the expectation of |¢ — &’| where ¢ — &’ ~ N(0,20?). Combining
(B.15), (B.17), and (B.14), we can obtain the desired results. |
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Lemma B.4 (Second-order Error by Interpolation) Let

X(t) = Xo - /0 WX (La/7)7). @(a))dq + /0 dB(g), V>0 (B.18)

be a continuous version of the discretized recursion using straightforward interpolation, where u(q) =

U When q € [mry, (m + 1)y). Then, for all m € N;m > 0 and some q € [m~,(m + 1)7), when
2(& - H4)

% > E||ul|||V1egp(u)|| + 1, there exists constants 0 < § < i
5

and o« > 0, so that for any

2(a—H4)—6Hs

T oMLt (24 SHLTH)s e have

0<y<1Agm

~ ~ H 6vd
B (@) - Kl <397 (1 + R + Hige) (510) v Ko@) + 722 1) + 2%, Bu19)
where we define

H
Hg = Hy +2H,T +2T%, ~ H;= 72 + SHy + THs,
2(TH5 + SH4) + Hs

Hg = 5 , Hg = Hs + 2SHs + 252,
Hm:%%m, Hy = H3 + S,
Ky () = 2 Hs +H52; SHY) ¥ 1y | gy 4 o5, 4 252 +2b+2pd
Os M5 | gy oy 2
Ko(6) = 10 + 0 ’ (B.20)

2a —2H, — Hg — (Hj5 +H7)5'

Proof According to (B.18), It is shown that X (0) = X, ["7 dB(q) = B(my) ~ >7%" /¢, and
SR (La/A)), u(q))dq = SV (X, ug), hence X (mey) and X, are subjected to the same proba-
bility law. Therefore, h( (La/v]v),ulq) = R(Xm, um) when q € [m7y, (m + 1)7), which gives

E|X (q) — X (m)||* = El|(my — g)h(Xon, um) + \/E(B(Q) — B(mn))|I?
= E|[(q — m) (VLX) = h(Xpn, um)) — (@ — m7) VLX) + \/g(B(q) — B(my))|”

~ 6
< 3YEIVL(X) = H(Xon, 1) + 3YEIVLX)|? + BN Ba) — Blm)
(B.21)
2 T 2 2 2 6d
= $YE|VL(X) ~ B ) [ + 9B VLG|? + 2 (g~ ma) (B2

< 37 (HAE| Xom* + H2E[| Xon || + H3) + 39 (R’E[ X || + 2RSE[| Xon | + 5%)

6d
2 (B.23)
p
where ¢ — my < 7y is used, (B.22) comes from Jensen’s inequality for || - |2, and (B.21) is due to Lemma B.1
and Lemma B.2. From the fact
1
e<2224 = Vz>0,Ya>0, (B.24)

- 2 2ay
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we have

~ ~ 372
E|lX(q) - X (my)|” < [372<H1 + R?) + 5 (Hy + 2RS>] E|| Xl

Hy + 2RS 6+d
+ 342 (22a + Hy+ 52) + %. (B.25)

The term of second-order moment about the origin E|| X,,||? can be bounded through a contracted recursion.
To show this, we rewrite X,,,+1 by X, U, using (A.2),

-~ 2y -~ 2y
E| Xmi1ll? = E[| Xm — Yh(Xm, um)|I* + 24/ ?E<Xm = Y Xy um), Gm) + ?IEIICmII2

~ 2~vd
= || X — V(X um)[|? +

= E|| X — YVL(X0)|? + 27E(X i — YV L(Xm), VL(Xin) — h(Xn, )
~ 2~vd

+PE|VL(Xm) = h(Xn, )2 + =

< E| X — YVL(Xm)|? + 29E( X, — YV LX), VL(Xn) = h(Xomy 1))

9vd
+ 2 (HLE| X | + HoE| X | + H3) + %, (B.26)

where the second equality is due to the independence of (,,, and X,,, — yﬁ(Xm, Up,) as well as E¢,, = 0. We
used Lemma B.2 again in the last inequality, of which the second term can be bounded by Cauchy-Schwarz
inequality, triangle inequality for || - || and Lemma B.3,

29E( X, — YVL(Xm), VL(Xim) — B Xy ) < 29E | Xy — VLX)V L(Xim) — B Xy ) |
= 29Ex,, (| Xm = YV LX) [Eu [VE(Xm) = F(Xins )
< 29Ex,, (| Xonl| + Y VL(Xo) ) (Hal| Xon|| + Hs)

< 2v<(1 AT HAE | X2
+ (1 +~T)Hs + vSHY)E|| X0 + VSHE,) . (B.27)

The first term of the RHS of the last inequality in (B.26) is estimated by dissipativity assumption (A.3) and
Lemma B.1 as follows,

E|| X — YV LX) |? = E| X ||? = 29E( X, VL(Xi)) + 7’E|VL(X;)|?
< E|[ X1 = 27(aB[| Xpnl* = b) + 27*(T°E|| X1 + 5?)
= (1 + 29272 — 27a)E|| Xpn % + 2B + 29252 (B.28)
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Plugging (B.27) and (B.28) into (B.26), we have
El| Xmi1]? < (1+29°T? — 2ya + 2y(1 +T)Hy + > H1)E || X ||?
+(29((1 +~T)Hs + ySHa) + 7° H2)E[ Xpn|

2vd
+ (Hs +2SHs + 252)7% + 2by + %

H
< < <H1 + 2H4,T + 272 + <22 + SH, + TH5> 5) 72 + (2H4 + 0Hs5 — 2(1)”)/ + 1>E”Xm‘2

<2(TH5 + SH4) + Ho
+ 25

H %vd
4 Hy + 2SHs + 252> N2 (55 + 2b> v+ %, (B.29)

§ 1
where § > 0, we have used the fact that E|| X, || < ilEHXmH2 + % in the last inequality. Then for

2(a—H4)—6Hs
2T2+H1+2MH4+(H2/2+SH4+TH5)5 ’

0<y<1IA we will have several conditions to consider as follows.

e When (Hg + H76) v?+(2H4+6Hs—2a)y+1 < 0, which requires (Ho+2SHy)(a—Hy)+2T Hs(a—
2H, — T) — H1Hjs > 0 to ensure the existence of such a § that 4 (Hg + H76) < (2H, + §H5 — 2a)?,
it follows from (B.29) that

H, H 2d
Bl < (58 + 1) 2+ (5 e 2
< 2(TH5 + Hs + SH4) + Ho
- 26
= K;(0). (B.30)

2
\ Hy+ 25H; + 25 4 2+ 22
P

e When 0 < (Hg + H76)7? + (2Hy + 0Hs — 2a)y + 1 < 1, which can be always satisfied due to the
property of quadratic functions. Then we have the following summation according to recursion (B.29),

E|X,.|? = ((HG + H70)v% + (2Hy + 6Hs — 2a)y + 1) E| Xo|?

m—1 i
H H, 2d !
+ <<58 —|—Hg> v 4 <65 +oh+ p) y> 3 <(H6+H75)72 + (2H, + 6H; —2a)7+1>
1=0

H H

% + Hy +2b+ %

< E[Xol*+

2a —2Hy — Hg — (Hs + H7)0
H H
R =L N A
- 2(1—2H4—H6—(H5+H7)(5
H H

% + Ho+2b+ 2
2a — 2H4 - H6 - (H5 + H7>5

= K5(5). (B.31)

From all above, we conclude that for all m € N,

E|| Xpm|* < K1(8) V Ka(5). (B.32)
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Combining (B.32) with (B.25) we obtain

E|[X(q) — X (m)|]* < 3° <(<H1 + R2) 4 Higa) (Ki(6) V Ka(6)) + ~10 +Hn)

6vd
4+ 20e (B.33)
P
Thus we proved the desired result.
|

Lemma B.5 When % > El|lul|[|Vlog p(u)|| 4 1, there exists constants 6 < 7(‘1 Ha)

(CL — H4) — 5H5
2T% + Hy + 2M Hy + (H3/2 + SHy + TH3)6'

WP, w) < (\/Ci(a, 8)7T + \/CalB,8))mry + Cze 713, (B.34)

,a> 0,8 >0, so that

form € Nandany 0 < v < we have

where

Ci(a,8) = (12 +8 <To +2b+ 25) mv) (v/Ci(, 0) + Ci(e, 6)),

Ca(B,6) = (12 +8 (To +2b+ 25) m) - (v/Ca(B,8) + C1(B,9))

Cs = \/2CL5 (p <T;0 + S+ R+ Zlog3> + log || folloo + glog Z) (B.35)
Proof Let

or=L(Xm), m=123 ..
Mo=LX(E),  t>0 (B.36)

be the probability laws of discretized zeroth-order Langevin recursion (A.2) and Langevin diffusion (A.3)
respectively. From (A.2), { X, }5°_ is a time-homogeneous Markov process. Based on (B.18) in Lemma B.4,
another Ito process can be constructed using [18] as follows,

Y(t) = Xo— /0 ho(Y (q))dq + \/f /O dB(q), (B37)

where hy(Y (q)) = E[h(X(lg/7]7),7(q))| X (g) = Y (q)]. Let
or=L(Y(q),0<q<t)
A =L(X(q),0<q<1) (B.38)

be the probability laws be two collections of probability laws of (B.5) and (A.3) respectively. By Girsanov
formula [24], we can derive the Radon -Nikodym derivative for a change of measure as follows,

i) =ep {5 [(VL0@) - n @)@ - [ IVEE @) - n(v@)Iae |, 639

doy 0
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from which we can obtain the Kullback-Leibler divergence from \; to oy
dM¢
DKL(UtH)\t) / datlogd
=2 [don [ 200 — bV @) aB@)+ & [ don [ 1LY @)~ b @)

=& [EIVL @) =y @) P (B.40)

.-lk\b

where the last equation is due to the property of stochastic integral, that is, for VL(Y (¢)) — he(Y (q)) €
12((0,00) x 2),

B [ (VL0 @) - @) dBla) 0. (B.41)

Next we discretize ¢ by t = my for all m € N and proceed to expand (B.40),

e~ \

m=1 ,(i4+1)y
D1 (G [ A = "Z / E[VL(Y (0)) — ho(Y (@))||%dg

(i+1)y .
/ | VE(X @) ~ hy(X(a)|dg

qu
MS

.
I

Py 1 ZHM "X ~ 212

T4 Z / I VEX(@) = Ex(g/1 1) ) MK (La/7]7), @(@)) 1 dg

pm L r(i+1)y N L

420/ E (o (/21100 [V EX (@) = R(X(Lg/7]7), (q))]|*dg
m—1 (Z+1)7 N

IN
~1

E %), %(la/2 o | VX (@) = h(X (La/7]7), 5(9)|*dg, (B.42)

o

1=

where the second equality is due to the construction of (B.37) where £(X(¢)) = L(Y (q)), the last line
follows from Jensen’s inequality. Then, using Lipschitzian condition (A.7), the defintion of %(q) and Jensen’s
inequality again, it follows that

(i4+1)y
DKL(O-WWH)‘W’Y > 2(2/ ). X(la/7)7) u(q)HVL( ()) VL(X (LQ/’YJ ))szq
m— (i4+1)y ~~ o~
DY / E 0 510100 [VLE <Lq/m>>—h(X(Lq/m,a(q)nqu),

2 m 1 (i4+1)y oy m—1 R
/ 1% (0) — X (la/7 )0 IPdg + 203" BIVLOX) ~ ROXG )|
=0
(B.43)
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Using Lemma B.2 and Lemma B.4 for each corresponding term in (B.42) while noting 0 < v < 1, we can
write

Dict (o ) < 23 (3 (81 + 12) 4 Huge) 1 6) v Ka(6) + 222 4 ) + 220
+ 20 (B + Xl + )
1=0
< Oy (a, O)mA? + p27 ((m v Hf) (K1(8) V K(5) + fg v Hg)
= C1(a, 8)mAy? + Co(B,8)mr, (B.44)
where Cy (o, §) = 3”2T (((H1 + R2) + Hyga) (K1(6) V Ka(6)) + % +Hyp + 2;),02(5, 5) = g ((Hl + Hf) (

with a constant 5 > 0. Next, from Data-processing inequality we have

DKL(PmHQm'y) < DKL(Um’yHAm'y) < C’1 (a’5)m72 + CQ(Baé)me- (B45)

Then, letting 79 = log to, we proceed to use a weighted transportation cost inequality from [3] and exponential
integrability of Langevin diffusion in [26] to obtain the Euclidean Wasserstein distance of P,,, and Q,,,

< <12+8<7'0+2b—|— m ) ((Ci(a, 6)y + Co(B,0))m~y + ( \/C'l (v 57—1—\/02 (8,0))m~)

§<12+8<7’0+2b—|— )m'y) ((\/Ca(B,6) + Co(B,0))my + (/Ci(a,d) + Ci(a, 0))m

= (Ci(a, 6)v + Co(B, 8))m+?, (B.46)

M\W

7?)

where 0 < v < 1 and m+y > 1 are used in the second and the third inequalities. We also have let Ch (a,0) ==

(12+8(Tg—|—2b+2p> >\/Cla(5+Cla(5 andcg(ﬁ ) = (12+8(Tg—|—2b+2pd>m’y>

((1v/C2(B,0) + C1(B, 9)). From logarithmic Sobolev inequality [26] for w

W(Q,w) < v2CLsDrer,(Qtfw) (B.47)

8T°+2a* 1 (6(p+d)T
pa’T Ay
of entropy and Otto-Villani theorem [26], we have

with the constant Crg < + 2) . Then, by the theorem on exponential decay

a

2t
DKL(QtHW) <e /’CLS'DKL(P()HW). (B.48)
According to the expression of 79 (Eq. (A.2)), we can obtain a relative entropy bound of Py and w,

T b d 3
Dicr(Pollw) < p (;0 £ SV + R+ Jlog 3) Flog ol + G los 22 (B9

20



By combining Egs. (B.45)-(B.49) and triangle inequality for WW(-, -), we can derive that for all m € N,

W(Pm, W) < W(Pma Qm’y) + W(Qm’ww)

< (\/Ci(,6)77 + 1/ Ca(B, 6))mry

__my T
+e 7L \/QCLS <P (?)TO + S0+ R+ glog3> + log || folloo + glog i::)
= (\/Ci (0, 6)71 + \/Ca(B,6))my + Cye Ls | (B.50)
[ |
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