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Abstract

When equipped with efficient optimization algorithms, the over-parameterized neural networks
have demonstrated high level of performance even though the loss function is non-convex and
non-smooth. While many works have been focusing on understanding the loss dynamics by
training neural networks with the gradient descent (GD), in this work, we consider a broad class
of optimization algorithms that are commonly used in practice. For example, we show from a
dynamical system perspective that the Heavy Ball (HB) method can converge to global minimum
on mean squared error (MSE) at a linear rate (similar to GD); however, the Nesterov accelerated
gradient descent (NAG) only converges to global minimum sublinearly.

Our results rely on the connection between neural tangent kernel (NTK) and finite over-
parameterized neural networks with ReLU activation, which leads to analyzing the limiting
ordinary differential equations (ODE) for optimization algorithms. We show that, optimizing the
non-convex loss over the weights corresponds to optimizing some strongly convex loss over the
prediction error. As a consequence, we can leverage the classical convex optimization theory to
understand the convergence behavior of neural networks. We believe our approach can also be
extended to other loss functions and network architectures.

1. Introduction

Neural Tangent Kernel (NTK) Jacot et al. (2018) has taken a huge step in understanding the
behaviors of over-parameterized (or wide) and deep neural networks. Leveraging NTK, researchers
have focused on the training process of the neural networks and studied how different aspects
affect the convergence behavior Lee et al. (2019). In particular, many works have investigated
the parameter initialization Du et al., input distribution Du et al. (2018); Allen-Zhu et al. (2019),
activation functions Du and Lee (2018), neural network architectures (e.g. two-layer networks
Du et al. (2018), multi-layer fully-connected neural networks (FCNN) Du et al.; Allen-Zhu et al.
(2019), CNN Arora et al. (2019); Allen-Zhu et al. (2019); Zou and Gu (2019); Zou et al. (2020),
ResNet Allen-Zhu et al. (2019)), loss functions Allen-Zhu et al. (2019). On the other hand, one
would argue that the efficient optimization of a neural network is as important as designing the
architecture of the network. Nevertheless, to our knowledge, this is the first paper to study the
convergence behavior of neural networks under the NTK regime, beyond GD and SGD. Especially,
we answer the following questions in the affirmative:

• Can other optimizers provably find global minimum on the MSE for neural networks?

• Can we leverage convex optimization theory to explain the convergence behavior (e.g.
acceleration) of optimizers on neural networks?

c© Z. Bu, S. Xu & K. Chen.
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2. Preliminaries

In this section, we introduce the NTK approach to analyze the convergence behavior of any neural
networks from a dynamical system perspective. Particularly, we warm ourselves up with some
known results of training a two-layer neural network in Du et al. (2018), under the mean squared
error (MSE) loss and with the gradient descent (GD).

To start with, we do not specify the neural network architecture (e.g. layers, activation, depth,
width, initialization and so on). Given a training set {xi, yi}ni=1 where xi ∈ Rp, we denote (wr,a)
with wr ∈ Rp as the weight vectors in the last hidden layer connecting the r-th neuron, W as the
union {wr} and a as the set of weights in all the other layers. f (W ,a,xi) is the neural network
output. We aim to minimize the MSE loss:

L(W ,a) =
1

2

n∑
i=1

(f (W ,a,xi)− yi)2

Taking the same route as in Du et al. (2018), we focus on optimizing W with a fixed at
initialization1. Applying the simplest gradient descent with a step size η > 0, we have

wr(k + 1) = wr(k)− η∂L(W (k),a)

∂wr(k)
(2.1)

Since GD is a discretization of its corresponding ordinary differential equation (ODE), known as
the gradient flow, we analyze such ODE directly as an equivalent form of GD with an infinitesimal
step size. We remark that gradient flows are dynamical systems that are much amenable to analyze
and help us understand different optimization algorithms. To be specific, GD corresponds to the
following gradient flow,

dwr(t)

dt
=− ∂L(W (t),a)

∂wr(t)
(2.2)

Simple chain rule gives the following dynamics,

dwr(t)

dt
=− ∂L(W (t),a)

∂f(t)

∂f(t)

∂wr(t)
= −(f − y)

∂f(t)

∂wr(t)
(2.3)

df(t)

dt
=
∑
r

∂f(t)

∂wr(t)

dwr(t)

dt
= −

∑
r

∂f(t)

∂wr(t)

(
∂f(t)

∂wr(t)

)>
(f − y) (2.4)

∆̇(t) =−H(t)∆(t) (2.5)

which we call the weight dynamics, the prediction dynamics and the error dynamics, respectively.
Here we denote the error of the prediction ∆ = f − y ∈ Rn and the Rn×n NTK matrix as

H(t) :=
∑
r

∂f(t)

∂wr(t)

(
∂f(t)

∂wr(t)

)>
(2.6)

which is the sum of outer products. The key observation of training the over-parameterized
neural networks is that W (t) stays very close to its initialization W (0), even though the loss
may change largely. This phenomenon is well-known as ‘lazy training’. As a consequence, the
neural network f is almost linear in W and the kernel H(t) behaves almost time-independently:
limm→∞H(0) ≈H(0) ≈H(t) (Du et al., 2018, Remark 3.1).

1. in later section we extend our analysis to training all layers simultaneously. We remark that training only the
first layer is sufficient to find the global minimum of loss.
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Interestingly, suppose we define a pseudo-loss L̂(t) := 1
2∆>H∆ and notice that L = ∆>∆/2,

then optimizing the non-convex loss L over wr leads to an error dynamics (2.5), as if we were
actually optimizing a strongly-convex loss L̂ over ∆ with the same dynamical system as (2.2):

d∆(t)

dt
= −∂L̂(W (t),a)

∂∆(t)
The matrix ODE (2.2) with a constant and positive H has a solution converging to 0 at

linear rate, as the classical theory on optimizing a strongly convex loss indicates. Therefore it
is equivalent to show that H is positive with the smallest eigenvalue bounded away from 0 at
all time. We formalize this claim by quoting the results for the two-layer neural network of the
following form,

f(W ,a,x) =
1√
m

m∑
r=1

arσ
(
w>r x

)
with σ(·) being the ReLU activation function. Now we quote an important fact to justify our
theorems.

Fact 2.1 (Assumption 3.1 and Theorem 3.1 in Du et al. (2018)) If for any i 6= j, Zi 6‖
Zj, then the least eigenvalue λ0 := λmin (H∞) > 0, where matrix H∞ ∈ Rn×n with

(H)∞ij = Ew∼N (0,I)

[
Z>i ZjI

{
w>Zi ≥ 0,w>Zj ≥ 0

}]
Note that Du et al. (2018) establishes that, for sufficiently wide hidden layer and under some data
distributional assumptions, the GD optimizer converges to zero training loss exponentially fast
with high probability.

Theorem 1 Suppose ∀i, ‖xi‖2 = 1 and |yi| < C for some constant C, and only the hidden
layer weights {wr} are optimized. If we set the width m = Ω(n6/δ3 and we i.i.d. initialize
wr ∼ N (0, I), ar ∼ unif{−1, 1} for r ∈ [m], then with high probability at least 1 − δ over the
initialization, we have

λmin(H(t)) >
1

2
λmin(lim

m
H(0)) :=

1

2
λmin(H∞) :=

1

2
λ0

with H∞ defined in Fact 2.1, and

L(t) ≤ exp (−λ0t)L(0). (2.7)

We note that the NTK matrix is the Gram matrix induced by the ReLU activation:

Hij(t) =

m∑
r=1

〈∂fi(t)
∂wr

,
∂fj(t)

∂wr
〉 =

1

m
x>i xj

m∑
r=1

I(w>r xi ≥ 0,w>r xj ≥ 0) (2.8)

where 〈·, ·〉 is the inner product with 〈u,v〉 = u>v and its limiting form at the initialization, i.e,
limmH(0), has a closed form as follows.

Fact 2.2 (Assumption 3.1 and Theorem 3.1 in Du et al. (2018)) Define matrix H∞ ∈
Rn×n with

(H∞)ij = Ewr∼N(0,I)

[
x>i xjI

{
wr
>xi ≥ 0,wr

>xj ≥ 0
}]

=

(
1

2
− arccos(x>i xj)

2π

)
(x>i xj)

and define λ0 := λmin (H∞). Suppose for any i 6= j, xi ∦ xj , then λ0 > 0.
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We pause to remark that the framework of Theorem 1 has been extended to training both layers
simultaneously Du et al. (2018), analyzing multiple-layer FCNN, CNN, ResNet, training with
SGD and other losses including the cross entropy. We now complement this line of research by
moving on to exploring the convergence of different optimization algorithms. In this work, we only
analyze the continuous flow and we believe our approach can be easily extend to discrete results.

3. Heavy Ball with Friction System

Many paper have adopted the Heavy Ball method in the NTK regime, e.g. this have been
empirically observed in Lee et al. (2019). The Heavy Ball method Polyak (1964), by definition,
gives

wr(t+ 1) = wr(t)− η
∂L(wr(t),a)

∂wr(t)
+ β(wr(t)−wr(t− 1)) (3.1)

where η is the step size and the momentum term β ∈ [0, 1]. The corresponding gradient flow is
known as the Heavy Ball with Friction (HBF) system. This is a non-linear dissipative dynamical
system, originally proposed by Polyak (1964) and heavily studied in Attouch et al. (2000); Gadat
et al. (2018); Cabot et al. (2009); Attouch and Alvarez (2000); Alvarez et al. (2002); Bhaya and
Kaszkurewicz (2004); Wilson et al. (2016); Loizou and Richtárik (2020); Liu et al. (2020): with
b > 0

ẅr(t) + bẇr(t) +
∂L(wr(t),a)

∂wr(t)
= 0. (3.2)

In particular, we study the case as in (Wilson et al., 2016, Equation (7)) and Siegel (2019),
when b =

√
2λ0, i.e. twice the strongly convex coefficient:

ẅr(t) +
√

2λ0ẇr(t) +
∂f

∂wr
(f − y) = 0 (3.3)

Our choice of parameter b leads to a linear convergence of training loss to the global minimum
without requiring Lipschitz gradients of L̂. For other choices of parameters under the Lipschitz
condition of L̂, HB can enjoy the linear converge locally Polyak (1964); Lessard et al. (2016)
and globally Nesterov; Ghadimi et al. (2015); Van Scoy et al. (2017); Siegel (2019); Aujol et al.
(2020). To solve a second order ODE requires initial conditions on wr and ẇr, which we assume
as ẇr(0) = 0 without loss of generality. Now we state the our main theorem under MSE loss.

Theorem 2 Suppose we set the width of the hidden layer m = Ω
(

n5

δ2λ2.50 b2

)
and b =

√
2λ0

2. If

we i.i.d. initialize wr ∼ N (0, I), ar ∼ unif{−1, 1} for r ∈ [m], then with high probability at least
1− δ over the initialization, we have

L(t) ≤ exp
(
−
√
λ0/2 · t

)
∆(0)>H(0)∆(0) = exp

(
−
√
λ0/2 · t

)
L̂(0) (3.4)

The full proof is in the appendix and we highlight that the analysis is based on the observation
∂2fi

∂wr∂wl

a.s.
= 0. This leads to the error dynamics

∆̈(t) +
√

2λ0∆̇(t) + H(t)∆(t) = 0 (3.5)

which, by the strong convexity of L̂, gives the linear convergence via an analysis of Lyapunov
function similar to Siegel (2019). We remark that indeed

√
λ0/2 > λ0, suggesting a boost in

the convergence rate of HB when compared to GD. To see this, we claim that λ0 < 1/2 as
tr(H∞) = n/2 =

∑
i λi > nλ0. On the other hand, we note that the speedup may come at the

cost of non-monotone loss dynamics, as HB is well-known to have oscillating trajectory of losses.

2. discuss this choice is fastest
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4. Nesterov Acceleration and General HBF

In this section, we analyze the dynamics of the generalized Nesterov Accelerated Gradient (NAG)
descent as follows,

R(t+ 1) = wr(t)− η
∂L(wr(t),a)

∂wr(t)

wr(t+ 1) = R(t+ 1) +
t− 1

t+ d− 1
(R(t+ 1)−R(t))

(4.1)

where η is step size. Su et al. (2014) gives the corresponding gradient flow as

ẅr(t) +
d

t
ẇr(t) +

∂L(wr(t),a)

∂wr(t)
= 0 (4.2)

with initial conditions ẇr(0) = 0. It follows that the error dynamics

∆̈(t) +
d

t
∆̇(t) + H(t)∆(t) = 0 = ∆̈(t) +

d

t
∆̇(t) +

∂L̂

∂∆(t)
(4.3)

with the same NTK matrix H(t) as defined in (2.8). Unlike HB and GD, we can only show that
NAG converges to global minimum sublinearly, by a similar analysis to Su et al. (2014).

Theorem 3 Suppose we set the width of the hidden layer m = Ω
(

n5

δ2λ2.50

)
, 4 < α ≤ 2d

3 and d ≥ 6.

If we i.i.d. initialize wr ∼ N (0, I), ar ∼ unif{−1, 1} for r ∈ [m], then with high probability at least
1− δ over the initialization, we have

L(t) ≤ A(α, d)t−
2d
3 ∆(0)>H(0)∆(0) = A(α, d)t−

2d
3 L̂(0) (4.4)

where A(α, d) only depends on α and d.

We pause here to discuss the choice of d in (4.1). In Su et al. (2014), the ‘magic constant’ d

has been extensively studied. When d ≥ 3, the convergence rate is shown to be O(t−
2d
3 ). When

d < 3, there exist counter-examples that fail the desired O(1/t2) convergence rate. We remark
that NAG may have an improved convergence rate upto O(1/td) for d ≥ 3 (see Su et al. (2014)).

5. Discussion

In this paper we study two most commonly used first-order momentum-based optimizatin algorithms
on over-parameterized two-layer FCNN. We show that both optimizers can provably find the
global minimum on MSE for over-parameterized neural networks. Our key results are based
on the following observation: for piecewise linear activations, known as the maxout activations
Goodfellow et al. (2013), which include ReLU as a special case, each weight dynamics corresponds
to a analogous error dynamics with strongly convex loss. We believe this approach can be easily
extended to other optimizers, network architectures and general losses.

Noticeably, since the main focus of this work is on the optimization algorithms, we do not
generalize to multi-layer training in deep neural networks. We remark that training deep neural
networks under the NTK regime has been well-studied for GD in Allen-Zhu et al. (2019); Du et al.
(2018) using the fact that the NTK for deeper model is also positive definite.
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Appendix A. Proof of Theorem 2

First, we use the chain rule to characterize the prediction dynamics of f ,

ḟ(t) =
∑
r∈[m]

∂f

∂wr
ẇr; f̈(t) =

∑
r,l∈[m]

∂2f

∂wr∂wl
ẇrẇl +

∑
r∈[m]

∂f

∂wr
ẅr

a.s.
=

∑
r∈[m]

∂f

∂wr
ẅr (A.1)

where the last equality follows from a key observation that, with δ(·) denoting the Dirac Delta
function,

∂fi
∂wr

=
1√
m
arx

>
i I(w>r xi > 0)

∂2fi
∂wr∂wl

= 0, for l 6= r

∂2fi
∂w2

r

=
1√
m
arx

>
i xiδ(w

>
r xi)

a.s.
= 0

(A.2)

Multiplying ∂f
∂wr

to (3.2) and sum over r, we obtain the prediction dynamics as

f̈(t) +
√

2λ0ḟ(t) + H(t)(f − y) = 0 (A.3)

and consequently, the dynamics of the error is

∆̈(t) +
√

2λ0∆̇(t) + H(t)∆(t) = 0 (A.4)

or in an analogous form to (3.3),

∆̈(t) +
√

2λ0∆̇(t) +
∂L̂

∂∆(t)
= 0 (A.5)

To establish the linear convergence of MSE, i.e, ∆(t)>∆(t), we need to guarantee H(t) is
positive definite with λmin(H(t)) ≥ λ0/2. In other words, the pseudo loss L̂ is λ0

2 -strongly convex.
We start with t = 0, by showing that for wide enough neural networks, H(0) has positive smallest
eigenvalue with high probability.

Lemma 4 (Lemma 3.1 in Du et al. (2018)) If m = Ω
(
n2

λ20
log
(
n2

δ

))
, then we have ‖H(0)−H∞‖2 ≤

λ0
4 and λmin(H(0)) ≥ 3

4λ0 with probability of at least 1− δ.

Next, we introduce a lemma that shows for any t, if wr(t) is close to wr(0), then H(t) is close to
H(0). Then together with Lemma 4, λmin(H(t)) always has a positive smallest eigenvalue.

Lemma 5 (Lemma 3.2 in Du et al. (2018)) If wr are i.i.d. generated from N (0, I) for r ∈
[m], and ‖wr(0)−wr‖2 ≤

cδλ0
n2 =: R for some small positive constant c, then the following holds

with probability at least 1− δ we have ‖H(t)−H(0)‖2 < λ0
4 and λmin(H(t)) > λ0

2 .

The next lemma gives two important facts given that λmin(H(s)) for previous time s ≤ t: the
loss decay exponentially and weights stay close to their initialization at the current time t. We
emphasize that Lemma 6 is specific to the choice of optimization algorithms and hence the proof
is much different than its analog in (Du et al., 2018, Lemma 3.3) for GD.

8



A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks

Lemma 6 Assume 0 ≤ s ≤ t and λmin(H(s)) ≥ λ0
2 . Then we have L(t) ≤ exp

(
−
√
λ0/2t

)
2L̂(0)
λ0

and ‖wr(t)−wr(0)‖2 ≤
2
b

( √
nC√
mB

+ e−Bt/2
√
L(0)

)
=: R′(t).

Proof Borrowing the idea of Wilson et al. (2016); Siegel (2019), we define the Lyapunov function
or Lyapunov energy as

V (t) := L̂+
1

2

∥∥∥∥∥
√
λ0
2

∆(t) + ∆̇(t)

∥∥∥∥∥
2

=
1

2
∆(t)>H(t)∆(t) +

1

2

∥∥∥∥∥
√
λ0
2

∆(t) + ∆̇(t)

∥∥∥∥∥
2

. (A.6)

The Lyapunov function represents the total energy of the system and always decreases along the
trajectory of the training dynamics since, as we will later show, V̇ (t) < 0. Here we simplify the
notation by denoting the dependence on t in the subscript and use α := b/2 =

√
λ0/2. We bound

V̇ (t) by the chain rule,

V̇ (t) = ∆̇>t H(t)∆t +
1

2
∆>t Ḣ(t)∆t +

〈
α∆̇t + ∆̈t, α∆t + ∆̇t

〉
(A.7)

Notice that by (2.8), we have Ḣ(t)
a.s.
= 0. Substituting the error dynamics (A.4) for ∆̈t, we have

V̇ (t) =
〈
H∆t, ∆̇t

〉
+
〈
−α∆̇t −H∆t, α∆t + ∆̇t

〉
= −α 〈H∆t,∆t〉 − α2

〈
∆̇t,∆t

〉
− α

〈
∆̇t, ∆̇t

〉
Using λmin(H) ≥ α2, we get

〈H∆t,∆t〉 ≥
1

2
〈H∆t,∆t〉+

α2

2
〈∆t,∆t〉 = L̂(t) +

α2

2
〈∆t,∆t〉

and hence we have

V̇ (t) = −αL̂(t)− α3

2
〈∆t,∆t〉 − α2

〈
∆̇t,∆t

〉
− α

〈
∆̇t, ∆̇t

〉
< −α

(
L̂(t) +

1

2

∥∥∥α∆t + ∆̇t

∥∥∥2) = −αV (t)

where in the last inequality we throw away −α
2

〈
∆̇t, ∆̇t

〉
. Clearly V̇ (t) < 0 for all t. For this first

order scalar ODE, we apply the Gronwall’s inequality to derive

V (t) < e−αtV (0)

and we obtain

L̂(t) ≤ V (t) < e−αtV (0) = e−αt
(

1

2
∆(0)>H(0)∆(0) +

α2

4
‖∆(0)‖2

)
.

Again using λmin(H(0)) ≥ α, we have

L̂(t) ≤ 1

2
exp (−α · t) ∆(0)>H(0)∆(0) = exp (−α · t) L̂(0) (A.8)

9
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and

L(t) ≤ 1

α2
exp (−αt) L̂(0).

In words, f(t)→ y exponentially fast, with a convergence factor α =
√
λ0/2.

Now we move on to show that wr(t) stays close to wr(0). Multiplying ebt = e2αt to the weight
dynamics (3.3), we have

d

dt

(
e2αtẇr

)
= − 1√

m
e2αtar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)

which gives a close-form solution

ẇr = −e−2αt
∫ t

0

1√
m
e2αsar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)ds

whose norm satisfies

‖ẇr‖ ≤ e−2αt
1√
m

∫ t

0
e2αs

∑
i

|fi(s)− yi|ds ≤ e−2αt
√
n

m

∫ t

0
e2αs‖f(s)− y‖2ds

=

√
n

m

∫ t

0
e2α(s−t)

√
L(s)ds ≤

√
nL̂(0)

mα2

∫ t

0
e

3
2
αs−2αtds ≤

√
4nL̂(0)

9mα4
e−

α
2
t

Finally by Cauchy Schwarz, we bound the weight distance from initialization,

‖wr(t)−wr(0)‖2 ≤
∫ t

0
‖ẇr(s)‖2 ds <

√
nL̂(0)

9mα2

We quote the next lemma to show that R′(t) < R indicates that for all t > 0, the conditions in
Lemma 5 and 6 hold.

Lemma 7 (Lemma 3.4 in Du et al. (2018)) If R′(t) < R for all t ≥ 0, then we have λmin(H(t)) ≥
1
2λ0, for all r ∈ [m], ‖wr(t)−wr(0)‖2 ≤ R′ and L(t) ≤ exp (−B(b, λ0, ε)t)C(ε)L(0).

Finally we study the width requirement for R′ < R to hold true, i.e. we need

√
nL̂(0)
9mα2 < O( δλ0

n2 )

which is equivalent to m = Ω( n6

δ3λ40
), the same order as GD in Du et al. (2018).

Appendix B. Proof of Theorem 3

Given Lemma 4 and Lemma 5, we will prove Lemma 8 as following:

Lemma 8 Assume 0 ≤ s ≤ t and λmin(H(s)) ≤ λ0
2 , then we have L(t) ≤ 4C(α,r)

λ0tα(λ0/2)
α−2
2
L̂(0) for

2 ≤ α ≤ 2
3d and C(α, d) only depends on α and d. Furthermore, we have ‖wr(t)−wr(0)‖2 ≤

2
(α−4)tα

√
16nC(α,d)L̂(0)

m(ε)λ0(λ0/2)
α−2
2 (2d−α−2)2

:= R′(t).

10
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Proof The condition λmin(Hs) ≥ λ0
2 gives that L̂ is L smooth and µ strongly convex with respect

to ∆. We define Lyapunov function

V (t;α, d) := tαL̂(t) +
(2d− α)2tα−2

8

∥∥∥∥∆t +
2t

2d− α
∆̇t

∥∥∥∥2 (B.1)

pseudo loss

L̂(t) =
1

2
∆>t H(t)∆t (B.2)

and loss function

L(t) =
1

2
∆>t ∆t. (B.3)

For d ≥ 3, 2 ≤ α ≤ 2d
3 , apply Theorem 8 from Su et al. (2014),

L(t) ≤ 4C(α, d)

λ0tα(λ0/2)
α−2
2

L̂(0)

where C(α, d) only depends on α and r. Since the weight dynamics is

ẅr(t) +
d

t
ẇr(t) +

∂f

∂wr
(f − y) = 0 (B.4)

multiply both side by td, then we obtain

d

dt
(tdẇr(t)) = −td ∂f

∂wr
(f − y) = − 1√

m
tdar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)

which gives a close-form solution

ẇr = − 1

td

∫ t

0

1√
m
sdar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)ds

whose norm satisfies

‖ẇr‖ ≤
1

td
√
m

∫ t

0
sd
∑
i

|fi(s)− yi|ds ≤
1

td

√
n

m

∫ t

0
sd‖f(s)− y‖2ds

=
1

td

√
n

m

∫ t

0
sd
√
L(s)ds ≤ 1

td

√√√√4nC(α, d)L̂(0)

mλ0(λ0/2)
α−2
2

∫ t

0
sd−α/2ds

= t1−α/2

√√√√ 16nC(α, d)L̂(0)

mλ0(λ0/2)
α−2
2 (2d− α− 2)2

we bound the weight distance from initialization, when α > 4

‖wr(t)−wr(0)‖2 ≤
∫ t

0
‖ẇr(s)‖2 ds ≤

2ε2−α/2

α− 4

√√√√ 16nC(α, d)L̂(0)

mλ0(λ0/2)
α−2
2 (2d− α− 2)2

+ o(ε).

11
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Let ε→ 0, then there exists m(ε′) such that

2

(α− 4)tα

√√√√ 16nC(α, d)L̂(0)

m(ε)λ0(λ0/2)
α−2
2 (2d− α− 2)2

:= R′(t) < R

Similarly, we use Lemma 7 again to show that if R′(t) < R for all t > 0, then the conditions in
Lemma 4 and Lemma 5 hold.

Lemma 9 (Du et al. (2018)) If R′(t) < R for all t ≥ 0, then we have λmin(H(t)) ≥ 1
2λ0, for

all r ∈ [m], ‖wr(t) − wr(0)‖2 ≤ R′(t) and L(t) ≤ B(α, d)t−
2
3
dL(0) where 4 < α ≤ 2

3d, d > 6 and
B(α, d) only depends on α and d.

Finally we study the width requirement for R′(t) < R to hold true, i.e. we need

2

(α− 4)

√√√√ 16nC(α, d)L̂(0)

m(ε)λ0(λ0/2)
α−2
2 (2d− α− 2)2

< O(
δλ0
n2

)

which is equivalent to m = Ω
(

n5

δ2λ2.50

)
.
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