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Abstract

Residual partitioning is a second-order optimiza-
tion algorithm for training neural nets.

• In each iteration, residual partitioning uses
Jensen’s inequality to bound the objective
function.

•The bound has a diagonal Hessian, and so is
easy to optimize.

•We compare with Adam and SGD by training
an autoencoder and show residual partitioning
quickly converges to a better or comparable
solution.

Introduction

Training a neural net is a hard optimization prob-
lem. The curvature of the objective function varies
greatly in different directions, causing SGD to zig-
zag in directions of high curvature and converge
slowly in directions of low curvature. Fast optimiza-
tion algorithms estimate the curvature and adjust
the learning rate for each parameter accordingly.
•Adaptive learning rate methods like Adam
estimate the curvature from past gradients.

•Newton’s method uses the full Hessian matrix,
but requires solving a dense linear system in each
iteration.

•Approximating the Hessian by its diagonal is fast,
but struggles with the non-convexity of the
objective function.
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(a) Approximating the Hessian by its diagonal is
like the Jacobi method for solving a least squares
problem: it underestimates the curvature, and only
converges under strict assumptions.

Setup

We present a simplified version of residual partition-
ing here: if the score function is L, the network
parameters are wi, the output of the network is ys,
and the change in network parameters and output
are ∆wi and ∆ys, then the objective function is ap-
proximately
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The Bound

This objective function has a dense Hessian matrix:
the (i, i′) component of the Hessian is 1
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However, we can lower bound the objective by
bounding (∆ys)2 with Jensen’s inequality: first, in-
troduce a set of partitioning variables {εsi}ni=1 that
add to one. Then equation (3) holds due to Jensen’s
inequality. Note that the Hessian matrix of the
bound with respect to {∆wi} is diagonal, since the
bound separates as a sum of terms, each of which
involves only a single ∆wi. The final bound on the
objective is achieved by plugging (3) into (1).

Residual Partitioning Bound
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Choosing Partitioning Variables

The learning rates returned by residual partitioning
depend on the choice of partitioning variables. Note
that the learning rate for wi will be large if εsi is
large, but the εsi add to one, so the learning rates
cannot all be large. We can choose the partitioning
variables so the learning rates will be large on av-
erage by minimizing the sum of the inverse learning
rates:
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The solution is

εsi = |∂ys/∂wi|∑n
i′=1 |∂ys/∂wi|

(5)

This says we should turn down the learning rate for
parameters with small gradients, and turn up the
learning rate for parameters with big gradients.
Residual partitioning optimizes a bound on the ob-
jective, which overestimates the curvature and yields
smaller than optimal learning rates. This can be
fixed by scaling ∆wi by a global learning rate λ > 1.

Algorithm

Putting it all together, residual partitioning updates
the network parameters with
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Note that since residual partitioning constructs a
diagonal approximation to the Hessian, the update
is simply a rescaling of the gradient.

Experiments

We compare residual partitioning with Adam and
SGD by training an autoencoder with 5 layers on
MNIST, Fashion-MNIST, and CIFAR-10. We used
mini-batch sizes of 100, and tuned the global learn-
ing rate for each algorithm and dataset. The results
are in Figures (b)-(d). We observe that residual par-
titioning quickly converges to a better or comparable
solution and overfits less than Adam and SGD.
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(b) MNIST
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