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ProbAct is a novel stochastic activation function composed of  a 
mean and variance with the output value sampled from the 
formed distribution. Stochastic perturbation induced through 
ProbAct is shown to act as a viable generalization technique for 
feature augmentation. We compare ProbAct with well-known 
activation functions on classification tasks on Images and Text 
dataset and achieved performance improvements of +2-3%.

● Every layer of a neural network computes its output y for 
the given input x: 

where w is the weight vector of the layer and f(·) is an activation 
function, such as ProbAct.

● ProbAct is defined as:

where a is the input to the activation function, 𝝁(a) is a static or 
learnable mean, 𝜎 defines the range of stochastic perturbation 
(can be static or learnable) and ϵ is a random value sampled 
from a normal distribution Ɲ(0,1).

• We  evaluate ProbAct on the following image 
classification and sentiment analysis datasets :

○ CIFAR-10, CIFAR-100, and STL-10
○ Large Movie Review

• We compare ProbAct to the following activation 
functions and methods:

○ ReLU¹, Sigmoid, TanH, Leaky ReLU², 
PReLU³, ELU⁴, SELU⁵, and Swish⁶.

○ Bayesian VGG with Variational Inference⁷
• We used a 16 layer VGG for Image Classification 

and two-layered CNN for text classification task. 
• No regularization, pre-training or data 

augmentation techniques were used. 
• STL images were resized to 32 by 32. 
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