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Introduction

Background
• Variance reduction can improve the convergence of SGD-like al-
gorithms in non-convex optimization problems

• Mirror Descent algorithms are useful in non-smooth optimization
problems, especially general adaptive mirror descent algorithms.

Contributions
• In this paper, we prove that variance reduction can reduce the gra-
dient complexity of the general adaptive SMD algorithms, which
makes them converge faster. So it means any existing mirror de-
scent algorithm can work well with variance reduction.

Algorithm

• We study the following general variance reduced adaptive
stochastic mirror descent algorithm, where in line 7, a large batch
gradient is used to reduce the variance of a small batch gradient.

• We assume the proximal functions ψt(x) are all m-strongly con-
vex with respect to ‖ · ‖2, i.e.,

ψt(y) ≥ ψt(x) + 〈∇ψt(x), y − x〉+
m

2
‖y − x‖2

2, ∀t > 0

• The standard Lipschitzness, unbiasedness, and bounded vari-
ance assumptions on the gradients are also assumed.

Results

Theorem 1: Convergence of General Adaptive SMD with VR

Suppose that ψtk(x) satisfy the m-strong convexity assumption and
f satisfies the Lipschitz gradients and bounded variance assump-
tions. Further assume that the learning rate, the batch sizes, the
mini-batch sizes, the number of outer and inner loop iterations are
set to be αt = m/L,Bt = n ∧ (20σ2/m2ε2), bt = b, T =

1 ∨ 16∆FL/(m
2ε2K),K =

⌊√
b/20

⌋
∨ 1, where ∆F is a constant.

Then the output of Algorithm 1 converges with gradient computations

O(
n

ε2
√
b
∧

σ2

ε4
√
b

+
b

ε2
)

• We list the SFO complexity of a few relevant algorithms. "VR" stands
for variance reduction. As can be observed in the table, when a correct
mini-batch size b is chosen, variance redcution helps the convergence
of any Stochastic Mirror Descent algorithm.

ALGORITHMS SFO COMPUTATIONS

SVRG [5] O(n2/3/ε2)

SCSG [2] O(n/ε2 ∧ 1/ε10/3)
ProxGD [1] O(n/ε2)

ProxSVRG/SAGA [4] O(n/(ε2
√
b) + n)

ProxSVRG+ [3] O(n/(ε2
√
b) ∧ (1/(ε4

√
b)) + b/ε2)

Adaptive SMD O(n/ε2 ∧ 1/ε4)

Adaptive SMD + VR O(n/(ε2
√
b) ∧ 1/(ε4

√
b) + b/ε2)

Corollary 1: Convergence of General Adaptive SMD with VR

With all the assumptions and parameter settings in Theorem 1, further
assume that b = ε−4/3, where ε−4/3 ≤ n. Then the output of algorithm
1 converges with gradient computations

O(
n

ε4/3
∧

1

ε10/3
+

1

ε10/3
) (1)

• A similar argument can be made in the PL-condition case where a
slightly different choice of b is chosen. Variance reduction reduces the
gradient complexity of the general adaptive stochastic mirror descent
algorithm in both cases.

Experiments

• We choose AdaGrad and RMSProp as two special examples of our general
algorithm to examine the effectiveness of variance reduction.
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Figure 1: Fully Connected/MNIST/Train loss
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Figure 2: Fully Connected/MNIST/Test Acc
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Figure 3: LeNet/CIFAR-10/Train loss
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Figure 4: LeNet/CIFAR-10/Test Acc

• The upper row shows the training loss and the testing accuracy of the original
algorithms and the variance reduced ones on the MNIST dataset.

• The lower row shows the training loss and the testing accuracy of the original
algorithms and the variance reduced ones on the CIFAR-10 dataset.

• In both cases variance reduction is effective in boosting the convergence.
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