PURDUE **NIVERSITY**

VARIANCE REDUCTION ON ADAPTIVE STOCHASTIC MIRROR DESCENT

Introduction

Background

- Variance reduction can improve the convergence of SGD-like algorithms in non-convex optimization problems
- Mirror Descent algorithms are useful in non-smooth optimization problems, especially general adaptive mirror descent algorithms. Contributions
- In this paper, we prove that variance reduction can reduce the gradient complexity of the general adaptive SMD algorithms, which makes them converge faster. So it means any existing mirror de scent algorithm can work well with variance reduction.

Algorithm

•We study the following general variance reduced adaptive stochastic mirror descent algorithm, where in line 7, a large batch gradient is used to reduce the variance of a small batch gradient

Algorithm 1 General Adaptive Stochastic Mirror Descent with Variance Reduction Algorithm

- 1: Input: Number of stages T, initial x_1 , step sizes $\{\alpha_t\}_{t=1}^T$, batch, mini-batch sizes $\{B_t, b_t\}_{t=1}^T$
- 2: for t = 1 to T do
- Randomly sample a batch \mathcal{I}_t with size B_t
- $g_t = \nabla f_{\mathcal{I}_t}(x_t); \quad y_1^t = x_t$
- for k = 1 to K do 5:
- Randomly pick sample \mathcal{I}_t of size b_t 6:
- $v_k^t = \nabla f_{\tilde{\mathcal{I}}_t}(y_k^t) \nabla f_{\tilde{\mathcal{I}}_t}(y_1^t) + g_t$ 7:
- $y_{k+1}^t = \operatorname{argmin}_y \{ \alpha_t \langle v_k^t, y \rangle + \alpha_t h(x) + B_{\psi_{tk}}(y, y_k^t) \}$ 8:
- end for 9:
- 10: $x_{t+1} = y_{K+1}^{\iota}$
- 11: **end for**
- 12: **Return** (Smooth case) Uniformly sample t^* from $\{t\}_{t=1}^T$ and output x_{t^*} ; (P-L case) $x_{t^*} = x_{T+1}$
- We assume the proximal functions $\psi_t(x)$ are all *m*-strongly con vex with respect to $\|\cdot\|_2$, i.e.,

$$\psi_t(y) \geq \psi_t(x) + \langle
abla \psi_t(x), y-x
angle + rac{m}{2} \|y-x\|_2^2, orall t>$$

 The standard Lipschitzness, unbiasedness, and bounded variation ance assumptions on the gradients are also assumed.

Wenjie Li¹, Zhanyu Wang¹, Yichen Zhang², and Guang Cheng¹

¹Department of Statistics, Purdue University ²Krannert School of Management, Purdue University

	Results
Theorem 1: Conver	gence of General Adaptive SMD with VF
Suppose that $\psi_{tk}(x \ f$ satisfies the Lips tions. Further assumini-batch sizes, the set to be $\alpha_t = m_1^2$ $1 \lor 16 \Delta_F L / (m^2 \epsilon^2)$ Then the output of Al) satisfy the <i>m</i> -strong convexity assumpt ochitz gradients and bounded variance a sime that the learning rate, the batch size is number of outer and inner loop iteration $a/L, B_t = n \land (20\sigma^2/m^2\epsilon^2), b_t = b_{K}$, $K = \left\lfloor \sqrt{b/20} \right\rfloor \lor 1$, where Δ_F is a constrained K , $K = \left\lfloor \sqrt{b/20} \right\rfloor \lor 1$, where Δ_F is a constrained gorithm 1 converges with gradient computed $O(\frac{n}{\epsilon^2\sqrt{b}} \land \frac{\sigma^2}{\epsilon^4\sqrt{b}} + \frac{b}{\epsilon^2})$
• We list the SFO confor variance reduction mini-batch size <i>b</i> is of any Stochastic M	mplexity of a few relevant algorithms. "VR on. As can be observed in the table, when a chosen, variance redcution helps the conv irror Descent algorithm.
ALGORITHMS	SFO COMPUTATIONS
SVRG [5] SCSG [2] ProxGD [1] ProxSVRG/SAGA [4 ProxSVRG+ [3] Adaptive SMD Adaptive SMD + VF	$\begin{array}{c} O(n^{2/3}/\epsilon^2) \\ O(n/\epsilon^2 \wedge 1/\epsilon^{10/3}) \\ O(n/\epsilon^2) \\ \bullet] O(n/(\epsilon^2\sqrt{b}) + n) \\ O(n/(\epsilon^2\sqrt{b}) \wedge (1/(\epsilon^4\sqrt{b})) + b/\epsilon^2) \\ O(n/\epsilon^2 \wedge 1/\epsilon^4) \\ \bullet \\ \bullet O(n/(\epsilon^2\sqrt{b}) \wedge 1/(\epsilon^4\sqrt{b}) + b/\epsilon^2) \end{array}$
Corollary 1: Conve	rgence of General Adaptive SMD with V
With all the assumption $b=\epsilon^{-4}$ assume that $b=\epsilon^{-4}$ 1 converges with grad	ions and parameter settings in Theorem 1, $\frac{1}{4}$, where $\epsilon^{-4/3} \leq n$. Then the output of all dient computations $O(rac{n}{\epsilon^{4/3}} \wedge rac{1}{\epsilon^{10/3}} + rac{1}{\epsilon^{10/3}})$
• A similar argument slightly different cho gradient complexity algorithm in both ca	can be made in the PL-condition case bice of b is chosen. Variance reduction red of the general adaptive stochastic mirror ses.

In: Advances in Neural Information Processing Systems 31 (2018), pp. 5564–5574. [4] Sashank Reddi et al. "Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization". In: Advances in Neural Information Processing Systems 29 (2016b).

[5] Sashank J. Reddi et al. Stochastic Variance Reduction for Nonconvex Optimization. 2016a. arXiv: 1603.06160 [math.OC].