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Introduction: Preconditioned Gradient Descent

Update Rule: θt+1 = θt − ηP (t)∇θtL(fθt), t = 0, 1, . . ..

Common choices of preconditioner P and corresponding algorithm:
• Inverse Fisher information matrix⇒ natural gradient descent (NGD).
• Certain diagonal matrix⇒ adaptive gradient methods (e.g. Adagrad, Adam).

Implicit Bias of Preconditioned Updates:

• Modern ML models (e.g. neural nets) are
often overparameterized.
• Overparameterized models may

interpolate training data in different ways.
• P alters properties of the interpolant.
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1D illustration of implicit bias.

Motivation of this work:
• How does preconditioning affects generalization under interpolation?
• Can we determine the optimal preconditioner for generalization?

Implicit Bias in Least Squares Regression

• Student-teacher Setup. yi=x>i θ?+εi, 1≤ i≤n; E[xx>]=Σx ∈ Rd×d.

• Overparameterized Asymptotics. n, d→∞, d/n→ γ ∈ (1,∞).
• Update Rule. Preconditioned gradient descent on squared loss:

dθ(t) = P (t)X>(y −Xθ(t))dt, θ(0) = 0.

Stationary Solution (t→∞):

• Gradient descent: min `2-norm interpolant.
• Preconditioned GD: for time-invariant and

full-rank P ⇒minimum ‖θ‖P−1 interpolant.
Common Argument: min `2-norm solution generalizes well;
therefore GD is better than preconditioned updates!
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Question: Why is the `2 norm the best measure of generalization?

Noticeable Examples of Preconditioner:
• Identity: P =Id gives the min `2 norm interpolant

(also true for momentum GD and SGD).
• Population Fisher: P = F−1 = Σ−1

x (NGD).
• Variants of Sample Fisher: P = (X>X + λId)

−1

leads to the same solution as GD. time
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Bias-variance Decomposition of Generalization Error

Thm. (informal). Prediction risk of the min ‖θ‖P−1 solution is given as

E(〈x,θ?〉 − 〈x, θ̂P−1〉)2 p→ m′0m
−2
0

(
γE[υxυθ(υxp·m0 + 1)−2]︸ ︷︷ ︸

bias

+ σ̃2︸︷︷︸
variance

)
,

where m0 is the Stieltjes transform of 1
nXPX

> evaluated at λ→ 0+.

• Bias term: “Difficulty” in learning the teacher model θ?.
• Variance term: “Stability” of learning under label noise.

Variance term: NGD is Optimal

Thm. (informal). NGD (P =F−1) achieves lowest stationary variance.
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(a) Linear regression.
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(b) 2-layer MLP (MNIST).
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(c) 2-layer MLP (CIFAR).

• (a)(b): labels are noisy (risk is variance-dominated)⇒ NGD beneficial.
• (c): this advantage is present only for the population Fisher.

Misspecification ≈ Label Noise:

Misspecified Model: f∗(x) = x>θ∗ + f c∗(x);
residual f cx cannot be learned by student model.

Creating Misspecification in Neural Network:
• Student: small two-layer MLP.
• Teacher: ResNet-20 at varying training epochs.
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Bias term: No Free Lunch

General Prior: E[θ?θ
>
? ] = d−1Σθ, i.e. computing the Bayes risk.

Thm. (informal). Among all P codiagonalizable with Σx, bias is mini-
mized by P =U diag

(
U>ΣθU

)
U>, where U is the eigenvectors of Σx.

Remark: Setup extends previously assumed isotropic prior [Dobriban and Wager 18].

No-free-lunch: The optimal preconditioner depends on the “orienta-
tion” of teacher model θ?, which is usually not known a priori.

Bias Term (continued): Alignment & Source Condition

• GD achieves optimal bias when teacher is isotropic: Σθ = Id.
• NGD is optimal under misalignment: Σθ = Σ−1

x (“hard” problem).
Remark: We also show that this trend is roughly preserved under early stopping.
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(a) Intuition of “alignment”.
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(b) Linear regression.
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(c) 2-layer MLP (MNIST).

Analogy to Source Condition (E‖Σ−r/2
x θ?‖2 <∞):

Prop. (informal). Consider Σθ = Σ−rx . Then for some r∗ ∈ (0, 1), NGD
achieves lower (higher) bias than GD if and only if r > (<) r∗.

“Interpolating” Between GD and NGD

Question: Is it advantageous to “combine” GD and NGD?

Bias-variance Tradeoff:
• Additive interp.:
Pα = (Σx + αId)

−1.
• Geometric interp.:
Pα = Σα−1

x .
- Large α⇒ GD-like update.
- Small α⇒NGD-like update.
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Additive interp. (MLP).
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Message: At some SNR, interpolating between GD and NGD is beneficial.

Fast Decay in Population Risk:
Consider the following preconditioned update in the RKHS.

ft = ft−1 − η(Σ + αI)−1(Σ̂ft−1 − Ŝ∗Y ), f0 = 0. ft ∈ H.
Remark: Update corresponds to additive interpolation between GD and NGD.

Thm. (informal). Preconditioned GD with properly chosen α achieves
the minimax optimal rate R(ft) = ‖Sft − f ∗‖2

L2(PX) = Õ
(
n−

2rs
2rs+1

)
in t =

Θ(log n) steps, whereas ordinary GD requires t=Θ
(
n

2rs
2rs+1

)
steps.

Message: Preconditioning can improve the efficiency of learning.


