

Introduction: Preconditioned Gradient Descent

Update Rule: $\theta_{t+1} = \theta_t - \eta P(t) \nabla_{\theta_t} L(f_{\theta_t}), \quad t = 0, 1, ...$

Common choices of preconditioner *P* and corresponding algorithm:

- Inverse Fisher information matrix \Rightarrow *natural gradient descent* (NGD).
- Certain diagonal matrix \Rightarrow *adaptive gradient methods* (e.g. Adagrad, Adam).

Implicit Bias of Preconditioned Updates:

- Modern ML models (e.g. neural nets) are often overparameterized.
- Overparameterized models may **interpolate** training data *in different ways*.
- **P** alters properties of the interpolant.

- How does *preconditioning affects generalization* under *interpolation*?
- Can we determine the *optimal preconditioner* for generalization?

Implicit Bias in Least Squares Regression

- Student-teacher Setup. $y_i = x_i^\top \theta_\star + \varepsilon_i, \ 1 \le i \le n; \ \mathbb{E}[xx^\top] = \Sigma_x \in \mathbb{R}^{d \times d}.$
- Overparameterized Asymptotics. $n, d \to \infty, d/n \to \gamma \in (1, \infty)$.
- **Update Rule.** Preconditioned gradient descent on squared loss: $d\boldsymbol{\theta}(t) = \boldsymbol{P}(t)\boldsymbol{X}^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}(t))dt, \quad \boldsymbol{\theta}(0) = 0.$

Stationary Solution ($t \to \infty$ **):**

- **Gradient descent:** min ℓ_2 -norm interpolant.
- **Preconditioned GD:** for time-invariant and full-rank $P \Rightarrow$ minimum $\|\theta\|_{P^{-1}}$ interpolant.

Common Argument: min ℓ_2 -norm solution generalizes well; therefore GD is better than preconditioned updates!

Question: Why is the ℓ_2 norm the best measure of generalization?

Noticeable Examples of Preconditioner:

- **Identity:** $P = I_d$ gives the min ℓ_2 norm interpolant (also true for momentum GD and SGD).
- **Population Fisher:** $P = F^{-1} = \Sigma_x^{-1}$ (NGD).
- Variants of Sample Fisher: $P = (X^{\top}X + \lambda I_d)^{-1}$ leads to the same solution as GD.

When Does Preconditioning Help or Hurt Generalization?

Shun-ichi Amari 1 , Jimmy Ba 2,3 , Roger Grosse 2,3 , Xuechen Li 4 , Atsushi Nitanda 5,6 , Taiji Suzuki 5,6 , Denny Wu 2,3 , Ji Xu 7 RIKEN CBS¹, University of Toronto², Vector Institute³, Google Brain⁴, University of Tokyo⁵, RIKEN AIP⁶, Columbia University⁷

1D illustration of implicit bias.

Bias-variance Decomposition of Generalization Error

where m_0 is the Stieltjes transform of $\frac{1}{n} \mathbf{X} \mathbf{P} \mathbf{X}^{\top}$ evaluated at $\lambda \to 0_+$.

- **Bias term:** "Difficulty" in learning the *teacher model* θ_{\star} .
- **Variance term:** "Stability" of learning under *label noise*.

Variance term: NGD is Optimal

⁽a) Linear regression.

Misspecification \approx **Label Noise**:

Misspecified Model: $f_*(\boldsymbol{x}) = \boldsymbol{x}^\top \boldsymbol{\theta}_* + f_*^c(\boldsymbol{x})$; residual f_x^c cannot be learned by student model.

Creating Misspecification in Neural Network:

- **Student:** small two-layer MLP.
- **Teacher:** ResNet-20 at varying training epochs

Bias term: No Free Lunch

General Prior: $\mathbb{E}[\theta_{\star}\theta_{\star}^{\top}] = d^{-1}\Sigma_{\theta}$, i.e. computing the *Bayes risk*.

mized by $P = U \operatorname{diag}(U^{\top} \Sigma_{\theta} U) U^{\top}$, where U is the eigenvectors of Σ_x .

Remark: Setup extends previously assumed *isotropic prior* [Dobriban and Wager 18].

No-free-lunch: The optimal preconditioner depends on the "orientation" of teacher model θ_{\star} , which is usually not known *a priori*.

<u>Thm.</u> (informal). Among all *P* codiagonalizable with Σ_x , bias is mini-

Bias Term (continued): Alignment & Source Condition

Remark: We also show that this trend is roughly preserved under **early stopping**.

Prop. (informal). Consider $\Sigma_{\theta} = \Sigma_x^{-r}$. Then for some $r^* \in (0, 1)$, NGD achieves lower (higher) bias than GD if and only if $r > (<) r^*$.

"Interpolating" Between GD and NGD

Question: Is it advantageous to "combine" GD and NGD?

Bias-variance Tradeoff:

- Additive interp.: $\boldsymbol{P}_{\alpha} = (\boldsymbol{\Sigma}_x + \alpha \boldsymbol{I}_d)^{-}$
- Geometric interp.: $P_{\alpha} = \Sigma_r^{\alpha - 1}.$
- Large $\alpha \Rightarrow$ GD-like update. - Small $\alpha \Rightarrow$ NGD-like update.

Fast Decay in Population Risk:

Remark: Update corresponds to *additive interpolation* between GD and NGD.

• GD achieves optimal bias when teacher is **isotropic**: $\Sigma_{\theta} = I_d$. • NGD is optimal under misalignment: $\Sigma_{\theta} = \Sigma_x^{-1}$ ("hard" problem).

Analogy to Source Condition ($\mathbb{E} \| \Sigma_x^{-r/2} \theta_{\star} \|_2 < \infty$):

Additive interp. (MLP).

Geometric interp. (MLP).

Message: At some SNR, interpolating between GD and NGD is beneficial.

Consider the following preconditioned update in the RKHS.

 $f_t = f_{t-1} - \eta (\Sigma + \alpha I)^{-1} (\hat{\Sigma} f_{t-1} - \hat{S}^* Y), \quad f_0 = 0. \quad f_t \in \mathcal{H}.$

<u>Thm.</u> (informal). Preconditioned GD with properly chosen α achieves the minimax optimal rate $R(f_t) = \|Sf_t - f^*\|_{L_2(P_X)}^2 = \tilde{O}\left(n^{-\frac{2rs}{2rs+1}}\right)$ in t = $\Theta(\log n)$ steps, whereas ordinary GD requires $t = \Theta(n^{\frac{2rs}{2rs+1}})$ steps.

Message: Preconditioning can improve the *efficiency of learning*.