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Non-negative matrix factorization 101

A standard NMF [3] is represented as the following optimization problem:

min
W,H≥0

J(W, H) = min
W,H≥0

‖X − WH‖2
F . (1)

Source: Nebgen et al. ’20

Commonly optimized using multiplicative update rules (MURs):

W(i+1) = W(i) ◦ XHT

W(i)HHT
, (2)

H(i+1) = H(i) ◦ WT X
WT WH(i), (3)

XXX Guaranteed to not increase the objective function

XXX Due to their simplicity widely used by practitioners

but ...

××× MUR may fail to converge to a local minimum or a stationary point [4]
××× Solution is not unique (without additional constraints)

Markov chains 101

I Set of states S = {s1, s2, . . . , sc} + transition matrix {P(Si, Sj)}c
i,j=1 = P (Sj|Si)

I Homogeneous (static) Markov chain: xt = x0Pt.

I Heterogeneous (dynamic) chain: xt = x0
∏t

i=1 Pi, with xi+1 = xiPi.

Source: Luis Fok on Quora

Motivating example
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Figure 1. Illustration of 3 different solutions obtained using MUR with random initializations ofW and H.

Main results

Step 1. Show that {W(i)}∞
i=0 obtained with MUR can be generated with at least one time-

heterogeneous Markov chain

Theorem

Consider the NMF problem given in Eq.1 and MUR updates given in Eq.2. Then,

matrices {W(i)}∞
i=0 can be generated by a time inhomogeneous Markov chain with

transition matrices {Si}∞
i=0 similar to Soules matrices with eigenvalues given by

vec
(

XHT /W(i)HHT
)
.

××× Can build multiple Markov chains generating the same sequence {W(i)}∞
i=0

××× Markov chains can converge to different stationary distributions

Step 2. Use convergence theorems for time-heterogeneous Markov chain to understand when it

converges to the same solution regardless the initialization

Theorem

MUR converge to the same solution regardless the initial initialization when one of the

following conditions are verified:

1. There is only one Si at each iteration

2. Different Si have the same stationary distribution.

××× Hard to ensure uniqueness (need to solve an open algebraic problem)

Step 3. Analyzewhat is the speed of convergence based on the properties of the transition matrix

Corollary

Let σ1(Si) to be the second largest singular value of Si. Then, we have that

‖
∏n

i=1 Si(j, ·) − π∗‖2 ≤ (π∗(j) − 1)
1
2
∏n

i=1 σ1(Si).

XXX Surprising dependence of the speed of convergence of MUR on the product of the second
largest singular values of Si

Experimental results

I Test 1: synthetic example with unique factorization

I Test 2: mixture of Gaussian distributions

I Baselines: random initialization, unique factorization with NNDSVD [1] and Gillis method [2]
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Figure 2. Results obtained with NNDSVD compared to random initialization: (left) reconstruction error and (middle

left) product of second singular values of the transition matrices on the data admitting a unique factorization;

(middle right) reconstruction error and (right) product of second singular values of the transition matrices on the

mixture of 5 isotropic Gaussian distributions with n = 20000, k = 5 and d ∈ {10, . . . , 100}.
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Figure 3. Results obtained with Gillis’ pre-processing presented in the same order as above with n = 200 for the
case of the mixture of Gaussian distributions. For both cases, the variance (shaded area) around the mean curve

over varying d is represented only for the case of the mixture of Gaussians as for the unique factorization all the
parameters remain fixed. The code to reproduce the two figures is given in the Supplementary material.

XXX Theory is useful in practice to asses convergence speed based on the second largest singular

values of transition matrices

Conclusion

XXX Explaining the lack of uniqueness in NMF with MUR trough equivalence to Markov chains

XXX Forcing uniqueness with MUR requires solving an open algebraic problem

XXX Convergence speed depends on the second largest eigenvalues of the transition matrices:

confirmed in practice for several methods and datasets
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