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Abstract

Distributed centralized learning refers to a class of learning algorithms that enable a
group of agents to train models using a dataset distributed amongst them with the
ald of a central parameter server. Recently, decentralized learning algorithms have
demonstrated state-of-the-art results. However, an essential requirement to achieve
such performance has been balanced distribution (among classes) of data among the
agents, referred to as |ID data. In real-lite applications, having a precise |ID distribution
of data among the agents is often not feasible. We propose a Local Gradient Aggre-
gation (LGA) where each agent collects the gradient information from its neighboring
agents and updates its model with a projected gradient. By comparing against state-
of-the-art decentralized algorithms, we show that our algorithm achieves the highest
accuracy rate on non-IlID data distribution while preserving the IID counterpart’s per-
formance.

Introduction

e Centralized learning algorithms (e.qg., federated learning) have demonstrated state-
of-the-art performance in learning collaboratively from numerous agents.

e In certain use cases such as learning over a robotic network, continuous communi-
cation with a central parameter server is often not feasible. To address this concern,
several decentralized learning algorithms have been proposed.

e In this paper, we study two aspects of distributed deep learning: Decentralized
learning, and learning from non-lID data distributions.

e We propose Local Gradient Aggregation (LGA) algorithm and show its effective-
ness In learning models in a decentralized manner from both |ID and non-IlID data
distributions.

Problem Formulation

e The standard (unconstrained) empirical risk minimization problem that we are solv-
INg In decentralized distributed learning can be represented as:
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e Comparing the data distribution shifts in the continual learning with the non-1ID data
distributions in the decentralized learning, we can leverage the techniques into the
decentralized learning framework by finding the local optimal gradient for each local
model.

Algorithm

Algorithm 1 Local Gradient Aggregation
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e Figure 1 shows that LGA can maintain the high accuracy when learning from both
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ID and non-lID data distributions.
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Figure 1: Average training and validation accuracy for LGA method on (a) I1ID (b) non-IID data
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Experimental Results

e Figure 2 shows that LGA achieves the highest accuracy compared to the state-of-
the-art methods in less number of epochs smoothly and maintains it in both |[ID and
non-lID scenarios.
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Figure 2: Average training (solid line) and validation (dash line) accuracy for different methods on (a)
[ID (b) non-1ID data distributions for fully connected graph topology with 5 agents

e We have also tested our method on CIFAR-10 data set with 10 agents and MNIST
data sets with bot 5 and 10 agents. Experimental results show that LGA achieves
the highest accuracy compared to the state-of-the-art methods in all of those exper-
Iments as well and will preserve the performance when changing from 1ID to non-1ID
data distributions.

Conclusions

e In this paper, we propose a Local Gradient Aggregation (LGA) algorithm to effec-
tively learn from non-lID data distributions in a decentralized manner that resolves
the scalability and connectivity concerns associated with using a central parameter
Server.

e We present the convergence characteristics of the algorithm and investigate the ef-
fect of different topologies, with different combinations of agent numbers empirically.

e Also, we compare the performance of LGA algorithm with state-of-the-art decen-
tralized learning algorithms as baseline methods.

e Future research directions include: (1) Computation analysis of LGA (ii) investigat-
iIng projection methods other than QP (iil) empirical comparison between different
extents of non-lIDness in the data distribution.
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