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Tensors

On an order-3 tensor B, for each of the modes n ∈ [3] := {1, 2, 3}:
• size of the n-th mode: In
• mode-n fibers: fixing every index but the n-th. e.g., mode-1 fiber: B:jk

• mode-n unfolding: matrix B(n), whose columns are mode-n fibers
tensor decomposition: CP, Tucker, tensor-train, . . .
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Figure 1: Tucker decomposition with multilinear rank (r1, r2, r3): B = G×1 U1 ×2 U2 ×3 U3.

tensor completion
Given a partially observed Bobs ∈ RI1×···×IN , we have
• observation pattern Ω ∈ RI1×···×IN : Ωi1...iN = 1 if Bi1...iN is observed, and 0 otherwise
• observation probability P ∈ RI1×···×IN : Pi1...iN = P(Ωi1...iN = 1) = P(Bi1...iN is observed)

missingness types {Pi1...iN}
missing-completely-at-random (MCAR) uniform
missing-not-at-random (MNAR) non-uniform

1-bit matrix completion
Given a binary matrix Y ∈ {0, 1}m×n, predict the parameter matrix M ∈ Rm×n

Assumptions:
• M is approximately low rank.
• There exists a link function σ: R→ [0, 1], such that P(Yij = 1) = σ(Mij) for

(i, j) ∈ [m]× [n].
Low rank surrogates for M : low nuclear norm, low max norm, . . .

Our problem formulation: MNAR tensor completion

Input: MNAR data tensor Bobs ∈ RI1×I2×···×IN

Assumptions:
• true data tensor B ∈ RI1×I2×···×IN is approximately low multilinear rank
• noiseless observation: (Bobs)i1...iN = Bi1...iN if Bi1...iN is observed, and 0 otherwise
• unknown parameter tensor A ∈ RI1×I2×···×IN has the same rank structure as B
• 1-bit observation: With the observation propensity tensor P ∈ RI1×I2×···×IN ,
P(Bi1i2···iN is observed) = Pi1i2···iN = σ(Ai1i2···iN), in which σ: R→ [0, 1] is a
non-decreasing link function.

Algorithm Step 1: propensity recovery

Given a mask tensor Ω, get a predicted propensity tensor P̂.

algorithm hyperparameters
Choice 1: convex proximal-proximal-gradient τ and γ
Choice 2: nonconvex gradient descent target rank and step size

Choice 1: convex and provable
1 get the square set and square unfolding [5] of Ω:

• cS : [N ]→ [N ]: a permutation map of the N orders that satisfies
{c−1
S (1), c−1

S (2), . . . , c−1
S (|S|)} = S

• square set of Ω ∈ RI1×···×IN S� := arg min
S⊂[N ]

∣∣∣∏n∈S In −
∏
n∈[N ]\S In

∣∣∣,
• and the square unfolding Ω� := reshape(cS�Ω(1),

∏
n∈S� In,

∏
n∈[N ]\S� In)

2 predict parameter A by logistic loss minimization (by proximal-proximal-gradient [6])

Â�← argmin
Γ∈Sτ,γ

I�∑
i=1

I�C∑
j=1
−(Ω�)i,j log σ(Γi,j)− [1− (Ω�)i,j] log[1− σ(Γi,j)],

where Sτ,γ=
{

Γ ∈ RI�×I�C : ‖Γ‖? ≤ τ
√
I[N ], ‖Γ‖max ≤ γ

}
.

3 predict propensity: P̂ = σ(Â)
Choice 2: nonconvex, gradient descent

1 initialization: GA, UA
1 , . . . , U

A
N ← GA

0 , (U1)A0 , . . . , (UN)A0
2 objective function:

f (GA, {UA
n }n∈[N ]) =

∑
i1···iN
−Ωi1···iN log σ(Âi1···iN)− (1−Ωi1···iN) log[1− σ(Âi1···iN)],

in which Â = GA ×1 U
A
1 ×2 · · · ×N UA

N .

3 gradient descent updates
4 predict propensity: P̂ = σ(GA ×1 U

A
1 ×2 · · · ×N UA

N )

Algorithm Step 2: tensor completion

Given P̂ and MNAR observations Bobs, get B̂
1 Form an entrywise inverse propensity estimator for data tensor B as
X̄(P̂) = ∑

(i1,i2,...,iN)∈Ω
1

P̂i1...iN
Bobs � E(i1, . . . , iN), in which

• Ω := {(i1, . . . , iN )|Bi1...iN is observed}
• E(i1 . . . , iN ) is a binary tensor with the same shape as B, with value 1 at the (i1, i2, . . . , iN )-th entry

and 0 elsewhere.

2 Do Tucker decomposition on X̄(P̂), get core tensor W(P̂) and factor matrices
{Qn(P̂)}n∈[N ].

3 Estimate B by B̂(P̂) = W(P̂)×1 Q1(P̂)×2 · · · ×N QN(P̂).

Theoretical guarantees

• Upper bound for propensity recovery error [1, 3]
Assume that P = σ(A). Given a set S ⊂ [N ], together with the following assumptions:
A1. AS has bounded nuclear norm: there exists a constant θ > 0 such that ‖AS‖? ≤ θ

√
I[N ].

A2. Entries of A have bounded absolute value: there exists a constant α > 0 such that ‖A‖max ≤ α.
Suppose we run the convex propensity recovery algorithm with thresholds satisfying
τ ≥ θ and γ ≥ α to obtain an estimate P̂ of P. With Lγ := supx∈[−γ,γ]

|σ′(x)|
σ(x)(1−σ(x)),

there exists a universal constant C > 0 such that if IS + ISC ≥ C, with probability at
least 1− C

IS+ISC
, the propensity estimation error 1

I[N ]
‖P̂− P‖2

F ≤ 4eLγτ
(

1√
IS

+ 1√
ISC

)
.

• Optimality of the square unfolding for propensity recovery: Instate the same
conditions as the previous lemma on propensity recovery error, and further assume that
there exists a constant c > 0 such that rtrue

n ≤ cIn for every n ∈ [N ]. Then S = S�

gives the tightest upper bound on the propensity estimation error ‖P̂− P‖F among all
unfolding sets S ⊂ [N ].

• Tensor completion error on cubical tensors (same size in every mode):
Consider an order-N cubical tensor B with size I1 = · · · = IN = I and multilinear rank
rtrue

1 = · · · = rtrue
N = r < I, and two order-N cubical tensors P and A with the same

shape as B. Each entry of B is observed with probability from the corresponding entry
of P. Assume I ≥ rN log I , and there exist constants ψ, α ∈ (0,∞) such that
‖A‖max ≤ α, ‖B‖max = ψ. Further assume that for each n ∈ [N ], the condition
number σ1(B(n))

σr(B(n)) ≤ κ is a constant independent of tensor sizes and dimensions. Then
under the conditions of the lemma on convex propensity recovery error, with probability
at least 1− I−1, the fixed multilinear rank (r, r, . . . , r) approximation B̂(P̂) computed
from the convex propensity recovery and tensor completion algorithms with thresholds
τ ≥ θ and γ ≥ α satisfies

‖B̂(P̂)−B‖F

‖B‖F
≤ CN

√
r log I
I

,

in which C depends on κ.
Numerics

Convex propensity recovery on a size-8 cubical tensor:

4 5 6 7 8
tensor order

0.00

0.02

0.04

re
la

ti
ve

er
ro

r 4 5 6 7 8
tensor order

0.00

0.02

0.04

re
la

ti
ve

er
ro

r

unfolding along one mode (1)

unfolding along one mode (2)

square unfolding (1)

square unfolding (2)

Figure 2: “(1)”: setting τ = θ, γ = α; “(2)”: setting τ = 2θ, γ = 2α

MNAR tensor completion on synthetic data:

Algorithm time (s) relative error ‖B̂(P̂)−B‖F/‖B‖F

with P with P̂1 with P̂2

TenIPS 26 0.110 0.110 0.109
HOSVD_w [2] 35 0.129 0.116 0.110
SqUnfold 29 0.141 0.138 0.139
RectUnfold 8 0.259 0.256 0.256
LstSq >600 - - -
SO-HOSVD [7] >600 - - -

MNAR tensor completion on semi-synthetic data:
• real video tensor from [4]: B ∈ [0, 255]2200×1080×1920

• synthetic parameter tensor A = (B− 128)/64

(a) original (b) TenIPS, assuming
MCAR

(c) TenIPS, assuming
MNAR, with true P

(d) TenIPS, assuming
MNAR, with estimated P̂

Thanks!

• Chengrun Yang: cy438@cornell.edu
• Madeleine Udell: udell@cornell.edu
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