

On an order-3 tens

- size of the *n*-th
- mode-*n* fibers:
- mode-n unfoldi

tensor decompositi

Figure 1: Tuck

tensor completion

Given a partially of

- observation pat
- observation pro

Tensors	Choice 1: convex and provable
sor \mathcal{B} , for each of the modes $n \in [3] := \{1, 2, 3\}$: In mode: I_n fixing every index but the <i>n</i> -th. e.g., mode-1 fiber: $\mathcal{B}_{:jk}$ ing: matrix $\mathcal{B}^{(n)}$, whose columns are mode- <i>n</i> fibers tion: CP, Tucker, tensor-train, $I_1 \underbrace{I_2}_{\mathcal{B}} = I_1 \underbrace{I_1}_{I_3} \stackrel{\times}{\underset{I_2}{}} \underbrace{I_2}_{I_2} \underbrace{I_2}_{I_2} \underbrace{I_2}_{I_2}$	• get the square set and square unfolding [5] of • $c_S : [N] \rightarrow [N]$: a permutation map of the N orders that $\{c_S^{-1}(1), c_S^{-1}(2), \dots, c_S^{-1}(S)\} = S$ • square set of $\Omega \in \mathbb{R}^{I_1 \times \dots \times I_N} S_{\Box} := \arg\min_{S \subset [N]} \prod_{n \in S} I_n + S_n $ • and the square unfolding $\Omega_{\Box} := \operatorname{reshape}({}^{cS_{\Box}}\Omega^{(1)}, \prod_{n, q} I_n)$ • predict parameter \mathcal{A} by logistic loss minimization $\widehat{\mathcal{A}}_{\Box} \leftarrow \operatorname*{argmin}_{\Gamma \in S_{\tau, \gamma}} \sum_{i=1}^{I_{\Box}C} -(\Omega_{\Box})_{i,j} \log \sigma(\Gamma_{i,j}) - I_{T} \otimes \mathcal{S}_{\tau, \gamma} = \left\{ \Gamma \in \mathbb{R}^{I_{\Box} \times I_{\Box}C} : \Gamma _{\star} \leq \tau \sqrt{I_{[N]}}, \Gamma _{\Pi} \right\}$ • predict propensity: $\widehat{\mathcal{P}} = \sigma(\widehat{\mathcal{A}})$
$\begin{bmatrix} -\\ r_2 \end{bmatrix}$	Choice 2: nonconvex, gradient descent
ker decomposition with multilinear rank (r_1, r_2, r_3) : $\mathcal{B} = \mathcal{G} \times_1 U_1 \times_2 U_2 \times_3 U_3$.	1 initialization: $\mathfrak{G}^{\mathcal{A}}, U_1^{\mathcal{A}}, \ldots, U_N^{\mathcal{A}} \leftarrow \mathfrak{G}_0^{\mathcal{A}}, (U_1)_0^{\mathcal{A}}, \ldots, (U_1)_0^{$
on observed $\mathcal{B}_{obs} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$, we have ttern $\Omega \in \mathbb{R}^{I_1 \times \cdots \times I_N}$: $\Omega_{i_1 \dots i_N} = 1$ if $\mathcal{B}_{i_1 \dots i_N}$ is observed, and 0 otherwise obability $\mathcal{P} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$: $\mathcal{P}_{i_1 \dots i_N} = \mathbb{P}(\Omega_{i_1 \dots i_N} = 1) = \mathbb{P}(\mathcal{B}_{i_1 \dots i_N} \text{ is observed})$	② objective function: $f(\mathcal{G}^{\mathcal{A}}, \{U_n^{\mathcal{A}}\}_{n \in [N]}) = \sum_{i_1 \cdots i_N} -\Omega_{i_1 \cdots i_N} \log \sigma(\widehat{\mathcal{A}}_{i_1 \cdots i_N})$ in which $\widehat{\mathcal{A}} = \mathcal{G}^{\mathcal{A}} \times_1 U_1^{\mathcal{A}} \times_2 \cdots \times_N U_N^{\mathcal{A}}$.
missingness types $\{\mathcal{P}_{i_1i_N}\}$ missing-completely-at-random (MCAR)uniformmissing-not-at-random (MNAR)non-uniform	③ gradient descent updates ④ predict propensity: $\widehat{\mathcal{P}} = \sigma(\mathcal{G}^{\mathcal{A}} \times_1 U_1^{\mathcal{A}} \times_2 \cdots \times_N U)$ Algorithm Step 2: tenso
mpletion write the parameter matrix $M \in \mathbb{R}^{m imes n}$	Given $\widehat{\mathcal{P}}$ and MNAR observations \mathcal{B}_{obs} , get $\widehat{\mathcal{B}}$
ately low rank. link function σ : $\mathbb{R} \to [0, 1]$, such that $\mathbb{P}(Y_{ij} = 1) = \sigma(M_{ij})$ for $[n]$. ces for M : low nuclear norm, low max norm,	 Form an entrywise inverse propensity estimation \$\bar{X}(\hat{P}) = \sum_{(i_1,i_2,,i_N) \in \Omega} \frac{1}{\bar{P}_{i_1i_N}} \mathcal{B}_{obs} \circ \mathcal{E}(i_1,, i_N), in \$\Phi = \left\{(i_1,,i_N) \mathcal{B}_{i_1i_N}\] is observed\\ \$\mathcal{E}(i_1,,i_N)\$ is a binary tensor with the same shape as \$\mathcal{P}\$ and \$0\$ elsewhere.
roblem formulation: MNAR tensor completion	$\{Q_n(\widehat{\mathcal{P}})\}_{n\in[N]}$.
ta tensor $\mathcal{B}_{\mathrm{obs}} \in \mathbb{R}^{I_1 imes I_2 imes \dots imes I_N}$	3 Estimate \mathcal{B} by $\widehat{\mathcal{B}}(\widehat{\mathcal{P}}) = \mathcal{W}(\widehat{\mathcal{P}}) \times_1 Q_1(\widehat{\mathcal{P}}) \times_2 \cdots \times_N Q_N(\widehat{\mathcal{P}})$

1-bit matrix con

Given a binary ma Assumptions:

- M is approxima
- There exists a $(i,j) \in [m] \times$

Low rank surrogate

Our pro

Input: MNAR dat. **Assumptions**:

- true data tensor $\mathcal{B} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ is approximately low multilinear rank
- noiseless observation: $(\mathcal{B}_{obs})_{i_1...i_N} = \mathcal{B}_{i_1...i_N}$ if $\mathcal{B}_{i_1...i_N}$ is observed, and 0 otherwise
- unknown parameter tensor $\mathcal{A} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ has the same rank structure as \mathcal{B}
- **1-bit observation**: With the observation propensity tensor $\mathcal{P} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$,
- $\mathbb{P}(\mathcal{B}_{i_1i_2\cdots i_N} \text{ is observed}) = \mathcal{P}_{i_1i_2\cdots i_N} = \sigma(\mathcal{A}_{i_1i_2\cdots i_N})$, in which $\sigma: \mathbb{R} \to [0,1]$ is a non-decreasing link function.

Algorithm Step 1: propensity recovery

Given a mask tensor Ω , get a predicted propensity tensor \mathcal{P} .

	algorithm	hyperparameters
Choice 1: convex	proximal-proximal-gradient	$ au$ and γ
Choice 2: nonconve	x gradient descent	target rank and s

TenIPS: Inverse Propensity Sampling for Tensor Completion

Chengrun Yang, Lijun Ding, Ziyang Wu, Madeleine Udell

Cornell University

Theoretical guarantees

- Upper bound for propensity recovery error [1, 3] Assume that $\mathcal{P} = \sigma(\mathcal{A})$. Given a set $S \subset [N]$, together with the following assumptions: A1. \mathcal{A}_S has bounded nuclear norm: there exists a constant $\theta > 0$ such that $\|\mathcal{A}_S\|_{\star} \leq \theta_{\sqrt{I_{[N]}}}$. A2. Entries of \mathcal{A} have bounded absolute value: there exists a constant $\alpha > 0$ such that $\|\mathcal{A}\|_{\max} \leq \alpha$. Suppose we run the convex propensity recovery algorithm with thresholds satisfying $\tau \ge \theta$ and $\gamma \ge \alpha$ to obtain an estimate $\widehat{\mathcal{P}}$ of \mathcal{P} . With $L_{\gamma} := \sup_{x \in [-\gamma,\gamma]} \frac{|\sigma'(x)|}{\sigma(x)(1-\sigma(x))}$, there exists a universal constant C > 0 such that if $I_S + I_{S^C} \ge C$, with probability at least $1 - \frac{C}{I_S + I_{SC}}$, the propensity estimation error $\frac{1}{I_{[N]}} \|\widehat{\mathcal{P}} - \mathcal{P}\|_{\mathrm{F}}^2 \leq 4eL_{\gamma}\tau \left(\frac{1}{\sqrt{I_S}} + \frac{1}{\sqrt{I_{SC}}}\right)$.
- Optimality of the square unfolding for propensity recovery: Instate the same conditions as the previous lemma on propensity recovery error, and further assume that there exists a constant c > 0 such that $r_n^{\text{true}} \leq cI_n$ for every $n \in [N]$. Then $S = S_{\Box}$ gives the tightest upper bound on the propensity estimation error $\|\mathcal{P} - \mathcal{P}\|_{\mathrm{F}}$ among all unfolding sets $S \subset [N]$.

nd step size

 Ω : at satisfies

 $-\prod_{n\in[N]\setminus S}I_n$

 $I_{n\in S_{\square}}I_n, \prod_{n\in [N]\setminus S_{\square}}I_n$ **ion** (by proximal-proximal-gradient [6])

 $- \left[1 - (\Omega_{\Box})_{i,j}\right] \log[1 - \sigma(\Gamma_{i,j})],$

 $\max \leq \gamma$

 $(U_N)_0^{\mathcal{A}}$

 $-(1-\Omega_{i_1\cdots i_N})\log[1-\sigma(\widehat{\mathcal{A}}_{i_1\cdots i_N})],$

 $V_N^{\mathcal{A}})$

or completion

ator for data tensor \mathcal{B} as n which

B, with value 1 at the (i_1, i_2, \ldots, i_N) -th entry

ensor $\mathcal{W}(\mathcal{P})$ and factor matrices

 $_N Q_N(\widehat{\mathcal{P}}).$

 $\tau \geq \theta$ and $\gamma \geq \alpha$ satisfies

in which C depends on κ .

Algorithm	tir
TenIPS	26
HOSVD_w [2]	35
SqUnfold	29
RectUnfold	8
LstSq	>
SO-HOSVD [7]	>

- - (a) original
- Chengrun Yang: cy438@cornell.edu

Bibliography

[1] Mark A Davenport, Yaniv Plan, Ewout Van Den Berg, and Mary Wootters. 1-bit matrix completion. Information and Inference: A Journal of the IMA, 3(3):189–223, 2014. [2] Longxiu Huang and Deanna Needell. Hosvd-based algorithm for weighted tensor completion. arXiv preprint arXiv:2003.08537, 2020. [3] Wei Ma and George H Chen. Missing not at random in matrix completion: The effectiveness of estimating missingness probabilities under a low nuclear norm assumption. In Advances in Neural Information Processing Systems, pages 14871–14880, 2019.

- 10096-10106, 2018.
- pages 73-81, 2014. [6] Ernest K Ryu and Wotao Yin. Proximal-proximal-gradient method. arXiv preprint arXiv:1708.06908, 2017

• **Tensor completion error on cubical tensors** (same size in every mode): Consider an order-N cubical tensor \mathcal{B} with size $I_1 = \cdots = I_N = I$ and multilinear rank $r_1^{\text{true}} = \cdots = r_N^{\text{true}} = r < I$, and two order-N cubical tensors \mathcal{P} and \mathcal{A} with the same shape as \mathcal{B} . Each entry of \mathcal{B} is observed with probability from the corresponding entry of \mathcal{P} . Assume $I \geq rN \log I$, and there exist constants $\psi, \alpha \in (0, \infty)$ such that $\|\mathcal{A}\|_{\max} \leq \alpha$, $\|\mathcal{B}\|_{\max} = \psi$. Further assume that for each $n \in [N]$, the condition number $\frac{\sigma_1(\mathcal{B}^{(n)})}{\sigma_n(\mathcal{B}^{(n)})} \leq \kappa$ is a constant independent of tensor sizes and dimensions. Then under the conditions of the lemma on convex propensity recovery error, with probability at least $1 - I^{-1}$, the fixed multilinear rank (r, r, \dots, r) approximation $\widetilde{\mathcal{B}}(\widetilde{\mathcal{P}})$ computed from the convex propensity recovery and tensor completion algorithms with thresholds

$$\frac{\widehat{\mathcal{B}}(\widehat{\mathcal{P}}) - \mathcal{B}\|_{\mathrm{F}}}{\|\mathcal{B}\|_{\mathrm{F}}} \le CN\sqrt{\frac{r\log I}{I}},$$

Numerics

[4] Osman Asif Malik and Stephen Becker. Low-rank tucker decomposition of large tensors using tensorsketch. In Advances in Neural Information Processing Systems, pages

[5] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower bounds and improved relaxations for tensor recovery. In International conference on machine learning,

[7] Dong Xia, Ming Yuan, and Cun-Hui Zhang. Statistically optimal and computationally efficient low rank tensor completion from noisy entries. arXiv preprint arXiv:1711.04934,