
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Problem Setup

For Riemannian optimization algorithms, first-

order methods use the Riemannian gradient.

The Riemannian gradient (a tangent vector) is 

given by orthogonally projecting the Euclidean 

gradient to the tangent space of ℳ𝐫 at 𝑋:

𝑔𝑟𝑎𝑑 𝑓 𝑋 = 𝒫𝑋 𝜕 ҧ𝑓 𝑋

However, the Riemannian Hessian (a linear 

operator on tangent vectors) requires 

computing more than a projection:

Hess 𝑓 𝑋 𝑉 = 𝒫𝑋𝜕
2 ҧ𝑓 𝑋 𝑉 + 𝒫𝑋 𝐷𝑉𝒫𝑋 𝜕 ҧ𝑓 𝑋

Specifically, the term 𝒫𝑋 𝐷𝑉𝒫𝑋 𝜕 ҧ𝑓 𝑋 is closely 

related to the Weingarten map (or shape 

operator), which is closely knit with the 

curvature of the manifold.

Previously, there was no algorithm to efficiently 

compute the Weingarten map for ℳ𝐫. However, 

using structure from ℳ𝐫 in several ways, we 

can efficiently compute the Weingarten map, 

leading to efficient second-order optimization 

methods.

Curvature & Second-Order Optimization

We use our method to develop a Riemannian 

Trust Regions (RTR) algorithm for tensor 

completion. Below are results comparing RTR 

to Alternating Least Squares (ALS), 

Riemannian conjugate gradients (RTTC), and 

Riemannian trust regions with a finite 

difference-approximated Hessian (FD-TR). The 

presented experiments have progressively 

worse conditioned Hessians at the target point.

Results Conclusions

By using structure from the Tensor Train 

decomposition, we design an efficient 

algorithm to compute the Riemannian Hessian:

an essential ingredient for second-order 

optimization over tensors with a fixed TT-rank.

Our experiments confirm the intuition that, as 

the conditioning of a problem worsens, having 

access to the true Hessian adds more and 

more value in terms of performance.

Future Directions

There are still many problems outside of tensor 

completion that could benefit from true second-

order optimization. For example, solving linear 

systems that arise from discretizing high-

dimensional PDE, as studied in Steinlechner’s

thesis.

There are also several recent papers that 

represent neural network components using a 

Tensor Train decomposition [3-5]; our algorithm 

could then be used to efficiently train these 

components using second-order methods.

Suppose we want to solve the following 

smooth optimization problem:

min 𝑓 𝑋 ,where 𝑋 is a high − order tensor.

For tensors of high-order, it is often only 

tractable to work with the Tensor Train (TT) 

decomposition of 𝑋. The size of these 

decompositions induces a notion of “rank” for 

tensors: the TT-rank. We then consider the 

following constrained optimization problem:

min 𝑓 𝑋 , 𝑋 ∈ ℳ𝐫

ℳ𝐫 = 𝑋 ∈ 𝐑𝑛1×⋯×𝑛𝑑: rankTT 𝑋 = 𝐫

The set ℳ𝐫 is an embedded submanifold, 

which allows us to use techniques from 

Riemannian optimization to develop 

Riemannian versions of first and second-

order optimization algorithms.

The first-order tools were developed by

M. Steinlechner in his 2016 PhD thesis [1]

(see papers of his with D. Kressner and

B. Vandereycken [2]).

We add second-order methods to the story.
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