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The Problem

min
x∈Rd

[
f (x) = 1

n

n∑
i=1

fi(x)
]
. (1)

We assume f and fi are smooth functions.
Depending on the model under study, the functions f and fi can
either be strongly-convex, convex, or non-convex.
•X ∗ ⊂ Rd to be the set of optimal points x∗ of (1) (X ∗ 6= ∅)
• f ∗ : minimum value of f
• For each i ∈ {1, . . . , n}: f ∗i

def= inf
x
fi(x)

SGD and the Stochastic Polyak Step-size

SGD: xk+1 = xk − γk∇fi(xk) (2)

Example i ∈ [n] is chosen uniformly at random and γk > 0 is the
step-size. For step-size we propose to use the:
Stochastic Polyak Step-size (SPS):

SPS: γk = fi(xk)− f ∗i
c ‖∇fi(xk)‖2 (3)

and its more conservative variant:

SPSmax : γk = min
{
fi(xk)− f ∗i
c‖∇fi(xk)‖2, γb

}
(4)

Here γb > 0 is a bound that restricts SPS from being very large and
is essential to ensure convergence to a small neighborhood around
the solution. If γb =∞ then SPSmax is equivalent to SPS.

Upper and Lower Bounds of SPS
If functions fi in problem (1) are µi-strongly convex and Li-smooth,
then:

1
2cLmax

≤ 1
2cLi

≤ γk = fi(xk)− f ∗i
c‖∇fi(xk)‖2 ≤

1
2cµi

, (5)

where Lmax = max{Li}ni=1.

Main Contributions

• We propose a novel adaptive learning rate for SGD: Stochastic
Polyak Step-size (SPS), which is a stochastic variant of the
classical Polyak step-size (for GD) (Polyak, 1987).
Attractive choice for typical modern machine learning
applications.

• Convergence guarantees of SGD with SPS: Strongly convex,
Convex and Non-convex functions.

• Our results require very weak assumptions. In particular, we do
not assume bounded second moment of the gradients for every x
or bounded variance. We rely on the Optimal Objective
Difference (see (6)).

• Novel analysis for constant step-size SGD.
• For Over-parametrized models (Interpolation Condition is
satisfied), we guarantee: fast convergence to the true solution
(like deterministic GD).

• Extensive experimental evaluation.

Main Assumption

Finite optimal objective difference

σ2 def= Ei[fi(x∗)− f ∗i ] = f (x∗)− Ei[f ∗i ] <∞ (6)
This is a very weak assumption. Moreover when (1) is the training
problem of an over-parametrized model, each individual loss function
fi attains its minimum at x∗, and thus fi(x∗) − f ∗i = 0. In this
interpolation setting, it follows that σ = 0.
Comparison to the variance z2 = E[‖∇fi(x∗)‖2.
If we assume that all function fi are µ-strongly convex and L-smooth
functions then, 1

2Lz
2 ≤ σ2 ≤ 1

2µz
2.

Evaluating f ∗i

Standard unregularized surrogate loss functions have
f ∗i = 0 (Bartlett et al., 2006). Examples:
• squared loss for regression,
• logistic loss for classification,
• exponential loss (Adaboost algorithm),
• hinge loss (support vector machines)

For the regularized case (e.g. `2 regularization):
f ∗i can be pre-computed in closed form for each i using:
• Lambert W function (Corless et al., 1996).
• or the more general r-Lambert function (Mezo and Baricz, 2017).

Convergence Analysis

Theorem

Let fi be Li-smooth convex functions with at least one of them
being a strongly convex function. SGD with SPSmax with c ≥
1/2 converges as:

E‖xk − x∗‖2 ≤ (1− µ̄α)k ‖x0 − x∗‖2 + 2γbσ
2

µ̄α
, (7)

where α := min{ 1
2cLmax

, γb}, µ̄ = E[µi] and Lmax = max{Li}ni=1.
The best convergence rate and the tightest neighborhood are
obtained for c = 1/2.

Corollaries:
• Assume interpolation (σ = 0). SGD with SPS with c = 1/2
converges as: E‖xk − x∗‖2 ≤

(
1− µ̄

Lmax

)k
‖x0 − x∗‖2.

• If γb ≤ 1
Lmax
⇒ then method becomes SGD with constant

step-size γ ≤ 1
Lmax

and converges as

E‖xk − x∗‖2 ≤ (1− µ̄γ)k ‖x0 − x∗‖2 + 2σ2

µ̄
.

Summary of Convergence Analysis Results

Assumptions Quantity Convergence Neighborhood
Strongly Convex E‖xk − x∗‖2 Linear ∝ γb, σ

2

Convex E
[
f (x̄k)− f (x∗)

]
sublinear: O(1/k) ∝ γb, σ

2

Polyak-Lojasiewicz (PL) E[f (xk)− f (x∗)] Linear ∝ γb, σ
2

Non-Convex
E[‖∇fi(x)‖2] ≤ ρ‖∇f (x)‖2 + δ

minE‖∇f (xk)‖2 sublinear: O(1/k) ∝ γb, δ

Experimental Evaluation: Synthetic experiment
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Synthetic experiment to benchmark SPS against constant step-size SGD for binary classification using the (left) regularized and (right)
unregularized logistic loss.

Experiments for over-parametrized models
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CIFAR10 - ResNet34

50 100 150 200
epoch

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

Va
lid

at
io

n 
ac

cu
ra

cy

CIFAR10 - ResNet34
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CIFAR10 - ResNet34
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CIFAR100 - ResNet34
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CIFAR100 - ResNet34
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Comparing the performance of optimizers on deep matrix factorization (top left) and binary classification using kernels (top right) and
multi-class classification on CIFAR-10 and CIFAR-100 with ResNet34.


