Problem setup

Consider optimization problem with the decision x :
minimize $f(x):=g(\mathcal{A} x)+\langle c, x\rangle$
subject to $x \in \Omega$.

- Ω convex and compact with diameter D
- g smooth
- A a linear map, and c a vector

Applications: LASSO, SVM, matrix completion, phase retrieval, and one-bit matrix completion, etc.

Frank-Wolfe

FW: choose $x_{0} \in \Omega$, iterate

1. Linear Optimization Oracle (LOO): Find a direction v_{t} that solves $\min _{v}\left\langle\nabla f\left(x_{t}\right), v\right\rangle$.
2. Line Search: Find x_{t+1} that solves $\min _{x=\eta v_{t}+(1-\eta) x_{t}, \eta \in[0,1]} f(x)$.

Slow convergence of FW and Zigzag

- FW: slow in both theory and practice, $\mathcal{O}\left(\frac{1}{t}\right)$ convergence rate. - Zigzag: cause of slow convergence when when the optimal solution $x_{\star} \in \partial \Omega$ and is a convex combination of r_{\star} many extreme points v_{1}^{\star}, ,$v_{r_{\star}}^{\star} \in \Omega$. See Figure 1 for $r_{\star}=2$ The grey arrows are the negative gradients $-\nabla f$.

Fig. 1: Zig-Zag: black arrows show trajectory of the iterates. Optimal solution x_{\star} is a convex combination of v_{1}^{\star} and v_{2}^{\star}, and $r_{\star}=2$. The grey arrows are the negative gradients $-\nabla f$.

Our key insight

The sparstity r_{\star} is small in many applications and $\nabla f\left(x_{\star}\right)$ has the smallest inner product with $v_{1}^{\star}, \ldots, v_{r_{\star}}^{\star}$ among all $v \in \Omega$. Our key insight:

- Compute all extreme points v_{i}^{\star} that minimize $\left\langle\nabla f\left(x_{\star}\right), v\right\rangle$;
- Solve the smaller problem $\min _{x \in \operatorname{conv}\left(x_{t}, v_{1}^{\star}, \ldots, v_{r}^{\star}\right)} f(x)$. See Figure 2 for an illustration.

Fig. 2: Optimization over $\operatorname{conv}\left(x_{t}, v_{1}^{\star}, v_{2}^{\star}\right)$ (green).

k-FW

Inspired by our key insight, we introduce the following two sub problem oracles for polytope:

- k linear optimization oracle ($k \mathrm{LOO}$): for any $y \in \mathbb{R}^{n}$, compute the k extreme points v_{1}, \ldots, v_{k} (k best directions) with the smallest k inner products $\langle v, y\rangle$ among all extreme points v of Ω.
- k direction search ($k \mathrm{DS}$): given input directions $w, v_{1}, \ldots, v_{k} \in \Omega$, output $x_{k \text { DS }}=\arg \min _{x \in \operatorname{conv}\left(w, v_{1}, \ldots, v_{k}\right)} f(x)$. k FW simply iterates k L00 and k DS.
- Many polytopes admit efficient $k \mathrm{LOO}$ and $k \mathrm{DS}$: probability simplex, flow polytope for directed acyclic graph, matching polytope, matroid, spanning tree polytope, etc.
- k LOO and k DS for nonpolytope is also available! Example includes group norm ball, spetrahedron, and nuclear norm ball.

Theoretical Result

Analytical Conditions

- Sparsity measure r_{\star} : number of extreme points of the smallest face $\mathcal{F}\left(x_{\star}\right)$ containing x_{\star}.
- Strict complementarity (SC) and its measure δ : a unique solution $x_{\star} \in \partial \Omega$ and $-\nabla f\left(x_{\star}\right) \in \operatorname{relint}\left(N_{\Omega}\left(x_{\star}\right)\right) N_{\Omega}\left(x_{\star}\right)$ normal cone). The SC measure is $\delta=$ $\min \left\{\left\langle\nabla f\left(x_{\star}, v-x_{\star}\right\rangle\right| v \notin \mathcal{F}\left(x_{\star}\right), v\right.$ extreme point $\}$
- γ - quadratic growth (QG): for all $x \in \Omega, f(x)-f\left(x_{\star}\right) \geq \gamma\left\|x-x_{\star}\right\|^{2}$.

Theorem Statement Suppose f is L_{f}-smooth and convex and Ω is convex compact with diameter D.

- Then for any $k \geq 1$ and for all $t \geq 1$, the iterate x_{t} in $k \mathrm{FW}$ satisfies $f\left(x_{t}\right)-f\left(x_{\star}\right) \leq$ $\frac{2 L_{f} D^{2}}{t}$.
- Moreover, suppose Problem (1) satisfies strict complementarity and quadratic growth, and $k \geq r_{\star}$. If the constraint set Ω is a polytope or a unit group norm ball, then the gap $\delta>0$ and k FW finds x_{\star} in at most $T+1$ iterations, where T is

$$
\begin{equation*}
T=\frac{4 L_{f}^{3} D^{4}}{\gamma \delta^{2}} . \tag{2}
\end{equation*}
$$

- If the constraint set is the spechedron or the unit nuclear norm ball, the gap $\delta>0$ and k FW satisfies that for any $t \geq T_{1}:=\frac{72 L_{f}^{3}}{\gamma \delta^{2}}, f\left(X_{t+1}\right)-f\left(X_{\star}\right) \leq$ $\left(1-\min \left\{\frac{\gamma}{4 L_{f}}, \frac{\delta}{12 L_{f}}\right\}\right)\left(f\left(X_{t}\right)-f\left(X_{\star}\right)\right)$.

Numerics

We compare our method k FW with FW, away-step FW (awayFW), pairwise FW (pairFW), DICG [Garber and Meshi 2016], and blockFW [Allen-Zhu et. al. 2017] for the Lasso, support vector machine (SVM), group Lasso, and matrix completion problems on synthetic data. All algorithms terminate when the relative change of the objective is less than 10^{-6} or after 1000 iterations. As shown in Figure 1, k FW converges in many fewer iterations than other methods. Table 1 shows that $k \mathrm{FW}$ also converges faster in wall-clock time, with one exception (blockFW in matrix completion).

$$
\text { Fig. 3: } k \text { FW vs. FW and its variants }
$$

Table 1: Computation time (seconds): Sign "-" means the algorithm is not suited to

		FW	awayFW	pairFW	DICG	blockFW	k FW
	Lasso	>14	7	6	10	-	0.5
the problem.	SVM	6	4.5	2.9	2.5	-	0.6
	Group Lasso	17	6	1.8	-	-	0.3
	Matrix completion >180	-	-	-	1.8	4.8	

