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Problem setup

Consider optimization problem with the decision x:
minimize f (x) : = g(Ax) + 〈c, x〉
subject to x ∈ Ω.

(1)

• Ω convex and compact with diameter D

• g smooth

•A a linear map, and c a vector
Applications: LASSO, SVM, matrix completion, phase retrieval,
and one-bit matrix completion, etc.

Frank-Wolfe

FW: choose x0 ∈ Ω, iterate

1. Linear Optimization Oracle (LOO): Find a direction vt that
solves minv〈∇f (xt), v〉.

2. Line Search: Find xt+1 that solves minx=ηvt+(1−η)xt,η∈[0,1] f (x).

Slow convergence of FW and
Zigzag

• FW: slow in both theory and practice, O(1
t) convergence rate.

• Zigzag: cause of slow convergence when when the optimal
solution x? ∈ ∂Ω and is a convex combination of r? many
extreme points v?1, . . . , v

?
r?
∈ Ω. See Figure 1 for r? = 2 The

grey arrows are the negative gradients −∇f .

 

Fig. 1: Zig-Zag: black arrows show trajectory of the iterates.
Optimal solution x? is a convex combination of v?1 and v?2, and
r? = 2. The grey arrows are the negative gradients −∇f .

Our key insight

The sparstity r? is small in many applications and ∇f (x?) has
the smallest inner product with v?1, . . . , v

?
r?

among all v ∈ Ω.
Our key insight:

• Compute all extreme points v?i that minimize 〈∇f (x?), v〉;
• Solve the smaller problem minx∈conv(xt,v?1,...,v

?
r?

) f (x).

See Figure 2 for an illustration.

 

Fig. 2: Optimization over conv(xt, v
?
1, v

?
2) (green).

k-FW

Inspired by our key insight, we introduce the following two sub-
problem oracles for polytope:
• k linear optimization oracle (kLOO): for any y ∈ Rn, compute
the k extreme points v1, . . . , vk (k best directions) with the
smallest k inner products 〈v, y〉 among all extreme points v
of Ω.

• k direction search (kDS): given input directions
w, v1, . . . , vk ∈ Ω, output xkDS = arg minx∈conv(w,v1,...,vk) f (x).

kFW simply iterates kL00 and kDS.

• Many polytopes admit efficient kLOO and kDS: probability
simplex, flow polytope for directed acyclic graph, matching
polytope, matroid, spanning tree polytope, etc.

• kLOO and kDS for nonpolytope is also available! Example
includes group norm ball, spetrahedron, and nuclear norm
ball.

Theoretical Result

Analytical Conditions
• Sparsity measure r?: number of extreme points of the smallest faceF(x?) containing
x?.

• Strict complementarity (SC) and its measure δ: a unique solution x? ∈ ∂Ω
and −∇f (x?) ∈ relint(NΩ(x?)) NΩ(x?) normal cone). The SC measure is δ =
min{〈∇f (x?, v − x?〉 | v 6∈ F(x?), v extreme point}.

• γ - quadratic growth (QG): for all x ∈ Ω, f (x)− f (x?) ≥ γ‖x− x?‖2.
Theorem Statement Suppose f is Lf-smooth and convex and Ω is convex compact
with diameter D.

• Then for any k ≥ 1 and for all t ≥ 1, the iterate xt in kFW satisfies f (xt) − f (x?) ≤
2LfD

2

t .

• Moreover, suppose Problem (1) satisfies strict complementarity and quadratic
growth, and k ≥ r?. If the constraint set Ω is a polytope or a unit group norm
ball, then the gap δ > 0 and kFW finds x? in at most T + 1 iterations, where T is

T =
4L3

fD
4

γδ2 . (2)

• If the constraint set is the spechedron or the unit nuclear norm ball, the gap
δ > 0 and kFW satisfies that for any t ≥ T1 : =

72L3
f

γδ2 , f (Xt+1) − f (X?) ≤(
1−min

{
γ

4Lf
, δ

12Lf

})
(f (Xt)− f (X?)) .

Numerics

We compare our method kFW with FW, away-step FW (awayFW) , pairwise FW
(pairFW), DICG [Garber and Meshi 2016], and blockFW [Allen-Zhu et. al. 2017] for the
Lasso, support vector machine (SVM), group Lasso, and matrix completion problems
on synthetic data. All algorithms terminate when the relative change of the objective is
less than 10−6 or after 1000 iterations. As shown in Figure 1, kFW converges in many
fewer iterations than other methods. Table 1 shows that kFW also converges faster in
wall-clock time, with one exception (blockFW in matrix completion).

Fig. 3: kFW vs. FW and its variants

Table 1: Computation time (seconds): Sign “ -” means the algorithm is not suited to

the problem.

FW awayFW pairFW DICG blockFW kFW
Lasso >14 7 6 10 - 0.5
SVM 6 4.5 2.9 2.5 - 0.6
Group Lasso 17 6 1.8 - - 0.3
Matrix completion >180 - - - 1.8 4.8


