KFW: A FRANK-WOLFE STYLE ALGORITHM WITH STRONGER SUBPROBLEM ORACLES

Problem setup

Consider optimization problem with the decision x:

minimize $f(x) := g(\mathcal{A}x) + \langle c, x \rangle$ (1) subject to $x \in \Omega$.

• Ω convex and compact with diameter D

• g smooth

• \mathcal{A} a linear map, and c a vector

Applications: LASSO, SVM, matrix completion, phase retrieval, and one-bit matrix completion, etc.

Frank-Wolfe

FW: choose $x_0 \in \Omega$, iterate

- 1. Linear Optimization Oracle (LOO): Find a direction v_t that solves $\min_{v} \langle \nabla f(x_t), v \rangle$.
- 2. *Line Search:* Find x_{t+1} that solves $\min_{x=\eta v_t+(1-\eta)x_t, \eta \in [0,1]} f(x)$.

- FW: slow in both theory and practice, $\mathcal{O}(\frac{1}{t})$ convergence rate.
- Zigzag: cause of slow convergence when when the optimal solution $x_{\star} \in \partial \Omega$ and is a convex combination of r_{\star} many extreme points $v_1^{\star}, \ldots, v_{r_{\star}}^{\star} \in \Omega$. See Figure 1 for $r_{\star} = 2$ The grey arrows are the negative gradients $-\nabla f$.

Fig. 1: Zig-Zag: black arrows show trajectory of the iterates. Optimal solution x_{\star} is a convex combination of v_1^{\star} and v_2^{\star} , and $r_{\star} = 2$. The grey arrows are the negative gradients $-\nabla f$.

Lijun Ding, Jicong Fan, and Madeleine Udell **Cornell University**

Our key insight

The sparstity r_{\star} is small in many applications and $\nabla f(x_{\star})$ has the smallest inner product with $v_1^{\star}, \ldots, v_r^{\star}$ among all $v \in \Omega$. Our key insight:

• Compute all extreme points v_i^{\star} that minimize $\langle \nabla f(x_{\star}), v \rangle$;

• Solve the smaller problem $\min_{x \in \mathbf{conv}(x_t, v_1^\star, \dots, v_{r_\star}^\star)} f(x)$. See Figure 2 for an illustration.

Fig. 2: Optimization over $\mathbf{conv}(x_t, v_1^{\star}, v_2^{\star})$ (green).

k-FW

Inspired by our key insight, we introduce the following two subproblem oracles for polytope:

- k linear optimization oracle (kLOO): for any $y \in \mathbb{R}^n$, compute the k extreme points v_1, \ldots, v_k (k best directions) with the smallest k inner products $\langle v, y \rangle$ among all extreme points v of Ω .
- k direction search (kDS): given input directions $w, v_1, \ldots, v_k \in \Omega$, output $x_{kDS} = \arg \min_{x \in \mathbf{conv}(w, v_1, \ldots, v_k)} f(x)$.

kFW simply iterates kL00 and kDS.

- Many polytopes admit efficient kLOO and kDS: probability simplex, flow polytope for directed acyclic graph, matching polytope, matroid, spanning tree polytope, etc.
- kLOO and kDS for nonpolytope is also available! Example includes group norm ball, spetrahedron, and nuclear norm ball.

Theoretical Result

Analytical Conditions

- Sparsity measure r_{\star} : number of extreme points of the smallest face $\mathcal{F}(x_{\star})$ containing x_{\star} .
- Strict complementarity (SC) and its measure δ : a unique solution $x_{\star} \in \partial \Omega$ and $-\nabla f(x_{\star}) \in \operatorname{relint}(N_{\Omega}(x_{\star}))$ $N_{\Omega}(x_{\star})$ normal cone). The SC measure is $\delta =$ $\min\{\langle \nabla f(x_{\star}, v - x_{\star}) \mid v \notin \mathcal{F}(x_{\star}), v \text{ extreme point}\}.$

• γ - quadratic growth (QG): for all $x \in \Omega$, $f(x) - f(x_{\star}) \ge \gamma ||x - x_{\star}||^2$. **Theorem Statement** Suppose f is L_f -smooth and convex and Ω is convex compact with diameter D.

- Then for any $k \ge 1$ and for all $t \ge 1$, the iterate x_t in kFW satisfies $f(x_t) f(x_\star) \le 1$ $\frac{2L_f D^2}{t}.$
- Moreover, suppose Problem (1) satisfies strict complementarity and quadratic growth, and $k \geq r_{\star}$. If the constraint set Ω is a polytope or a unit group norm ball, then the gap $\delta > 0$ and kFW finds x_{\star} in at most T + 1 iterations, where T is

$$T = \frac{4L_f^3 D^4}{\gamma \delta^2}.$$

• If the constraint set is the spechedron or the unit nuclear norm ball, the gap $\delta > 0$ and kFW satisfies that for any $t \ge T_1 := \frac{72L_f^3}{\gamma\delta^2}$, $f(X_{t+1}) - f(X_{\star}) \le T_{t+1}$ $\left(1-\min\left\{\frac{\gamma}{4L_f},\frac{\delta}{12L_f}\right\}\right)\left(f(X_t)-f(X_\star)\right).$

Numerics

We compare our method kFW with FW, away-step FW (awayFW), pairwise FW (pairFW), DICG [Garber and Meshi 2016], and blockFW [Allen-Zhu et. al. 2017] for the Lasso, support vector machine (SVM), group Lasso, and matrix completion problems on synthetic data. All algorithms terminate when the relative change of the objective is less than 10^{-6} or after 1000 iterations. As shown in Figure 1, kFW converges in many fewer iterations than other methods. Table 1 shows that kFW also converges faster in wall-clock time, with one exception (blockFW in matrix completion).

Fig. 3: *k*FW vs. FW and its variants

Table 1: Comp	outation tin	ne (seco	nds):	Sign " -	" means	the algo	orith
-			FW	awayF\	N pairFV	V DICG	blc
-			< 1 /	7	6	10	

Lasso > 140 IU SVM 2.9 the problem. 4.5 2.5 6 17 1.8 Group Lasso 6 Matrix completion >180

