KFW: A FRANK-WOLFE STYLE ALGORITHM WITH STRONGER SUBPROBLEM ORACLES
Lijun Ding, Jicong Fan, and Madeleine Udell

Cornell University

Our key insight

Problem setup

Consider optimization problem with the decision z:
minimize f(x) := g(Ax) + (¢, x)
subject to x € ().

« () convex and compact with diameter D

(1)

* g smooth

« A a linear map, and ¢ a vector
Applications: LASSO, SVM, matrix completion, phase retrieval,
and one-bit matrix completion, etc.

Frank-Wolfe

FW: choose x, € (2, iterate

1. Linear Optimization Oracle (LOO): Find a direction v; that

solves min,(V f(x;), v).
2. Line Search: Find x;,, that solves min,_, ., (1—p)z, ne0.1] f ().

Slow convergence of FW and
Zigzag

« FW: slow in both theory and practice, (9(%) convergence rate.

 Zigzag: cause of slow convergence when when the optimal
solution x, € 0f) and is a convex combination of r, many
extreme points v, ..., v € (). See Figure 1 for r, = 2 The
grey arrows are the negative gradients —V 1.

U3

Fig. 1: Zig-Zag: black arrows show trajectory of the iterates.
Optimal solution x, is a convex combination of v; and v3, and
r. = 2. The grey arrows are the negative gradients —V f.

The sparstity r, is small in many applications and V f(x,) has
the smallest inner product with o7, ..., v; among all v € ).
Our key insight:

« Compute all extreme points v’ that minimize (V f(z,), v);
» Solve the smaller problem min,cconv(z vr,..0r ) f()-
See Figure 2 for an illustration.
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Fig. 2: Optimization over conv(x, v7, v3) (green).

Inspired by our key insight, we introduce the following two sub-
problem oracles for polytope:
* k linear optimization oracle (kLOQ): for any y € R", compute

the k extreme points vy, ..., v. (k best directions) with the
smallest k inner products (v, y) among all extreme points v
of ().

«k direction search (kDS): given input directions
W, V1, -, U € ), OUtPUL Tpps = arg Min, ccony(w.v,.....op) J (7).

kFW simply iterates £L00 and k£DS.

* Many polytopes admit efficient £LOO and £DS: probability
simplex, flow polytope for directed acyclic graph, matching
polytope, matroid, spanning tree polytope, etc.

« kLOO and kDS for nonpolytope is also available! Example
includes group norm ball, spetrahedron, and nuclear norm
ball.

Theoretical Result

Analytical Conditions

« Sparsity measure r,: number of extreme points of the smallest face F(x,) containing
€T,.

* Strict complementarity (SC) and its measure 0: a unique solution z, € 0f)
and —V f(z,) € relint(No(z,)) No(z,) normal cone). The SC measure is § =
min{(V f(x,,v — x4) | v € F(x4), v extreme point}.

- v - quadratic growth (QG): for all z € ), f(z) — f(z.) > ||z — x.]|*

Theorem Statement Suppose f is L-smooth and convex and (2 is convex compact
with diameter D.

*Then for any £ > 1 and for all ¢ > 1, the iterate x; in kFW satisfies f(x;) — f(x,) <
2L D?
—.

* Moreover, suppose Problem (1) satisfies strict complementarity and quadratic
growth, and £ > r,. If the constraint set () is a polytope or a unit group norm
ball, then the gap 0 > 0 and £FW finds z, in at most 1" + 1 iterations, where 1 is

413 D*
1 = 7{;2 . (2)
* If the constraint set is the spechedron or the unit nuclegar norm ball, the gap
5 > 0 and kFW satisfies that for any t > 77 := o, f(Xy1) — f(X.) <

(1= min {7, - 1) (F00) = F(X))

We compare our method £FW with FW, away-step FW (awayFW) , pairwise FW
(pairFW), DICG [Garber and Meshi 2016], and blockFW [Allen-Zhu et. al. 2017] for the
Lasso, support vector machine (SVM), group Lasso, and matrix completion problems
on synthetic data. All algorithms terminate when the relative change of the objective is
less than 10~ or after 1000 iterations. As shown in Figure 1, kFW converges in many
fewer iterations than other methods. Table 1 shows that £KFW also converges faster in
wall-clock time, with one exception (blockFW in matrix completion).
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Fig. 3: kFW vs. FW and its variants

Table 1: Computation time (seconds): Sign “ -” means the algorithm is not suited to
FW awayFW pairFW DICG blockFW £FW

Lasso >14 / 6 10 - 0.5
the problem. SVM 6 4.5 2.9 2.5 - 0.6
Group Lasso 17 6 1.8 - - 0.3
Matrix completion >180 - - - 1.8 4.8




