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Abstract
In this paper, we study a novel multi-objective combinatorial optimization problem called Submod-
ular Maximization with Fair Representation (SMFR), which selects subsets of bounded costs from
a ground set such that a submodular (utility) function f is maximized while a set of d submodu-
lar (representativeness) functions g1, . . . , gd are also maximized. SMFR can find applications in
machine learning problems where utility and representativeness objectives should be considered
simultaneously, such as social advertising, recommendation, and feature selection. We show that
the maximization of f and g1, . . . , gd might conflict with each other, so that no single solution can
approximate all of them at the same time. Therefore, we propose a Pareto optimization approach
to SMFR, which finds a set of solutions to approximate all Pareto optimal solutions with different
trade-offs between these objectives. Specifically, it converts an instance of SMFR into several sub-
modular cover instances by adjusting the weights of objective functions and provides approximate
solutions by running the greedy algorithm on each submodular cover instance. In future work, we
will consider how to apply SMFR in real-world problems and extend it to more general cases.

1. Introduction

The problem of subset selection is to select a subset S, under a budget constraint, from a ground set
V of items, so as to maximize an objective function f measuring the utility of the subset. This prob-
lem arises in a wide range of machine learning applications, such as viral marketing on social media
[9, 29], recommender systems [18, 32], data summarization [16, 19], and feature selection [2, 17],
to name just a few. A common combinatorial structure in such problems is submodularity [11],
which naturally captures the “diminishing returns” property that adding an item to a smaller set pro-
duces more marginal gains than adding it to a larger set. This property not only captures the desired
coverage and diversity of subsets but also allows the design of efficient approximation algorithms.

Among the various combinatorial optimization problems for subset selection in the literature,
maximizing a monotone submodular function subject to a knapsack constraint (SMK) has attracted
a lot of attention [4, 5, 7, 8, 12, 15, 27, 28, 37], as it captures common scenarios in which different
items have non-uniform costs and the total budget is limited. For a monotone submodular function
f : 2V → R+ on a ground set V , a cost function c : V → R+ that assigns each item v ∈ V with a
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cost c(v), and a budget k ∈ R+, SMK is formally defined as:

S∗ = argmax
S⊆V

f(S) subject to c(S) ≤ k,

where c(S) =
∑

v∈S c(v) is the cost of set S computed as the sum of the costs of all items in S.
In many real-world problems, in addition to the primary objective of maximizing the utility

function f , it is often essential to take into account the representativeness of different groups of
items. For instance, influence maximization (IM) [9] requires selecting a subset S ⊆ V of nodes
in a social network, with c(S) ≤ k, that maximizes the submodular influence spread function. If
the information propagated is related to education and employment opportunities, fairness in access
to information between protected groups [3, 31] becomes a critical issue to consider. As another
example, personalized recommendation requires choosing a set S ⊆ V of items, with c(S) ≤ k, so
as to maximize a submodular utility function denoting its relevance to the user and coverage among
all the items. In this setting, one or more advertising agencies may require that their products are
well represented in the set S. The above two problems, as well as many subset selection problems
with fairness or other representativeness considerations [13, 35], can be formulated as a multi-
objective optimization problem of maximizing a monotone submodular utility function f and a set
of d monotone submodular representativeness functions g1, . . . , gd, all defined on the same ground
set V , subject to a knapsack constraint k:

argmax
S⊆V : c(S)≤k

(
f(S), g1(S), . . . , gd(S)

)
.

We call this problem Submodular Maximization with Fair Representation (SMFR) since it captures
the case where the submodular utility function is maximized while all the submodular representa-
tiveness functions are also maximized to avoid under-representing any of them.

Our Contributions. To the best of our knowledge, SMFR is a novel optimization problem, never
addressed before (see Appendix A for a detailed discussion of the problems relevant to SMFR and
their differences from SMFR). It is easy to see that SMFR is at least as hard as SMK, which
cannot be approximated within a factor better than 1− 1/e unless P = NP [10]. However, SMFR
is much more challenging than SMK due to its multi-objective nature. By providing a simple
counterexample, we show that there might not exist any single solution to an instance of SMFR
that achieves an approximation factor greater than 0 to maximize f and g1, . . . , gd simultaneously,
even for a special case of d = 1. As such, we consider approaching SMFR by Pareto optimization.
Specifically, we call a set S an (α, β)-approximate solution for an instance of SMFR if c(S) ≤ k,
f(S) ≥ αOPTf , where OPTf = maxS′⊆V :c(S′)≤k f(S

′), and gi(S) ≥ βOPTgi for all i = 1, . . . , d,
where OPTgi = maxS′⊆V :c(S′)≤k gi(S

′). An (α, β)-approximate solution S is Pareto optimal if
there does not exist any (α′, β′)-approximate solution for any α′ ≥ α, β′ ≥ β (and at least one
is strictly larger). Since computing any Pareto optimal solution to SMFR is still NP-hard, we
propose an efficient algorithm to find a set of solutions to approximate the Pareto frontier consisting
of all Pareto optimal solutions. Our algorithm first uses any existing algorithm for SMK [5, 15,
27, 28, 37] to approximate OPTf and each OPTgi . Based on the approximations, it transforms an
instance of SMFR into multiple instances of the submodular cover problem with different weights
on OPTf and each OPTgi to represent the trade-offs between f and each gi. Subsequently, it calls
the celebrated greedy algorithm [36] to obtain an approximate solution for each submodular cover

2



SUBMODULAR MAXIMIZATION WITH FAIR REPRESENTATION

instance. Finally, all the above-computed solutions that are not “dominated”1 by any other solution
are returned as the set S of at most O(1ε ) approximate solutions to SMFR for any ε ∈ (0, 1). When
using a δ-approximation algorithm, where δ ∈ (0, 1 − 1/e], for SMK, our algorithm provides a
set S such that for any (α, β)-approximate Pareto optimal solution of SMFR, there must exist a
corresponding (δα− ε, δβ − ε)-approximate solution of cost O(k log d

ε ) in S.

Paper Organization. The rest of this paper is organized as follows. We introduce the basic concepts
and problem formulation in Section 2. Then, our algorithmic framework is presented in Section 3.
Finally, we conclude the paper and discuss future work in Section 4. Further discussions on related
work and theoretical analysis of proposed algorithms are deferred to Appendices A and B due to
space limitations.

2. Preliminaries

Given a positive integer n, we use [n] to denote the set of integers {1, . . . , n}. Let V be a ground
set of n items indexed by [n]. We define a set function f : 2V → R to measure the utility f(S) of
any set S ⊆ V . We consider that f is normalized, i.e., f(∅) = 0, monotone, i.e., f(S) ≤ f(T ) for
any S ⊆ T ⊆ V , and submodular, f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ) for any S ⊆ T ⊆ V
and v ∈ V \ T . We then define a set of d normalized, monotone, and submodular set functions
g1, . . . , gd on the same ground set V , each measure the representativeness gi(S) of a set S ⊆ V
with respect to a given criterion depending on the specific application. We assume that the value of
f(S) or gi(S) for any S ⊆ V is given by an oracle in O(1) time.

In this work, we focus on maximizing a submodular function f and each gi subject to a knapsack
constraint (SMK). Let us define the cost function c : V → R+ to assign each item v ∈ V with a
positive real number c(v). The cost c(S) of a set S ⊆ V is then defined as the sum of costs for all
individual items in S, i.e., c(S) =

∑
v∈S c(v). For a given budget k ∈ R+, the set Ik of all feasible

solutions that satisfy the knapsack constraint k contains all subsets of V with costs at most k, i.e.,

Ik = {S ⊆ V : c(S) ≤ k}.

Accordingly, the problem SMK in f is indicated as S∗
f = argmaxS∈Ik f(S) with the optimal

function value OPTf = f(S∗
f ). In addition to maximize f , we consider that each function gi

for i ∈ [d] should also be maximized to ensure a fair representation, which is denoted as S∗
gi =

argmaxS∈Ik gi(S) with OPTgi = gi(S
∗
gi). Based on the above notions, our main problem, referred

to as Submodular Maximization with Fair Representation (SMFR), is formulated as the following
multi-objective maximization problem:

argmax
S∈Ik

(
f(S), g1(S), . . . , gd(S)

)
.

Since SMK is NP-hard and cannot be approximated within a factor 1− 1/e+ ε in polynomial
time for any ε > 0 unless P = NP [10], the problem of maximizing f or each gi individually
can only be solved approximately. Furthermore, we provide a trivial example to indicate that the
objectives of maximizing f and each gi might conflict with each other, and there might not exist
any S ∈ Ik with approximation factors greater than 0 for both of them, even when d = 1.

1. A solution S will be dominated by another solution T if the approximation factors α, β of S are both no greater than
those of T and at least one is strictly smaller.
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Example 1 Suppose that d = 1, k = 1, and c(v) = 1 for any v ∈ V . For the two functions f and
g1, we have OPTf = f({v0}) = 1, OPTg1 = g1({v1}) = 1, and f({vj}) = g1({vj}) = 0 for any
j > 1. In the above SMFR instance, there is no set S ∈ Ik with f(S) > 0 and g1(S) > 0.

Thus, we introduce a well-known concept for multi-objective optimization, Pareto optimization
[22, 26], which provides more than one solution with different (best possible) trade-offs between
multiple objectives, in SMFR. We call a set S ∈ Ik an (α, β)-approximate solution for an instance
of SMFR if f(S) ≥ αOPTf and gi(S) ≥ βOPTgi for each i ∈ [d]. An (α, β)-approximate solution
S is Pareto optimal if there does not exist any (α′, β′)-approximate solution for α′ ≥ α and β′ ≥ β
(and at least one is strictly larger). Ideally, by enumerating all distinct Pareto optimal solutions
(called the Pareto frontier), one can obtain all different optimal trade-offs between maximizing f
and each gi. However, computing any Pareto optimal solution is still NP-hard. To circumvent the
barrier, a feasible approach to SMFR is to find a set S of approximate solutions, where for any
Pareto optimal solution, at least one solution close to it is included, as shown in Section 3.

3. Our Algorithm: SMFR-SATURATE

To find approximate solutions to an instance of SMFR, we propose to transform it into a series
of instances of its corresponding decision problems, that is, to determine whether there exists any
(α, β)-approximate solution for it, and then introduce the SATURATE framework first proposed in
[13] to approximately solve each instance of the decision problem as Budgeted Submodular Cover
(BSC), that is, the problem of finding a set S∗

c with the minimum cost such that f(S∗
c ) ≥ l for some

l ∈ R+. We now formally define the decision problem and analyze why the transformation follows.

Definition 1 (SMFR-DEC) Given an instance of SMFR and two approximation factors α, β ∈
[0, 1], find a set S ∈ Ik such that f(S) ≥ αOPTf and gi(S) ≥ βOPTgi for each i ∈ [d], or decide
that such a set does not exist.

Assuming that OPTf and each OPTgi are known, the above conditions can be equivalently expressed
as f(S)

αOPTf
≥ 1 and gi(S)

βOPTgi
≥ 1. Then, using the truncation technique in [13], SMFR-DEC is con-

verted to decide whether the objective value of the following problem is d+ 1:

max
S∈Ik

Fα,β(S) := min
{
1,

f(S)

αOPTf

}
+

d∑
i=1

min
{
1,

gi(S)

βOPTgi

}
. (1)

This conversion holds because Fα(S) = d + 1 if and only if f(S) ≥ αOPTf and gi(S) ≥
βOPTgi , ∀i ∈ [d]. In addition, Fα,β is a normalized, monotone, and submodular function be-
cause the minimum of a positive real number and a monotone submodular function is monotone
and submodular [13], and the nonnegative linear combination of monotone submodular functions is
monotone and submodular [11]. As such, SMFR-DEC is transformed to BSC on Fα,β .

Since computing OPTf and OPTgi is NP-hard, we should use any existing algorithm for SMK
[5, 15, 27, 28, 37] to compute their approximations. Suppose that any δ-approximation algorithm for
SMK, where δ ∈ (0, 1−1/e], is used and OPT′f ∈ [δOPTf , OPTf ] and OPT′gi ∈ [δOPTgi , OPTgi ], ∀i ∈
[d] are obtained accordingly. The problem in Eq. 1 is thus relaxed as follows:

max
S∈Ik

F ′
α,β(S) := min

{
1,

f(S)

αOPT′f

}
+

d∑
i=1

min
{
1,

gi(S)

βOPT′gi

}
.2 (2)

2. When α = 0, the first term of F ′
α,β is replaced with 1; when β = 0, the second term of F ′

α,β is replaced with d.
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Algorithm 1: SMFR-SATURATE

Input: (Normalized, monotone, and submodular) set functions f, g1, . . . , gd : 2V → R, cost function c :
V → R+, budget k ∈ R+, error parameter ε ∈ (0, 1)

Result: A set S of approximate solutions to SMFR
Initialize S ← ∅ and run an SMK algorithm on f, g1, . . . , gd and k to compute OPT′f , OPT

′
g1 , . . . , OPT

′
gd

;
for β ← 0; β ≤ 1; β ← β + ε

2 do
Initialize αmax ← 1, αmin ← 0;
while αmax − αmin > ε

2 do
Set α← (αmax + αmin)/2 and define F ′

α,β(S) according to Eq. 2;
Initialize S ← ∅;
while ∃v ∈ V \ S such that c(S ∪ {v}) ≤ k(1 + ln 2d+2

ε ) do
I ← {v ∈ V : c(S ∪ {v}) ≤ k(1 + ln 2d+2

ε )};
v∗ ← argmaxv∈I

(
F ′
α,β(S ∪ {v})− F ′

α,β(S)
)
/c(v) and S ← S ∪ {v∗};

end
if F ′

α,β(S) ≥ d+ 1− ε
2 then

αmin ← α and Sα,β ← S;
else

αmax ← α;
end

end
Add Sαmin,β to S and remove all Sα′,β′ with α′ ≤ αmin and β′ < β from S;

end
return S;

Next, the following lemma indicates that SMFR-DEC can still be answered approximately by solv-
ing the relaxed problem in Eq. 2.

Lemma 2 If F ′
α,β(S) ≥ d+ 1− ε

2 for any set S ∈ Ik, then S is a (δα− ε
2 , δβ −

ε
2)-approximate

solution to SMFR. If there is no set S ∈ Ik with F ′
α,β(S) = d + 1, then there is no (α, β)-

approximate solution to SMFR.

Based on Lemma 2, we propose SMFR-SATURATE in Algorithm 1. We first run an SMK
algorithm on each objective function individually with the same knapsack constraint k to compute
OPT′f , OPT

′
g1 , . . . , OPT

′
gd

. Then, we iterates over each value of β from 0 to 1 with a step of ε
2 . For

each value of β, we perform a bisection search on α between 0 and 1. Given a pair of α and β,
we formulate an instance of BSC on F ′

α,β in Eq. 2 and run the cost-effective greedy algorithm,
which starts from S = ∅ and adds the most “cost-effective” item v∗ with the largest ratio between
its marginal gain w.r.t. S and cost until no more item can be added with the knapsack constraint
k(1 + ln 2d+2

ε ), to find a candidate solution S. Next, if F ′
α,β(S) ≥ d+ 1− ε

2 , that is, S reaches the
“saturation level” w.r.t. α, β according to Lemma 2, we set S as the current solution Sα,β and search
in the upper half for a better solution with a higher value of α; otherwise, we search in the lower
half for a feasible solution. When αmax − αmin ≤ ε

2 , we add the solution Sαmin,β to S, remove
all solutions dominated by Sαmin,β , and move on to the next value of β. Finally, all non-dominated
solutions in S are returned for SMFR.

Theorem 3 SMFR-SATURATE runs in O(dt(A) + n2

ε log 1
ε ) time, where t(A) is the time com-

plexity of the SMK algorithm, and provides a set S of solutions with the following properties:

5



SUBMODULAR MAXIMIZATION WITH FAIR REPRESENTATION

(1) |S| = O(1ε ), (2) c(S) = O(k log d
ε ) for each S ∈ S, (3) for each (α∗, β∗)-approximate

Pareto optimal solution S∗ to SMFR, there must exist its corresponding solution S ∈ S such
that f(S) ≥ (δα∗ − ε)OPTf and gi(S) ≥ (δβ∗ − ε)OPTgi ,∀i ∈ [d].

We defer the proofs to Appendix B due to space limitations.

4. Conclusion and Discussion

In this paper, we study a novel multi-objective combinatorial optimization problem called Submodu-
lar Maximization with Fair Representation (SMFR), which aims to select subsets of bounded costs
from a ground set such that a submodular (utility) function f is maximized while d submodular (rep-
resentativeness) functions g1, . . . , gd are also maximized. We show the hardness of finding optimal
solutions to SMFR and propose a Pareto optimization approach that enumerated a set of approxi-
mate solutions to all Pareto optimal solutions with different trade-offs between multiple objectives
for SMFR. In future work, we will showcase the applications of SMFR in real-world problems. In
addition, we would like to extend SMFR to other classes of constraints, e.g., matroid and p-system
constraints. Finally, it would also be interesting to consider non-monotone submodular functions
and weakly submodular functions to capture more general cases of subset selection.
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Appendix A. Related Work

There have been extensive studies on submodular maximization with knapsack constraints (SMK).
For cardinality constraints, a special case of knapsack constraints with uniform costs, Nemhauser
et al. [20] proposed a simple greedy algorithm that runs in O(kn) time and yields the best possible
approximation factor 1 − 1/e unless P = NP . However, the greedy algorithm can be arbitrarily
bad for general knapsack constraints. Sviridenko [27] first proposed a greedy algorithm with par-
tial enumerations that achieves the best possible approximation 1 − 1/e for SMK in O(n5) time.
Kulik et al. [14] and Feldman et al. [5] improved the time complexity to O(n4) while keeping the
same approximation factor. Krause and Guestrin [12] proposed an O(n2)-time 1

2(1 −
1
e ) ≈ 0.316-

approximation cost-effective greedy algorithm for SMK. Tang et al. [28], Kulik et al. [14], and Feld-
man et al. [5] improved the approximation factor of cost-effective greedy to 0.405, [0.427, 0.4295],
and [0.427, 0.462] independently. Ene and Nguyen [4] proposed a (1−1/e−ε)-approximation algo-
rithm for SMK running in O(n log2 n(1/ε)1/ε

4
) time based on multilinear relaxation. Yaroslavtsev

et al. [37] proposed a 1
2 -approximation Greedy+Max algorithm for SMK in O(n2) time. Feldman

et al. [5] further provided an approximation factor of 0.6174 in O(n3) time by enumerating each
single item as a partial solution and running Greedy+Max on each partial solution. Li et al. [15]
recently proposed a (12 − ε)-approximation algorithm for SMK in O(nε log

1
ε ) time. Although the

9
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above algorithms cannot be directly applied to SMFR, any of them can serve as a subroutine in our
algorithmic framework for SMFR.

There also exist several variants of submodular maximization problems to deal with more than
one objective. The problem of maximizing the minimum of d > 1 submodular functions g1, . . . , gd
was considered in [1, 13, 30, 33]. This problem differs from SMFR because it does not consider
maximizing f and returns only a single solution. Nevertheless, we draw inspiration from the SATU-
RATE framework used in these methods to solve SMFR. Another two relevant problems to SMFR
are Submodular Maximization under Submodular Cover (SMSC) [21], which maximizes one sub-
modular function subject to the value of the other submodular function not being below a threshold,
and Balancing utility and fairness in Submodular Maximization (BSM) [35], which maximizes a
submodular utility function subject to that a fairness function in form of the minimum of d > 1
submodular functions is approximately maximized. SMSC and BSM differ from SMFR in three
aspects: (i) they still return a single solution to optimize a user-specified trade-off between multiple
objectives; (ii) they are specific to cardinality constraints; (iii) SMSC is limited to d = 1, while
BSM requires that all objective functions are decomposable. Thus, SMFR can work in more gen-
eral scenarios than SMSC and BSM. Due to the above differences, the algorithms for SMSC and
BSM cannot be used for SMFR. The problem of regret-ratio minimization [6, 26, 34] for multi-
objective submodular maximization is similar to SMFR in the sense that they also aim to find a set
of approximate solutions for different trade-offs between multiple objectives. However, they con-
sider denoting the trade-offs as different non-negative linear combinations of multiple submodular
functions, but cannot guarantee any approximation for each objective individually. Several subset
selection problems, e.g., [22–25], utilize a Pareto optimization method by transforming a single-
objective problem into a bi-objective problem and then solving the bi-objective problem to obtain a
solution to the original problem. Those problems are interesting but orthogonal to our work.

Appendix B. Proofs of Lemmas and Theorems

B.1. Proof of Lemma 2

Lemma 2 If F ′
α,β(S) ≥ d+ 1− ε

2 for any set S ∈ Ik, then S is a (δα − ε
2 , δβ −

ε
2)-approximate

solution to SMFR. If there is no set S ∈ Ik with F ′
α,β(S) = d + 1, then there is no (α, β)-

approximate solution to SMFR.

Proof For the proof of the first statement, we first consider the two special cases of α = 0 and
β = 0. When α = 0 or β = 0, if F ′

α,β(S) > d + 1 − ε
2 , we will have gi(S)

βOPT′gi
> 1 − ε

2 for every

i ∈ [d] or f(S)
αOPT′f

> 1 − ε
2 . In the general case of α, β > 0, if F ′

α,β(S) > d + 1 − ε
2 , we will have

f(S)
αOPT′f

> 1− ε
2 and gi(S)

βOPT′gi
> 1− ε

2 for every i ∈ [d] at the same time. Thus, it holds that

f(S) ≥ (1− ε

2
)αOPT′f ≥ δα(1− ε

2
)OPTf ≥ (δα− ε

2
)OPTf

and
gi(S) ≥ (1− ε

2
)βOPT′gi ≥ δβ(1− ε

2
)OPTgi ≥ (δβ − ε

2
)OPTgi , ∀i ∈ [d].

Therefore, S is a (δα− ε
2 , δβ −

ε
2)-approximate solution to SMFR.

10
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For the proof of the second statement, if F ′
α,β(S) < d+ 1, then we will have f(S) < αOPT′f ≤

αOPTf or there is some i ∈ [d] with gi(S) < βOPT′gi ≤ βOPTgi . Therefore, if F ′
α,β(S) < d + 1, S

will not be an (α, β)-approximate solution to SMFR. Accordingly, if there is no set S ∈ Ik with
F ′
α,β(S) = d+ 1, then there does not exist any (α, β)-approximate solution to SMFR.

B.2. Proof of Theorem 3

Theorem 3 SMFR-SATURATE runs in O(dt(A) + n2

ε log 1
ε ) time, where t(A) is the time com-

plexity of the SMK algorithm, and provides a set S of solutions with the following properties:
(1) |S| = O(1ε ), (2) c(S) = O(k log d

ε ) for each S ∈ S, (3) for each (α∗, β∗)-approximate
Pareto optimal solution S∗ to SMFR, there must exist its corresponding solution S ∈ S such
that f(S) ≥ (δα∗ − ε)OPTf and gi(S) ≥ (δβ∗ − ε)OPTgi ,∀i ∈ [d].

Proof Let us first analyze the time complexity of SMFR-SATURATE. First, it runs the SMK algo-
rithm d + 1 times to compute OPT′f and OPT′gi for every i ∈ [d]. Then, it iterates over ⌈2ε⌉ values
of β in the for loop. For each value of β, it attempts to use O(log 1

ε ) different values of α in the
bisection search. Finally, the cost-effective greedy algorithm takes O(n2) time for BSC on each
F ′
α,β . In summary, the time complexity of SMFR-SATURATE is O(dt(A) + n2

ε log 1
ε ) time, where

t(A) is the time complexity of the SMK algorithm.
For the solution S of SMFR-SATURATE, it is easy to see that |S| ≤ ⌈2ε⌉ and thus |S| = O(1ε )

because SMFR-SATURATE adds at most one set to S for each value of β. Then, due to the condition
in the inner while loop of Algorithm 1, it must hold that c(S) ≤ k(1 + ln 2d+2

ε ) and thus c(S) =
O(k log d

ε ) for each S ∈ S. Finally, given an (α∗, β∗)-approximate Pareto optimal solution S∗, there
must exist a value of β in the for loop such that 0 ≤ β∗ − β ≤ ε

2 . Let Sαmin,β be the solution of
SMFR-SATURATE w.r.t. such β and its corresponding αmin. Since F ′

αmin,β
(Sαmin,β) ≥ d+1− ε

2 ,
Sαmin,β is a (δαmin − ε

2 , δβ −
ε
2)-approximate solution according to Lemma 2. Furthermore, we

have F ′
αmax,β

(Sgr) < d+ 1− ε
2 , where Sgr is the solution w.r.t. F ′

αmax,β
with knapsack constraint

k(1+ ln 2d+2
ε ) returned by the cost-effective greedy procedure in Algorithm 1, and αmax−αmin <

ε
2 . Suppose that S′

gr is the first intermediate subset of Sgr with c(S′
gr) ≥ k ln 2d+2

ε constructed
using the cost-effective greedy procedure. Let S∗

k = argmaxS∈Ik F
′
αmax,β

(S) and OPTF ′
αmax,β

=

F ′
αmax,β

(S∗
k). According to the monotonicity and submodularity of F ′

αmax,β
,

F ′
αmax,β(S

∗
k) ≤ F ′

αmax,β(S
(i)
gr )+

∑
v∈S∗

k\S
(i)
gr

∆(v|S(i)
gr ) = F ′

αmax,β(S
(i)
gr )+

∑
v∈S∗

k\S
(i)
gr

c(v) ·∆(v|S(i)
gr )

c(v)
,

for any S
(i)
gr ⊂ S′

gr after i iterations and ∆(v|S(i)
gr ) = F ′

αmax,β
(S

(i)
gr ∪ {v})− F ′

αmax,β
(S

(i)
gr ). Let u∗i

be the i-th item added to S′
gr for any i = 1, . . . , |S′

gr|. Based on the cost-effective greedy selection
in Algorithm 1,

∆(u∗i+1|S
(i)
gr )

c(u∗i+1)
≥ ∆(v|S(i)

gr )

c(v)

for any v ∈ S∗
k \ S

(i)
gr and i ∈ [0, . . . , |S′

gr − 1|] because c(v) ≤ k for any v ∈ S∗
k and thus no

item from S∗
k is excluded from consideration due to budget violation when u∗i+1 is added to S

(i)
gr .

11



SUBMODULAR MAXIMIZATION WITH FAIR REPRESENTATION

Therefore, we further obtain

F ′
αmax,β(S

∗
k) ≤ F ′

αmax,β(S
(i)
gr ) +

∆(u∗i+1|S
(i)
gr )

c(u∗i+1)

∑
v∈S∗

k\S
(i)
gr

c(v) ≤ F ′
αmax,β(S

(i)
gr ) +

∆(u∗i+1|S
(i)
gr )

c(u∗i+1)
· k,

After rearranging the inequality above, we have

F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
(i+1)
gr ) ≤

(
1−

c(u∗i+1)

k

)(
F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
(i)
gr )

)
.

Moreover, since 1− x ≤ e−x for any x > 0, it holds that 1− c(u∗
i+1)

k ≤ exp(− c(u∗
i+1)

k ). Therefore,

F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
(i+1)
gr ) ≤ exp(−

c(u∗i+1)

k
) ·

(
F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
(i)
gr )

)
. (3)

By applying Eq. 3 recursively for i = 0, . . . |S′
gr| − 1, we have

F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
′
gr) ≤ exp(−

c(u∗i+1)

k
) ·

(
F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
(i)
gr )

)
≤ exp(−

c(u∗i+1)

k
) exp(−c(u∗i )

k
)
(
F ′
αmax,β(S

∗
k)− F ′

αmax,β(S
(i−1)
gr )

)
≤ . . . . . . ≤ exp(−

∑|S′
gr|−1

i=0 c(u∗i+1)

k
)F ′

αmax,β(S
∗
k)

= exp(−
c(S′

gr)

k
)F ′

αmax,β(S
∗
k) = exp(−

c(S′
gr)

k
)OPTF ′

αmax,β
.

Since c(S′
gr) ≥ k ln 2d+2

ε , it holds that

F ′
αmax,β(S

′
gr) ≥ (1− exp

(
−

c(S′
gr)

k
)
)
OPTF ′

αmax,β
≥ (1− ε

2d+ 2
)OPTF ′

αmax,β
.

In addition, F ′
αmax,β

(Sgr) ≥ F ′
αmax,β

(S′
gr) since S′

gr ⊆ Sgr. Therefore, we have OPTF ′
αmax,β

<

d + 1 and, according to Lemma 2, there does not exist any (αmax, β)-approximate solution of
cost at most k. Since S∗ is an (α∗, β∗)-approximate Pareto optimal solution and β ≤ β∗, S∗

must be an (α∗, β)-approximate solution of cost at most k. As such, we obtain αmax > α∗ and
αmin > α∗ − ε

2 . Because we have shown that Sαmin,β is a (δαmin − ε
2 , δβ −

ε
2)-approximate

solution, Sαmin,β is guaranteed to be a (δα∗ − ε, δβ∗ − ε)-approximate solution. If Sαmin,β is
included in S , we will conclude the proof directly; otherwise, the solution in S dominating Sαmin,β

can confirm our conclusion.
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