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Abstract
Some supervised learning problems can require predicting a probability distribution over more than
one possible (set of) answer(s). In such cases, a major scaling issue is the amount of labels needed
since, compared to their single- or multi-label counterparts, distributional labels are typically (1)
harder to learn and (2) more expensive to obtain for training and testing. In this paper, we explore
the use of active learning to alleviate this bottleneck. We progressively train a label distribution
learning model by selectively labeling data and, achieving the minimum error rate with fifty percent
fewer data items than non-active learning strategies. Our experiments show that certainty-based
query strategies outperform uncertainty-based ones on the label distribution learning problems we
study.

1. Introduction

Label Distribution learning (LDL) [5] is a process that seeks to train a model to learn a series of
probability distributions. For integers k, n, and c and set of data items X = {x1, ..., xn} ∈ Rn×k,
the goal of LDL is to solve

argmin
θ
{L(y1, . . . , yn, p(·|x1; θ), . . . , p(·|xn; θ))}, (1)

where L is a loss function and, for each i ∈ {1, . . . , n}, p(·|xi; θ) is a conditional probability
function from a family parameterized by θ ∈ Θ over a set of labels {1, . . . , c}, and yi = p(·|xi) is
the ground truth label distribution over {1, . . . , c}.

Unlike traditional machine learning problems, which use probability distributions to model la-
bels, these distributions typically represent uncertainty about what the true label(s) may be. In
LDL, the distributions themselves are the ground truth (about which the model may be uncertain).
However, obtaining enough labeled data can be expensive, even when conventional (i.e., nondis-
tributional) label prediction is the goal. And compared to their single- or multi-label counterparts,
distributional labels are typically harder to learn and thus require even more labels.

In instances where data is abundant but labels are scarce or expensive to obtain, the semi-
supervised optimization process of Active Learning has been applied to sample and label training
examples as the model trains for image data[6–8], natural language problems [10, 11], and as an
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optimization technique for LDL [2, 3]. It is based on the idea that data items have different train-
ing utilities at different points in the learning process. For example, early in the training cycle some
items may be more informative to the learning algorithm than others, resulting in faster convergence
if these items are in the training set. Active learning posits that these more informative items can be
discovered via a query strategy, which works in conjunction with a learning models, or kernels.

This paper addresses the following research questions:

RQ1. Which active learning query strategies are best suited for label distribution learning?

RQ2. How does the use of different active learning kernels affect the learning strategies?

To answer these questions, we consider 6 different (un)certainty-based query strategies, compare
and contrast the performance of each in an active learning loop that uses one of two algorithms
as a learning kernel: one previously designed Geng [5] for LDL for non-active learning and the
other a purpose-built multi-layer perceptron. We test each query strategy/learning kernel on 9 label
distribution benchmark data sets, and 2 distribution based datasets.

2. Methods

2.1. Data

We obtained from Geng’s website1 datasets with probability distributions as labels. Each of the
nine datasets represents a particular experiment at with the yeast Saccharomyces cerevisiae. Each
set contains a total of 2465 items x1, . . . , xn, where each item is a single gene, represented as
a 24-dimension feature vector, and a corresponding collection of ground truth label distributions
y1 . . . , yn, where varies by experiment. Each label dimension represents a point in time and the
label distribution represents the relative degree to which a gene is expressed in each time period
[4]. Thus, for this datasets, the interpretation of the label distributions is strictly frequentist, as the
distributions in no way represent belief. We also evaluate our data against a dataset of from natu-
ral scenes [13]. Each sample is a histogram of features with 294 features to predict a distribution
of 9 labels. We use 1250 items for the pool of unlabeled data P1 (of course, we do have their
ground truth labels, but in order to simulate active learning we pretend that they are known only to
the labeling oracleO), 138 items for the seed set T1, 345 items for testing, and 740 for development.

2.2. Evaluation strategies

To address RQ1, we consider a variety of query strategies q. As our baseline, we consider a random
strategy, which simply samples p random data items from Pt.

The simplest variant of uncertainty sampling is least-confidence sampling:

x = argmax
x

1 − Pθt(ŷ|x) (2)

where ŷ = p(·|x, θt) is the probability distribution predicted by model Mθt , and Pθt(ŷ|x) is a
measure of the confidence in this choice. This strategy considers only the most probable label from
every predicted distribution ŷi and queries the data item with least value for its most probable label.

1. http://cse.seu.edu.cn/PersonalPage/xgeng/LDL/index.htm
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Min-margin sampling considers the first and second most probable labels for each data item,
computes the margin (difference) between them, and picks the item with the smallest margin:

x = argmin
x

Pθt(ŷ1|x) − Pθt(ŷ2|x), (3)

where ŷ1 and ŷ2 are the first and second most probable labels, respectively.
A more general uncertainty sampling strategy which considers all class labels in the output

probability distribution is entropy sampling, more specifically maximum entropy sampling:

x = argmax
x

−
c∑

j=1

Pθt(yj |x) logPθt(yj |x). (4)

In contrast to uncertainty sampling, certainty sampling selects the data items about which the
current trained model Mθi is most certain. Strategies most-confidence, max-margin, and min-
entropy are derived from equations 2–4, respectively, by swapping argmax and argmin.

2.3. Learning kernels

We consider two learning kernels. The first (BP) is the multilayer perceptron with backpropagation
described in Section 3. The second (BFGS) is based on Geng [5]. It uses a maximum entropy
model and Broyden–Fletcher–Goldfarb–Shanno Wright and Nocedal [12] optimization to solve the
following likelihood problem.

L(X, θ) =
∑
i

exp(
∑

k θy,k gk(xi)) gk(xi)∑
j exp(

∑
k θy,k gk(xi))

−
∑
i

yij gk(xi) (5)

Here, θj,k is an element in θ, which is a weight matrix of dimensions c × k and gk(xi) returns the
kth feature of xi. The trained model is thus

p(y|x; θ) = 1

Z
exp(

∑
k

θy,k gk(x)), (6)

where Z is the normalization term
∑

y exp(
∑

k θy,k gk(x)).

2.4. Procedure

In separate trials, we perform active learning using each of the seven query strategies q described
in Section 2.2, i.e, random selection, plus the certainty and uncertainty measures, to each of these
datasets. For each round t, we select p = 3 items xt1 , xt2 , xt3 from Pt according to the predictive
modelMθt trained on the current set of labeled data Tt and q (and ignoring the ground truth labels
yi that came with the dataset). We simulate oracle queries by replacing the label estimates from
Mθt with the ground truth label distributions yt1 , yt2 , yt3 .

To address RQ1, we compare the performances of each of the query strategies by comparing the
ground truth label distributions with those predicted by each BFGS modelM(θt). Following Geng
[5] and Cha [1] we used Kullback-Leibler (KL) divergence [9], and Chebyshev distance.
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KL Divergence cdc cold diau dtt elu heat spo spo5 spoem
Random 7.74± 0.4153 16.9651± 1.2944 19.2977± 1.5442 7.416± 0.5843 6.7995± 0.3458 15.9199± 1.005 34.3738± 2.7863 50.4735± 5.6015 39.1161± 4.2505

Max Entropy 8.5894± 0.4661 18.752± 1.5519 23.9989± 2.2937 9.7604± 0.9095 7.5148± 0.3801 20.174± 1.3142 54.5264± 7.4844 68.6491± 8.0387 58.0959± 8.0252

Min Margin 8.3429± 0.4168 16.6227± 1.3898 18.9023± 1.4547 8.8441± 0.7318 6.8131± 0.3476 17.7868± 1.1109 46.6425± 4.045 59.3369± 6.781 75.527± 12.0989

Least Confident 8.5396± 0.4368 21.63± 1.8809 25.9292± 2.314 8.3941± 0.6139 7.8678± 0.3861 21.6111± 1.7544 60.3035± 6.6798 78.0245± 13.0412 63.3094± 10.9939

Min Entropy 7.4194± 0.4045 17.6975± 1.5788 16.7083± 1.1846 7.2283± 0.5996 6.6228± 0.3394 14.7676± 0.8449 32.8759± 2.2884 44.6456± 4.9838 38.6297± 4.5318

Max Margin 7.9085± 0.4072 15.4389± 1.2317 17.3011± 1.2825 7.0337± 0.5405 6.6423± 0.3374 15.7999± 0.9404 36.457± 4.7362 38.4463± 3.2941 32.8868± 3.9536

Most Confident 7.3523± 0.4216 15.3118± 1.1745 17.0514± 1.14 6.7255± 0.5315 6.7289± 0.3322 14.2484± 0.8064 35.7975± 2.6431 37.1758± 3.2184 34.8506± 4.4048

Table 1: KL Divergence (X ·103) for each query strategy with Multilayer Perceptron as the learning
kernel on different datasets after an additional 625 data items have been labeled (52 training itera-
tions with 24 items learned per iteration).

KL Divergence cdc cold diau dtt elu heat spo spo5 spoem
Random 7.1845± 0.4069 13.7043± 1.1953 14.464± 0.9623 5.9848± 0.4968 6.2958± 0.3207 13.2299± 0.7607 25.5691± 1.6216 30.0843± 2.4449 25.2061± 2.5839

Max Entropy 7.8507± 0.4303 15.0741± 1.3206 15.0347± 1.0066 6.8314± 0.5413 6.9403± 0.3436 14.9128± 0.934 26.9083± 1.7541 35.7583± 2.8943 27.6666± 2.806

Min Margin 7.1892± 0.4042 13.5698± 1.1803 14.7971± 1.0016 5.9913± 0.4924 6.3859± 0.3223 13.37± 0.7528 26.6803± 1.7192 31.1693± 2.4599 27.6666± 2.806

Least Confident 7.7155± 0.4257 13.7095± 1.1783 14.9207± 0.9703 6.6705± 0.5267 6.801± 0.3426 14.7509± 0.9102 27.1759± 1.7709 33.7974± 2.7318 27.6666± 2.806

Min Entropy 7.1265± 0.4049 13.8187± 1.2006 14.1918± 0.9293 6.0146± 0.512 6.212± 0.3169 13.0141± 0.7429 25.482± 1.6521 29.8538± 2.4533 25.0856± 2.542

Max Margin 7.1955± 0.4048 13.9401± 1.1996 14.3974± 0.9313 5.976± 0.5048 6.2504± 0.3186 13.0708± 0.7552 25.7807± 1.6722 30.1339± 2.4864 25.0856± 2.542

Most Confident 7.1416± 0.4057 13.8523± 1.1872 14.1649± 0.9219 6.0104± 0.5105 6.2158± 0.3162 12.9624± 0.7459 25.6142± 1.6515 30.1364± 2.4661 25.0856± 2.542

Table 2: KL Divergence (X · 103) for each query strategy with BFGS as the learning kernel on
different datasets after an additional 625 data items have been labeled (52 training iterations with
24 items learned per iteration).

3. Experiments

We introduce a multi-layer perceptron (MLP), with a (softmax) activation function on the output
layer and two hidden layers (24 nodes in the first layer, 60 nodes in the second layer) with hyperbolic
tangent activation functions as the model we seek to train. We used mean squared error as the loss
function L and backpropagation with stochastic gradient descent optimization to minimize L.

We implemented our active learning pipeline in Python 3.6 with Tensorflow 1.8.0 (see Figure 2
for pseudocode). It learns the LDL modelMθt with a learning kernel K using a small seed set T1
of training data that is labeled by an oracle that provides ground truth label distributions. For each
round t ∈ {1, . . .}, it: (1) selects p items xt1 , . . . , xtp from a large pool Pt of unlabeled data items
according to a query strategy q and label distribution estimates provided byMθt , (2) queries the
oracle about each of the p selected items and (3) adds the items, along with the labels the oracle
provides to Tt, yielding a new training set Tt+1, (4) runs the learning kernel again on Tt+1, yielding
a new modelMθt+1 , and the next round begins.

4. Results

Regarding RQ1, Table 2 shows the KL divergence of each query strategy on each of the datasets
for Mθ165 (||T || = 625), obtaining via LDL active learning with BFGS as the learning kernel.
It demonstrates that most-confidence and min-entropy strategies are consistently among the best
performers, and outperform the baseline random strategy; the max-margin and min-margin strategy
remain close to random sampling. However, least-confidence and max-entropy sampling strategies
do not show any reasonable improvement for LDL, and often underperforms random selection.

A representative sampling of the learning curves (Figure 1) show, first, that Chebyshev distance
and KL divergence are closely related throughout the learning process. Second, although it is closer
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Figure 1: Performance of active learning with BFGS as the learning kernel on the Yeast-diau (left)
and Yeast-heat (right) datasets using the sampling strategies we consider.

some cases than others, uncertainty sampling consistently underperforms random sampling, and
certainty-based strategies work best.

Regarding RQ1, although direct numerical comparisons between LDL and single label learning
are problematic, as they are distinct learning goals, one can at least compare the ranked differences
in the performances of the query strategies. Here, Figure 1 paints a much fuzzier picture, with
all of the learning curves much more tangled, compared to the LDL curves. It does appear that
most confidence sampling again does very well, however, so do min-margin and max-entropy, two
strategies that do not perform well on LDL.

Although uncertainty-based sampling strategies are popular for single- and multi-label learn-
ing, our experiments showed they are not applicable to some LDL problems. In spite of BFGS
being designed for LDL, there may be inductive bias in the maximum entropy model against label
distributions with higher levels of entropy. Indeed, given the quasi-linear nature of maximum en-
tropy models, this seems plausible. Label distributions with higher entropy or lower confidence or
margins exhibit less variance than those of lower entropy or higher confidence or margins, and thus
provide a weaker signal for the learning algorithm to process. This suggests that models that are less
sensitive to “vanishing gradients,” such as hierarchical Bayesian networks, might be a good choice
for purpose-built active LDL. Certainly, such models can represent distributions of distributions,
and can thus properly decouple label distributions from any notion of degree of belief.

Another possibility is simply that there is so much entropy in the ground truth label distribution
of each item that the items whose predicted label distributions have the lowest entropy are the most
likely to be incorrect, and so obtaining their true labels and adding them to the training set results
in the greatest improvement in prediction performance. However, if this were the case, one would
expect that the difference in performance between certainly and uncertainty models would be greater
in the datasets where the ground truth label entropy is greater. However, Table 2 shows the mean
entropy of each set, and there does not appear to be such a correlation.
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5. Conclusion & Future Work

We investigated six active learning strategies applicable to the LDL problem domain. While we were
limited by the number of kernel tested in this study, experimental results indicate that certainty based
active learning strategies can reduce the number of labels required for label distribution learning,
and suggests that an LDL model can be quickly trained by strategically selecting examples with a
certain probability distribution of class labels.
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6. Appendix A

ACTIVELEARNLDLq,O,L (pool of unlabeled data P1,
labeled seed data T1)

1. t← 1.

2. Do until convergence:

(a) θt ← K(Tt), where K is a learning algorithm

(b) xt1 , . . . , xtp ← qθt(Pt), where q is a query strategy

(c) yt1 , . . . , ytp ← O(xt1), . . . ,O(xtp), where O is a ground truth ora-
cle and yt1 , . . . , ytp are label distributions

(d) Tt+1 ← Tt ∪ {(xt1 , yt1), . . . , (xtp , ytp)}
(e) Pt+1 ← Pt \ {xt1 , . . . , xtp}

3. return θt

Figure 2: Pseudocode for the active learning algorithm studied here. It uses var-
ious query strategies to select, usually over a series of Active Learning training
iterations a set training data that maximizes the expected learning outcomes.
Unlike other active learning problems, for LDL, for each data item, the oracle
provides a probability distribution over the labels, rather than a single (set of)
labels.
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