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Abstract
Curriculum learning (CL) aims to increase the performance of a learner on a given task by applying
a specialized learning strategy. This strategy focuses on either the dataset, the task, or the model.
There is little to no work analysing the possibilities to apply CL on the model capacity in natural
language processing. To close this gap, we propose the cup curriculum. In a first phase of training
we use a variation of iterative magnitude pruning to reduce model capacity. These weights are
reintroduced in a second phase, resulting in the model capacity to show a cup-shaped curve over the
training iterations. We empirically evaluate different strategies of the cup curriculum and show that
it outperforms early stopping reliably while exhibiting a high resilience to overfitting.
Keywords: Curriculum Learning, Natural Language Processing, Iterative Magnitude Pruning

Figure 1: (Left) Model capacity throughout training with the cup curriculum. (Right) Relative
performance increase of the best performing cup curriculum strategy observed over the
best performance of 20 early stopping runs per model size. The red line marks early
stopping, the grey line the relative performance increase of the best model found by IMP.

1. Introduction

Curriculum Learning (CL) is a well established learning strategy for state of the art approaches in
multiple areas of supervised learning including image recognition and natural language processing
(NLP) [17, 19, 23]. CL approaches can specify training strategies either for the training data, the
task, or the model capacity, where most popular approaches focus on the training data [19]. Although
the seminal work of Elman [7] stresses the importance of CL for model capacity, this seems not
have been explicitly addressed in literature for NLP so far, especially the reintroduction of capacity.
We therefore in an NLP scenario investigate iterative pruning strategies reducing model capacity
followed by iterative reintroduction of model capacity (see Fig. 1 left). We formally formulate this as
cup curriculum. In experiments we see that this approach can significantly and reliably improve upon
early stopping as well as existing iterative magnitude pruning (IMP) strategies (see Fig. 1 right).
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Related Work It is common knowledge, that children learn exceptionally well. This is, at least
partly, attributed to the large changes in synaptic density in the human brain observed throughout its
development in infancy and adolescence [10]. These changes in synaptic density precisely constitute
CL for model capacity. Therefore, Elman [7] points out the need to apply this variation of CL in
the field of NLP. Bengio et al. [2] introduced CL to computer science but focus on the training data.
Their pioneering work shaped the field of CL in computer science, which largely focuses on the
training data [19]. Few work utilize CL for model capacity such as Morerio et al. [15] and Sinha et al.
[18]. The former achieves it by utilising dropout and progressing the dropout probability of neurons.
The latter gradually reduces noise to impair the model capacity during the training. However, none
of these works are in the field of NLP. The idea of pruning parts of a neural network and introducing
equivalent parts in terms of expressive capacity later in the training procedure was presented by
Prakash et al. [16]. However, they studied this idea for Convolutional Neural Networks (CNN) and
only for a few filters at a time.

Our training strategy requires the reduction of model capacity, which makes a suitable pruning
algorithm paramount. We decided on a variation of layer wise IMP, as proposed by Zhou et al. [24].
This pruning algorithm is very similar to those used in Frankle and Carbin [8] and Lin et al. [11].
We decided to stay closer to the former (see Algorithm 1), as it was applied successfully to the
transformer architecture before [3, 22]. During the second part of our training strategy, the model
capacity is increased. To do so we select the introduction scheme promoted by Prakash et al. [16]
and tailor it for our problem setting (see Algorithm 2).

Contributions To the best of our knowledge this is the first paper providing an analysis of CL for
model capacity in NLP. We formulate a new CL approach for the model capacity, the cup curriculum,
and apply it to the transformer architecture. The cup curriculum is characterized by two sequential
training phases: first, we create a curriculum by reducing the expressiveness of a given model, then
we increase the capacity by reintroducing the weights during training. The transformer architecture
is selected for our analysis due to its importance for the field of NLP [1, 4–6, 20, 21]. In our
hyperparameter search we were able to find promising cup curricula, which are able to reliably
(confidence of 99%) improve over the performance reached by early stopping. Summarizing, we (i)
introduce a model curriculum (Section 3), (ii) diligently test different strategies (Section 4), and (iii)
provide easy to use code (GitHub).

2. Curriculum Learning for Model Capacity

We say a model learns from data with respect to some task if its performance as measured by some
performance measure improves over time [14]. CL for model capacity can be characterized by a
manipulation of model capacity (measured by some capacity measure) during training with the aim
of improving the model’s performance [19].

Problem Formulation Similar to multiple other machine learning approaches, the goal of our
training strategy is the reduction of loss. This naturally coincides with an improvement in the
performance measure used for training, in our case the model’s perplexity per word. Given a task
and dataset, our goal is to find a parametrization ΘCL of a given model architecture, such that it
performs better than the parametrization ΘNo CL retrieved without CL. In contrast to ΘNo CL, ΘCL
may have more, or less, parameters than the initial state Θ0. We use IMP to specify the number of
model parameters available throughout training.
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Curriculum Generation We utilize the iterative nature of IMP to generate a curriculum for the
model capacity. IMP is based on pruning cycles which span a set number of epochs. After the
training in each cycle a pruning criterion is used to prune a percentage of weights individually. By
specifying the number of pruning cycles, training epochs per pruning cycle, and the pruning criterion
we receive a curriculum. Based on the analysis by Zhou et al. [24], we decided to use the magnitude
change c as the pruning criterion (c = ∥wc∥ − ∥wi∥, with current weight wc and initial weight wi).
We utilize our cup curriculum framework to refine the received curriculum.

3. Cup Curriculum

Utilizing IMP and the insights of Prakash et al. [16] about the reduction and reintroduction of model
capacity, we are able to formulate the cup curriculum:

Definition 1: Cup Curriculum Let M be a learner, D a dataset, P a performance measure, C a
capacity measure, and let CM denote the capacity of M according to C. Specify a pruning algorithm,
a number of pruning cycles n, and a number of growth cycles m. For each of those cycles specify
the number of training epochs ei and the resulting model capacity ci, where i ∈ {1, . . . , n+m}. We
also require c1 > c2 > · · · > cn and cn+1 < cn+2 < · · · < cn+m.

Together, the above define a cup curriculum. Training M with it works as follows:

Pruning Phase For i ∈ {1, . . . , n} do:
1. Train M for ei epochs.
2. Prune M , such that CM = ci after completion of the pruning.
3. Optionally, rewind the unpruned parameters of M to an earlier state.

Growth Phase For i ∈ {n+ 1, . . . , n+m} do:
1. Introduce capacity to M , such that CM = ci after completion of the introduction.
2. Train M for ei epochs.

Report Version of M performing best according to P .

Definition 1 specifies a family of curricula for the model capacity. In our experiments we fix D
to WikiText2 [13], P to cross-entropy loss, C to percentage of trainable weights, n and m to 20,
ei to 50 for i ∈ {1, . . . , n +m}, and the pruning algorithm to IMP. Additionally, we decay ci by
20% for i ∈ {1, . . . , n} and set ci = cn+m−i+1 for i ∈ {n+ 1, . . . , n+m}. We evaluate different
rewinding strategies for the pruning phase. The features extracted during this phase are considered to
be essential for the model, as IMP aims to preserve the subspaces of the function space which are
most important in the neural network [8]. Thus, we reintroduce the pruned capacity to the network
based on their pruning order (last in first out) aiming to preserve these very features. We evaluate
different initialization schemes which specify the value of reintroduced weights. Further, we analyze
update schemes for the weight update depending on the introduction time of the weight, as further
measures may be required to preserve important weights.

Overall, we evaluate the effects of the selected rewinding, initialization, and update scheme on
the model performance and generalisation for three different model sizes. All results are compared
to early stopping and among each other.

Model Sizes We consider three different model variations of the transformer differing in total
parameter count. They are referred to as the Small, Medium, and Large model (see Table 3 for the
exact number of attention heads and encoder layers).
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Table 1: All rewinding schemes applied
during the pruning phase.

Rewinding Scheme Rewinding State

Initial Initial State Θ0

Warm Warm-up State Θwarm
Best Best State Θbest, cycle
No No Rewinding done

Table 2: All initialization schemes for
reintroduced weights.

Initialization Scheme Initialization State

Original Initial State Θ0

Random Randomised State Θ̂
Old Pruning State Θlast, cycle
Top Best State Θbest, cycle

Rewinding Schemes We test four different rewinding schemes (see Section 3). The naive Initial
scheme implements the original IMP [8], which rewinds weights repeatedly to their initial state Θ0.
In accordance with other results regarding the training of transformer models [3, 22], we test the
Warm scheme that rewinds weights to a warm-up state Θwarm = Θ3. We select this model state
according to the relative limits given by Frankle et al. [9]. The third scheme Best rewinds to the
weights of the best performing model of the current cycle Θbest, cycle. Lastly, we compare all schemes
to a baseline of no rewinding (No) with a fixed number of 50 iterations.

Initialization Schemes The second training phase of the cup curriculum is based on the work of
Prakash et al. [16], but their findings are not fully applicable to our settings as we prune single weights
instead of entire CNN filters. We thus explore four different initialization schemes (see Section 3).
The Random scheme rewinds the weights by reevaluating the random distribution used to initialize Θ0.
We also tested initialization schemes based on the pruning criterion c employed during the first
training phase (c = ∥wc∥ − ∥wi∥) [24]. The Old scheme reintroduces the current weight wc and
the Original scheme the initial weight wi. Both are motivated through their usage in c. Lastly, the
Top scheme initializes each reintroduced weight with its value in Θbest, cycle, i.e. the model which
performed best during the pruning cycle which pruned the respective weight.

Update Schemes We analyze the effect of three update schemes in the experiments, being the
Freezing, Identical, and Dynamic update scheme. Here the Identical update scheme denotes the
standard backpropagation update. We focus our analysis on it, as it produces the best results. For an
in depth overview of the update schemes analyzed in the experiments see Appendix C (or Table 4).

4. Experiments

We trained a transformer architecture [21] on the WikiText2 dataset [13]. We ran each experiment
with 5 unique seeds, a fixed learning rate scheduler, and started the learning rate at 5.0. The reported
results required 1 080 wall clock GPU (Nvidia Geforce GTX 1080 Ti 11GB) hours.

Performance Figure 2 shows the relative performance difference of all tested curricula to the best
performance of 20 early stopping runs for the Small model size. The best performing strategy is Best
rewinding with Random initialization and Identical updating. It shows a relative performance increase
over early stopping of at least 0.5%. However, we also observe improvements of over 1.5%. Figure 1
(right) shows that these improvements increase the larger the model size becomes, even showing
an improvement of over 2%. Additionally a median relative performance increase of 1% to 1.5%
over the best performance of 5 IMP runs is shown. All of these improvements are obtained reliably
with a confidence of 99% (α = 0.01), as measured by the Wilcoxon-Mann-Whitney test [12]. It is
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Figure 2: Relative performance difference to the best performing model found by early stopping in
20 runs averaged over all seeds.

surprising, but convenient, that the simplest considered version of the cup curriculum outperforms
more complex ones.

Of the results seen in Fig. 2, it is particularly noticeable that strategies which use the Identical and
the Dynamic update scheme significantly outperform those using the Freezing update. Furthermore,
the Random and Original initialization work best for all rewinding schemes but Warm rewinding,
where the Random and Top initialization work best. Additionally, for Best and No rewinding the Old
and Top initialization perform much worse than the other initialization schemes (not counting the
Freezing update). Despite this interaction, no significant difference between the Identical and the
Dynamic update scheme can be observed for any of the experiments.

As an example of a training curve, Fig. 3 shows the training and validation loss of the best
performing cup curriculum strategy found in the experiments. It exhibits resilience to overfitting in
addition to the improvements over early stopping and IMP. While other strategies achieve different
performance, all show similar resilience to overfitting (see Fig. 5). In contrast to early stopping,
which prevents overfitting, the cup curriculum could further improve achieved performance with
additional training.

5. Conclusion
In this work we highlight the existence of CL strategies for model capacity in the field of NLP
and derive a framework for it: the cup curriculum. In addition to this proof of concept we analyze
multiple strategies of the cup curriculum. This includes a strategy which reliably (confidence
99%) outperforms the best performance found by early stopping over multiple runs by an observed
magnitude of 0.5% to 2% while staying resilient to overfitting with the prospect of increasing
performance with additional training. Future work should analyze the impact of different learning
rate schedulers on the cup curriculum given the insights of Touvron et al. [20] and test our curriculum
on state-of-the-art LLMs with the prospect of circumventing the high number of checkpoints and
their connected costs as mentioned by Chowdhery et al. [5].

Acknowledgements VTs research has been funded by the Federal Ministry of Education and
Research of Germany and the state of North-Rhine Westphalia as part of the Lamarr-Institute for
Machine Learning and Artificial Intelligence Lamarr22B.
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Appendix A. Algorithms

The pruning procedure constitutes the first phase of the cup curriculum. In our experiments it consists
of multiple pruning cycles. Each cycle starts by training the model for a set number of epochs
with the possibility of employing early stopping. After training, a set number of weights is pruned
according to their magnitude which is measured by the selected pruning criterion c. Depending on
the selected training strategy, the remaining weights are rewound to an earlier state.

The data saved throughout Algorithm 1 is included as it is relevant for Algorithm 2.

Algorithm 1: Pruning Procedure
Data: neural network; training data; evaluation data; number of pruning cycles; percentage to

prune; number of epochs; rewinding scheme; pruning version
Result: For each pruning cycle: mask, best and final state; After all pruning cycles: model state
model← neural network;
list of best states← [] ; [] denotes an empty list
list of final states← [];
list of masks← [];
for cycle in number of pruning cycles do

best performance← worst possible performance;
for epoch in number of epochs do

state of model← train model(training data);
performance← evaluate model(evaluation data) ; evaluates the model
if performance better than best performance then

best performance← performance;
best state← state of model;

end
end
append best state to list of best states ; best performing model is stored
append state of model to list of final states ; last reached model is stored
for weight in weights of the model do

wc← current value of the weight;
wi← initial value of the weight;
pruning criterion of weight← ∥wc∥ − ∥wi∥;

end
model← rewind weights(rewinding scheme) ; rewinds the weights
model← prune weights(pruning criterion, percentage to prune, pruning version);
mask← positions remaining;
append mask to list of masks;

end
Return model, list of best states, list of final states, list of masks;

The growth phase is the second phase of the cup curriculum. In our experiments it consists of
multiple introduction steps. Each one starts by reintroducing capacity, i.e. a number of weights,
to the model. The weight value of each reintroduced weight depends on the introduction scheme
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chosen. After this introduction of capacity, the model is trained for a set number of epochs. The
weight update during this training depends on the update scheme chosen.

Just like in Algorithm 1 we include data used by Algorithm 2 to improve clarity.

Algorithm 2: Growth Procedure
Data: training and evaluation data; model state, list of masks, list of best states and list of final

states returned by pruning procedure (Algorithm 1); number of introduction steps; number
of epochs; initialization scheme; update scheme;

Result: A list containing the best model per capacity
model← model state;
reverse the lists received;
list of best states← [] ; [] denotes an empty list
for step in number of introduction steps do

mask← list of masks at position step;
weights to introduce← mask where the model has no active weight;
introduce weights(initialization scheme, weights to introduce);
best performance← worst possible performance;
for epoch in number of epochs do

state of model← train model(training data, update scheme);
performance← evaluate model(evaluation data) ; evaluates the model
if performance better than best performance then

best performance← performance;
best state← state of model;

end
end
append best state to list of best states;

end
return list of best states
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Appendix B. Details on Training Curves

Throughout the pruning phase of each considered training scheme regular spikes in training and
validation loss can be observed (see Figs. 3 to 5). These spikes occur every 50 epochs and are due to
weight rewinding and subsequent pruning. Their magnitude depends on the rewinding strategy used.
Initial and Warm rewinding results in larger spikes, as their rewinding state is separated from the
current state by more training epochs than the rewinding state of Best and No rewinding. Similar
spikes are present in the growth phase due to the reintroduction of weights. However, here they are
less pronounced.

Due to the usage of dropout throughout the training procedure the model capacity used to measure
the training and validation loss differ (80% compared to 100%). This relative difference in model
capacity is our explanation for the validation loss being substantially smaller than the training loss at
smaller model capacities (see Figs. 3 to 5).

Figure 3: Number of training epochs vs. training and validation loss of the cup curriculum strategy
using Best rewinding, Random initialisation, and Identical updating per seed.
The grey line shows the best validation loss of the pruning phase.

Figure 4: Exemplary training curves for the medium (left) and large (right) model.
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For the Small model size all initialization schemes but the Old scheme show resilience to over-
fitting across multiple initialization and update scheme combinations (see Fig. 5). Our explanation
for this circumstance is the unaddressed overfitting throughout the early pruning cycles of training
schemes utilizing the Old scheme. For the Small model size the training and validation loss of
strategies using the other initialization schemes in combination with the Identical or Dynamic update
scheme are shaped like a bell. This differs when changing the model size. For the Medium and Large
model sizes the loss plateaus after the 11-th pruning cycle and only decreases with the beginning of
the 11-th and 12-th introduction step (see Fig. 4). All initialization schemes but the No scheme show
resilience to overfitting across multiple rewinding and update scheme combinations.

Figure 5: Overview over different training curves of different strategies of the cup curriculum on the
small model.
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Appendix C. Implementation Details

Here the remaining parameters mentioned in the paper are explained in more detail.

Table 3: Transformer architecture details by
model variation.

Model
Attention

Heads
Encoder
Layers

Parameter Count

Small 2 2 13 829 280
Medium 4 4 14 313 280
Large 8 8 15 281 280

Table 4: All update schemes applied
during the growth phase.

Update
Scheme

Weight Update

Freezing only last introduced
weights are updated

Identical same LR for all weights
Dynamic LR depends on

introduction time

Model Sizes We consider three model sizes in the experiments to explore the impact of parameter
count, number of attention heads, number of encoder layers and dimensionality of attention heads
on the training strategies considered. The Small model consists of 2 attention heads and 2 encoder
layers. The Medium model consists of 4 attention heads and 4 encoder layers. Lastly, the Large
model consists of 8 attention heads and 8 encoder layers. The dimension of the projection computed
in each attention head scales inversely with the number of attention heads, therefore these model
sizes also explore this effect on the training strategies considered. Table 3 lists the considered model
sizes.

Update Schemes In the experiments we analyze the effect of three different update schemes.
First, the Freezing update scheme is considered. It freezes all but the last introduced weights of the
model. Additionally, we consider the usual weight update (Identical) which is plain backpropagation.
Lastly, a weight update based on the individual weights age in the network (Dynamic) is considered.
The Dynamic update scheme multiplies the weight update for all weights introduced in the n-th
introduction step with fn, where f ∈ R+

0 and weights which were not pruned during the pruning
phase are considered to be from the 0-th introduction step. This extends the idea of freezing the
update (by applying update masks with elements in {0; 1}), to update masks with elements in R+

0 .
The update schemes analyzed in the experiments are listed in Table 4.
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