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Abstract
Numerous constraints and regularization terms have been proposed in the literature to promote
fairness in machine learning tasks, most of these methods are not amenable to stochastic optimization
due to the complex and nonlinear structure of constraints and regularizers. Here, the term “stochastic”
refers to the ability of the algorithm to work with small mini-batches of data. Motivated by the
limitation of existing literature, this paper presents a unified stochastic optimization framework for
fair empirical risk minimization based on f -divergence measures (f -FERM). The proposed stochastic
algorithm enjoys theoretical convergence guarantees. In addition, our experiments demonstrate the
superiority of fairness-accuracy tradeoffs offered by f -FERM for almost all batch sizes (ranging
from full-batch to batch size of one). Moreover, we show that our framework can be extended to
the case where there is a distribution shift from training to the test data. Our extension is based
on a distributionally robust optimization reformulation of f -FERM objective under ℓp norms as
uncertainty sets. Again, in this distributionally robust setting, f -FERM enjoys not only theoretical
convergence guarantees but also outperforms other baselines in the literature in the tasks involving
distribution shifts. An efficient stochastic implementation of f -FERM is publicly available 1.

1. Introduction
Imposing statistical independence between model output and particular input features is of interest
in various domains, especially when the generalization of a trained model is based on a collection
of spurious features present in the training dataset [18, 23, 60]. These could be sensitive features
like gender, race, age, and/or income in the context of fairness, or could be confounding factors like
environmental artifacts in the context of image classification [4]. Existing literature on imposing
statistical independence between selected input features and model outputs is directed into three
approaches: pre-processing, post-processing, and in-processing methods. We reviewed the major
advances in the three algorithmic fairness approaches in Appendix A.

This paper establishes a scalable (stochastic) fair empirical risk minimization framework through
regularization via f -divergences (f -FERM) for both standard and distributed shift settings. f -FERM
presents a unified methodology based on the Legendre-Fenchel transformation, enabling us to
develop theoretically convergent first-order stochastic algorithms when only small batches of data are
available at each iteration. Further, we have presented the first distributionally robust optimization
framework under ℓp norms uncertainty sets covering nonconvex losses such as neural networks.
The presented framework for fair inference in the presence of distribution shifts does not rely on
the causal graph describing the causal interaction of input features, sensitive attributes, and target
variables, which is rarely available in practical problems.

1. https://github.com/optimization-for-data-driven-science/f-FERM
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2. Fair Empirical Risk Minimization via f -divergences
A widely studied problem in algorithmic fairness is promoting a notion of group fairness, such as
demographic parity, equalized odds, equality of opportunity, or sufficiency through an in-processing
method. For these notions, we aim to establish a [conditional] statistical independence between the
predictions (e.g., the creditworthiness of the individual) and the sensitive attributes (e.g., gender, race).
For simplicity of presentation, we formulate all problems under the demographic parity notion, which
requires statistical independence between the prediction and the sensitive attribute. Without loss of
generality, all formulations and methods are generalizable to other aforementioned notions of group
fairness by considering conditional random variables (see Appendix B). A popular in-processing
approach for training fair (classification) models under the demographic parity notion is to regularize
the empirical risk minimization:

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λD
(
P(ŷθ(x), s),P(ŷθ(x))⊗ P(s)

)
, (1)

where θ is the parameter to be learned (e.g. weights of the neural network); xi ∈ Rd is the i-th
input feature vector; yi is the actual label/class for sample i; ŷθ(xi) is the prediction of the model for
sample i; and ℓ(ŷθ(xi), yi) is the loss function measuring the “goodness-of-fit" for sample i. Here,
D is a divergence between the joint probability distribution of the predictions and sensitive attributes
and the Kronecker product of their marginal distributions. Recall that ŷθ and s are statistically
independent iff P(ŷθ(x), s) follows P(ŷθ(x)) ⊗ P(s). Therefore, the second term in (1) is zero if
and only if ŷθ and s are statistically independent (complete fairness under the demographic parity
notion).

This section studies the fair empirical risk minimization regularized by a broad class of f -
divergence measures. Let P and Q be two discrete probability measures taking values in P =
{1, . . . ,m}. The f -divergence between P and Q is defined as [43, Def 4.9](see Appendix C for the
general continuous case):

Df (P,Q) =
m∑
j=1

Qjf
( Pj

Qj

)
(2)

The above definition covers many well-known divergence measures (used for imposing fairness), such
as KL-divergence for the choice of f(t) = t log(t) [50], or χ2 divergence when f(t) = (t− 1)2 [35].
As shown in Appendix D, Df in (1) is zero if and only if the probability distribution of s and ŷθ
are statistically independent for the choices of f listed in Table 1. In addition, we prove that these
f -divergences either cover or provide upper bounds for the popular notions of fairness violations in
the literature, such as ℓp distances, Rényi correlation [5], and demographic parity (equalized odds)
violation. Further, unlike Rényi correlation [5, 22], we can utilize Legendre-Fenchel duality (and
variational representation) to develop (provably) convergent algorithms with stochastic (mini-batch)
updates. The stochastic optimization method for is described in the next subsection.

2.1. A Convergent Stochastic Algorithm for fair ERM via f -Divergences
Let us start by rewriting (1) using f -divergences as the divergence measure:

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j∈Y,
k∈S

Ps(s = k)Pŷθ(ŷθ)f
( Pŷθ ,s(ŷθ = j, s = k)

Pŷθ(ŷθ = j)Ps(s = k)

)
(f -FERM)

In particular, directly evaluating the gradient of the objective function of (f -FERM) on a mini-batch
of data leads to a statistically biased estimation of the entire objective’s gradient. Such statistical
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biases prevent the convergence of algorithms such as SGD (even with a strongly convex minimization
landscape) [2, 10], let aside the more complex objectives arising in modern-day neural networks.

To derive stochastic algorithms, one can use the variational forms of f -divergences to delineate
them as a pointwise supremum of affine transformation over probability densities. The most com-
monly used and well-behaved transform is the Legendre-Fenchel transform (often called the convex
conjugates), which linearizes the dependence of the objective function to input data points using a
variational reformulation. Particularly, we can rewrite (f -FERM) using the following result:

Proposition 1 Let f(·) be a convex function. Then, (f -FERM) can be reformulated as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j∈Y,
k∈S

[
AjkPŷ,s(ŷθ = j, s = k)− f∗(Ajk)Pŷ(ŷθ = j)Ps(s = k)

]
(3)

where f∗(z) = supw∈dom(f)w
T z − f(w) is the Legendre-Fenchel transformation of the function f .

Proof The proof is standard and appears in Appendix E.

As a result, Problem (3) can be written as a linearly separable function of input data points (xi’s):

min
θ

max
A

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j∈Y,
k∈S

[
AjkFj(xi;θ)1(si = k)− f∗(Ajk)πkFj(xi;θ)

] (4)

Where πk := Ps(s = k) = 1
n

∑n
i=1 1(si = k) and Fj(xi;θ) is the j-th entry of the softmax layer

output for datapoint xi. Therefore, evaluating the gradient of the objective function with respect to the
optimization variables θ and A over a random small batch of data points leads to an unbiased gradient
estimator of the entire objective function. In addition to providing an unbiased estimator of gradients,
the reformulation (4) has another crucial property: the objective function is concave in A. Therefore,
optimization problem (4) falls under the category of nonconvex-concave min-max optimization
problems. That is, the objective is (possibly) nonconvex in θ and is concave in A. Thus, we can
borrow tools from the (stochastic) nonconvex-concave min-max optimization literature [32, 34, 46]
to derive a convergent first-order stochastic algorithm as presented in Algorithm 1. We list the closed-
form of f(·), f∗(·), for several widely-used f -divergence measures in Table 1. For the derivation,
see Appendix F.

Algorithm 1 Stochastic Gradient Descent-Ascent (SGDA) for f -FERM
1: Input: θ0 ∈ Rdθ , step-sizes ηθ, ηα, fairness parameter λ ≥ 0, iteration number T , Batchsize b
2: for t = 1, . . . , T do
3: Sample minibatch of data Bt = {(xt1,yt1), · · · , (xtb,ytb)}
4: θt = θt−1 − ηθ

b

∑
∇θℓ(ŷθ(x), y)− ηθλ∇θ

(
At−1

jk P̂ŷθ,s(j, k; Bt)− πkf∗(A
t−1
jk )P̂ŷθ

(j; Bt)
)

5: At
jk = At−1

jk + ηα ∇A

(
At−1

jk P̂ŷθ ,s(j, k; Bt)− πkf∗(A
t−1
jk )P̂ŷθ

(j; Bt)
)

6: Return: θT

Theorem 2 (Informal Statement) Assume that ℓ(·, ·) and Fj(·,θ) are Lipschitz continuous for
any given j and θ and their gradients are L-Lipshitz. Further, assume that P(s = k) > 0 for all
protected groups and P(ŷθ = j) > 0 at every iteration for all labels j. Then, for any given batch size
1 ≤ |B| ≤ n, Algorithm 1 finds an ϵ-stationary solution of (f -FERM) in O( 1

ϵ8
) for any given ϵ > 0.
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Table 1: Unbiased Estimators for f -divergence Regularizers

Divergence f(t) The term rjk inside regularizer λ
∑

j,k rjk in (4)

χ2 (t− 1)2 πk[AjkPŷθ |sk − (Ajk +
A2

jk

4 )Pŷθ
]

Reverse KL − ln t πk[AjkPŷθ |sk + (1 + ln(−Ajk))Pŷθ
]

Total Variational 1
2 |t− 1| πkAjk[Pŷθ |sk − Pŷθ

]I{|Ajk|<1/2}
KL t ln t πk[AjkPŷθ |sk − e

Ajk−1Pŷθ
]

Jensen-Shannon −(t+ 1) ln( t+1
2 ) + t ln t πk[AjkPŷθ |sk + ln(2− eAjk)Pŷθ

]

Squared Hellinger (
√
t− 1)2 πk[AjkPŷθ |sk + (A−1

jk + 2)Pŷθ
]

Proof The formal statement and proof are relegated to Appendix G.

Theorem 2 applies to all f -divergences listed in Table 1 for all batch-sizes (even as small as the batch
size of 1). More sophisticated algorithms can be used to obtain O(ϵ−6) iteration complexity [45, 63].
However, such algorithms use nested loops and require more hyperparameter tunings. If the f-
divergence leads to a strongly concave function in A or satisfies Polyak-Łojasiewicz condition (e.g.,
for χ2 divergence), a faster rate of O(ϵ−5) can be obtained for this algorithm (Appendix G). In
addition, if larger batch size of O(ϵ−2) is used, we can further improve this rate to O(ϵ−4) iteration
complexity (see Appendix G). Finally, when full batch size is used, then double/triple-loop algorithms
can lead to the iteration complexity bounds of O(ϵ−2) in the nonconvex-strongly concave setting and
O(ϵ−3) in the general nonconvex-concave setting; see [28, 40, 42, 55].

3. Robust f -FERM in the Presence of Distribution Shifts
In the previous section, we assumed that the training and test domains have the same distribution.
However, this assumption is not necessarily valid in certain applications [19]. In particular, a model
that behaves fairly on the training data distribution may have an unfair performance in the test phase.
To address this issue, this section develops stochastic algorithms for fair empirical risk minimization
via f -divergences in the presence of the distribution shifts. Assume that P̂s,y(s, ŷ) is the joint
distribution of sensitive attributes and predictions on the training data. The distributionally robust
fair empirical risk minimization via f -divergences is formulated as:

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) s.t. max
P∈B
Df

(
P(ŷθ(x), s)|| P(ŷθ(x))⊗ P(s)

)
≤ δ. (5)

Here B is the distributional uncertainty set. This section focuses on the widely studied ℓp norms as
the uncertainty set for the distributional distance between the training and test domains. In this case,
Problem (5) can be written as:

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) s.t. max
||P−P̂||p≤δ

||Q−Q̂||p≤δ

Df (P||Q) ≤ κ, (6)

where P̂ represents the joint distribution of the sensitive attributes and predictions and Q̂ denotes the
Kronecker product of the marginal distributions between sensitive attributes and predictions. Since
handling non-convex constraints is challenging, as it is standard in training machine learning models,
we consider the Lagrangian relaxation of Problem (6) as follows:

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λ max
∥P−P̂∥p≤δ

∥Q−Q̂∥p≤δ

Df (P||Q) (7)
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This problem falls under the nonconvex-nonconcave, min-max optimization category and is computa-
tionally intractable for general uncertainty sets [13]. However, such a min-max optimization problem
can be solved to stationarity when the diameter of set B is small (i.e., under small domain shift),
see [41]. The core idea is to approximate the inner maximization problem with the Taylor approx-
imation, leading to a nonconvex-concave min-max optimization, which is easier to solve [13, 47].
This idea has been used and been successful in machine learning (see Foret et al. [20] for its use in
Sharpness-aware minimization). Utilizing this idea, Problem (7) can be approximated as:

min
θ

max
∥U∥p≤δ
∥V∥p≤δ

(
h(θ,U,V) :=

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λ⟨U,∇PDf (P̂||Q̂)⟩+ λ⟨V,∇QDf (P̂||Q̂)⟩

)
, (8)

where we used the change of variables U := P− P̂ and V := Q− Q̂. Equivalently,

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λδ∥∇PDf (P̂||Q̂)∥q + λδ∥∇QDf (P̂||Q̂)∥q, (9)

where ∥ · ∥q is the dual of the ℓp norm with 1
p +

1
q = 1. It can be shown that finding stationary points

of (9) leads to a stationary point of (6):

Proposition 3 Assume that the gradient of the loss function is L-Lipshitz, and the second-order
derivative of the loss exists. Then, a given ϵ−approximate stationary solution of Problem (9) is an
O(ϵ)−approximate stationary solution of Problem (7) whenever Lδ ≲ ϵ.

This proposition is an immediate application of Ostrovskii et al. [41, Theorem 3.1], To solve the
problem, we need to obtain the (sub)-gradients of the objective function in (8) w.r.t the θ, U, and V
variables. First, notice that

∇Uh(θ,U,V) = ∇PDf (P̂||Q̂) = α∗(P̂, Q̂) and ∇Vh(θ,U,V) = ∇QDf (P̂||Q̂) = f∗(α∗(P̂, Q̂)),

where α∗(P̂, Q̂) ∈ argmaxα
∑

j αj p̂j(θ)− q̂j(θ)f∗(αj). Here we invoked Danskin’s theorem on
the variational form of Df ; p̂j(θ) and q̂j(θ) is the j-th element of P̂ and Q̂, respectively. Next, we
need to compute∇θh(θ,U,V). Notice that the derivative of the first term in h(·) w.r.t. θ is easy to
compute. We next calculate the derivative of the second term of h(θ,U,V) w.r.t. θ. As the derivative
of the third term can be computed similarly, we omit its derivation here.

∇θ⟨U,∇PDf (P̂||Q̂)⟩ = ∇θ⟨U,α∗(P̂, Q̂)⟩ =
∑
j

uj
q̂j(θ)∇θp̂j(θ)− p̂j(θ)∇θ q̂j(θ)

q̂2j (θ)× (f∗)′′(α)|α=α∗
j (P̂,Q̂)

(10)

where in the last equation, we used the implicit function theorem to compute the derivative of α∗ w.r.t.
θ. Notice that an implicit assumption here is that f is differentiable (which holds for KL-divergence,
χ2 divergence, reverse KL, Jensen-Shannon, and Squared Hellinger distance). Having access to the
gradients, we can apply the standard [sub-]gradient descent-ascent algorithm to obtain a solution
to Problem (9). We proposed a semi-stochastic algorithm for solving Problem (9) in Appendix H.
Further, we study the fair inference in the presence of the distribution shift when ϵ is large.

4. Experiments
This section evaluates the performance and efficiency of the proposed f -divergence frameworks
in Section 2 through extensive experiments on benchmark datasets against several state-of-the-art
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approaches. We use 3 popular notions of group fairness, including demographic parity, equalized
odds, and equality of opportunity violations (see Appendix B for the exact definitions) to measure
the fairness of trained models. To run Algorithm 1, we set ηθ and ηα to 10−5 and 10−6 respectively
in all experiments. Further, by changing λ, we get different points in the trade-off curve between the
accuracy and fairness of the trained model. The range of values for λ depends on the f -divergence
we use (see Appendix I for more information on tuning hyper-parameters).

Figure 1: Performance of different f -divergences
as the regularizers for measuring fainress
violation. The experiment is on the adult
dataset with gender and race as sensitive
attributes. While the offered tradeoffs
are close to each other for small demo-
graphic parity violations, KL-divergence
shows an extraordinary performance
for a low-fairness high-accuracy regime.
We do not display the performance for
larger batch sizes or when only one sen-
sitive attribute is available due to the in-
significant difference between the per-
formance of different f -divergences.

In the first set of experiments, we compare dif-
ferent f -divergence formulations for (f -FERM) to
each other and several state-of-the-art approaches
supporting multiple sensitive attributes. Fig-
ure 1 demonstrates the given tradeoff on the adult
dataset [7] with gender and race as the sensitive
attributes (black-female, black-male, white-female,
white-male). To measure fairness, we use the de-
mographic parity violation defined as:

DPV = max
i,j∈S

|P(ŷ = 1|s = i)− P(ŷ = 1|s = j)|

In the case of binary sensitive attributes (e.g., gen-
der), there is no significant variation between dif-
ferent f -divergences. However, when we have 2
sensitive attributes and the batch size is small (8 in
Figure 1), the results significantly differ for various
f -divergences. Further, in Figure 2, we compare
one of the f -divergences (reverse KL) to several
SOTA methods including Baharlouei et al. [5], Cho
et al. [11], Mary et al. [38]. Other approaches such
as the pre-processing method of Zemel et al. [62],
post-processing approach of Hardt et al. [23], and
several in-processing methods including Donini
et al. [16], Jiang et al. [26], Zafar et al. [61] demon-
strate lower performance compared to the ones depicted in Figure 2 and are removed from the
figure. While our approach demonstrates consistently good performance across different batch sizes
(full-batch, 64, 8, 2), other methods’ performances drop significantly for smaller ones. For further
experiments on other datasets (German and COMPAS) and other fairness measures (equality of
opportunity and equalized odds violations), see Appendix J.

Figure 2: Performance of the trained fair models on Adult Dataset with gender and race as two sensitive
attributes with different Batch-sizes. The red dashed line represents the Naïve baseline where the
model outputs zero with probability p. By increasing p, the model becomes fairer at the cost of the
loss in accuracy.
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Elsevier, 2009.

[26] Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein
fair classification. In Uncertainty in artificial intelligence, pages 862–872. PMLR, 2020.

[27] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without
discrimination. Knowledge and information systems, 33(1):1–33, 2012.

8

https://proceedings.neurips.cc/paper_files/paper/2020/file/8929c70f8d710e412d38da624b21c3c8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8929c70f8d710e412d38da624b21c3c8-Paper.pdf


f -FERM: A SCALABLE FRAMEWORK FOR ROBUST FAIR EMPIRICAL RISK MINIMIZATION

[28] Weiwei Kong and Renato DC Monteiro. An accelerated inexact proximal point method for
solving nonconvex-concave min-max problems. SIAM Journal on Optimization, 31(4):2558–
2585, 2021.

[29] Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-
Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations research & management science in the age of analytics, pages 130–166.
Informs, 2019.

[30] Tosca Lechner, Shai Ben-David, Sushant Agarwal, and Nivasini Ananthakrishnan. Impossibility
results for fair representations. arXiv preprint arXiv:2107.03483, 2021.

[31] Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for
distributionally robust optimization. Advances in Neural Information Processing Systems, 33:
8847–8860, 2020.

[32] Jiajin Li, Linglingzhi Zhu, and Anthony Man-Cho So. Nonsmooth nonconvex-nonconcave
minimax optimization: Primal-dual balancing and iteration complexity analysis, 2023.

[33] Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. Tilted empirical risk minimiza-
tion. arXiv preprint arXiv:2007.01162, 2020.

[34] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-
concave minimax problems. In Hal Daumé III and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 6083–6093. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/lin20a.html.

[35] Andrew Lowy, Sina Baharlouei, Rakesh Pavan, Meisam Razaviyayn, and Ahmad Beirami. A
stochastic optimization framework for fair risk minimization. tmlr, 2022.

[36] Subha Maity, Debarghya Mukherjee, Mikhail Yurochkin, and Yuekai Sun. Does enforcing
fairness mitigate biases caused by subpopulation shift? Advances in Neural Information
Processing Systems, 34:25773–25784, 2021.

[37] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen,
and Sanjeev Arora. Fine-tuning language models with just forward passes. arXiv preprint
arXiv:2305.17333, 2023.

[38] Jeremie Mary, Clément Calauzènes, and Noureddine El Karoui. Fairness-aware learning
for continuous attributes and treatments. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4382–4391. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/mary19a.html.

[39] Alan Mishler and Niccolò Dalmasso. Fair when trained, unfair when deployed: Observable fair-
ness measures are unstable in performative prediction settings. arXiv preprint arXiv:2202.05049,
2022.

9

https://proceedings.mlr.press/v119/lin20a.html
https://proceedings.mlr.press/v119/lin20a.html
https://proceedings.mlr.press/v97/mary19a.html


f -FERM: A SCALABLE FRAMEWORK FOR ROBUST FAIR EMPIRICAL RISK MINIMIZATION

[40] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn.
Solving a class of non-convex min-max games using iterative first order methods. Advances in
Neural Information Processing Systems, 32, 2019.

[41] Dmitrii M Ostrovskii, Babak Barazandeh, and Meisam Razaviyayn. Nonconvex-nonconcave
min-max optimization with a small maximization domain. arXiv preprint arXiv:2110.03950,
2021.

[42] Dmitrii M Ostrovskii, Andrew Lowy, and Meisam Razaviyayn. Efficient search of first-
order nash equilibria in nonconvex-concave smooth min-max problems. SIAM Journal on
Optimization, 31(4):2508–2538, 2021.

[43] Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Book draft,
2022.

[44] Flavien Prost, Hai Qian, Qiuwen Chen, Ed H Chi, Jilin Chen, and Alex Beutel. Toward a better
trade-off between performance and fairness with kernel-based distribution matching. arXiv
preprint arXiv:1910.11779, 2019.

[45] H Rafique, M Liu, Q Lin, and T Yang. Non-convex min–max optimization: provable algorithms
and applications in machine learning (2018). arXiv preprint arXiv:1810.02060, 1810.

[46] Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, and
Mingyi Hong. Nonconvex min-max optimization: Applications, challenges, and recent theoret-
ical advances. IEEE Signal Processing Magazine, 37(5):55–66, 2020. doi: 10.1109/MSP.2020.
3003851.

[47] Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, and
Mingyi Hong. Nonconvex min-max optimization: Applications, challenges, and recent theoret-
ical advances. IEEE Signal Processing Magazine, 37(5):55–66, 2020.

[48] Ashkan Rezaei, Anqi Liu, Omid Memarrast, and Brian D Ziebart. Robust fairness under
covariate shift. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 9419–9427, 2021.

[49] Jessica Schrouff, Natalie Harris, Oluwasanmi Koyejo, Ibrahim Alabdulmohsin, Eva Schnider,
Krista Opsahl-Ong, Alex Brown, Subhrajit Roy, Diana Mincu, Christina Chen, et al. Maintain-
ing fairness across distribution shift: do we have viable solutions for real-world applications?
arXiv preprint arXiv:2202.01034, 2022.

[50] Changjian Shui, Gezheng Xu, Qi Chen, Jiaqi Li, Charles X Ling, Tal Arbel, Boyu Wang, and
Christian Gagné. On learning fairness and accuracy on multiple subgroups. Advances in Neural
Information Processing Systems, 35:34121–34135, 2022.

[51] Harvineet Singh, Rina Singh, Vishwali Mhasawade, and Rumi Chunara. Fairness violations
and mitigation under covariate shift. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pages 3–13, 2021.

10



f -FERM: A SCALABLE FRAMEWORK FOR ROBUST FAIR EMPIRICAL RISK MINIMIZATION

[52] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some distributional robustness
with principled adversarial training. In International Conference on Learning Representations,
2018.

[53] Matthew Staib and Stefanie Jegelka. Distributionally robust optimization and generalization in
kernel methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/1770ae9e1b6bc9f5fd2841f141557ffb-Paper.pdf.

[54] Bahar Taskesen, Viet Anh Nguyen, Daniel Kuhn, and Jose Blanchet. A distributionally robust
approach to fair classification, 2020.

[55] Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Efficient
algorithms for smooth minimax optimization. Advances in Neural Information Processing
Systems, 32, 2019.

[56] Berk Ustun, Yang Liu, and David Parkes. Fairness without harm: Decoupled classifiers with
preference guarantees. In International Conference on Machine Learning, pages 6373–6382.
PMLR, 2019.

[57] Mingyang Wan, Daochen Zha, Ninghao Liu, and Na Zou. Modeling techniques for machine
learning fairness: A survey. CoRR, abs/2111.03015, 2021. URL https://arxiv.org/
abs/2111.03015.

[58] Haotao Wang, Junyuan Hong, Jiayu Zhou, and Zhangyang Wang. How robust is your fairness?
evaluating and sustaining fairness under unseen distribution shifts. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=11pGlecTz2.

[59] Serena Wang, Wenshuo Guo, Harikrishna Narasimhan, Andrew Cotter, Maya Gupta, and
Michael Jordan. Robust optimization for fairness with noisy protected groups. Advances in
neural information processing systems, 33:5190–5203, 2020.

[60] Ke Yan, Lu Kou, and David Zhang. Learning domain-invariant subspace using domain features
and independence maximization. IEEE transactions on cybernetics, 48(1):288–299, 2017.

[61] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.
Fairness constraints: Mechanisms for fair classification. In Artificial intelligence and statistics,
pages 962–970. PMLR, 2017.

[62] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair represen-
tations. In International conference on machine learning, pages 325–333. PMLR, 2013.

[63] Xuan Zhang, Necdet Serhat Aybat, and Mert Gurbuzbalaban. Sapd+: An accelerated stochastic
method for nonconvex-concave minimax problems. Advances in Neural Information Processing
Systems, 35:21668–21681, 2022.

[64] Meiyu Zhong and Ravi Tandon. Learning fair classifiers via min-max f-divergence regulariza-
tion, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/1770ae9e1b6bc9f5fd2841f141557ffb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1770ae9e1b6bc9f5fd2841f141557ffb-Paper.pdf
https://arxiv.org/abs/2111.03015
https://arxiv.org/abs/2111.03015
https://openreview.net/forum?id=11pGlecTz2
https://openreview.net/forum?id=11pGlecTz2


f -FERM: A SCALABLE FRAMEWORK FOR ROBUST FAIR EMPIRICAL RISK MINIMIZATION

Appendix A. A Review of Algorithmic Fairness Methods

Pre-processing methods entail upstream changes made in datasets to mask sensitive features or
reduce the dependency of output variables on sensitive features through transforming data in a stage
before the training phase [27, 56, 62]. Post-processing methods involve model-specific adjustments
to the model’s output to ensure the independence of predictions and sensitive attributes [3, 23]. While
pre-processing and post-processing methods do not affect the training procedure, they fail to exploit
underlying training mechanisms for the best achievable accuracy-fairness tradeoffs. Unsurprisingly
enough, optimizing accuracy and fairness jointly (in-processing) leads to better tradeoffs than
sequentially optimizing fairness and accuracy in a pre-processing or post-processing fashion.

In-processing methods overcome these shortcomings of pre-processing and post-processing
approaches by adding fairness constraints or regularizers to the training objective, penalizing depen-
dence between sensitive attributes and output variables. [61] utilizes covariance as the measure of
independence between the sensitive attributes and the predictions. While such a measure is amenable
to stochastic updates, it fails to capture correlations beyond linear. Alternatively, several non-linear
measures such as Rényi correlation [5], χ2 divergence [35], L∞ distance [16], and Maximum Mean
Discrepancy (MMD) [44] are proposed in the literature to establish the independence of the predictors
and sensitive attributes. In-processing techniques can be model-specific [1, 57] or generalizable to
different training algorithms [5, 35].

In the spirit of in-processing methods, input data-driven constraints or regularization terms
are used to modify training objectives of problems like learning generalizable models to new
environments, invariant learning, and learning in the presence of distribution shifts [4, 5, 38].
Such constrained/regularized reformulations are prevalent in learning robust classifiers against
adversarial attacks [52], meta-learning [6], federated learning [14], and alternative learning paradigms
such as learning distributionally robust optimization (DRO) models [29, 31], tilted empirical risk
minimization (TERM) [33], and Squared-root Lasso [8].

While in-processing techniques outperform pre-processing and post-processing approaches, they
are not scalable to large datasets because of a lack of adaptability to Stochastic Approximation meth-
ods [35, 38]. From an optimization perspective, all aforementioned examples consist of regularization
terms in their objective functions where the gradient cannot be described as a linear combination of
data points functions. As a result, applying stochastic gradient descent or other stochastic first-order
methods on the objective functions of such problems might not converge, especially for small batch
sizes.

Motivated by this, [35] proposes a provably convergent stochastic optimization framework for
Exponential Rényi Mutual Information as the measure of independence. More recently Zhong
and Tandon [64] use f -divergences as regularization terms to establish the independence between
sensitive attributes and predictions. They estimate the f -divergence regularizers offline through
multi-layer neural networks to avoid the computational challenges of devising scalable stochastic
methods for nonconvex min-max problems. Our approach, on the other hand, directly solves the
variational formulation for both full-batch and stochastic settings with convergence guarantees to
non-spurious solutions. In Section 2, using the variational representation of f -divergences, we
present a convergent stochastic optimization framework for fair learning via f -divergences. [35]
is a special case of f -divergences where f(t) = t2 − 1 (χ2 divergence). Aside from χ2, all other
divergences listed in Table 1 are not introduced in the literature to the best of our knowledge.
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The need to have convergent algorithms for fair empirical risk minimization does not end
with designing methods amenable to stochastic approximation. Detection and mitigation of biases
against protected groups in the presence of distribution shifts have been extensively studied in recent
years. Lechner et al. [30] theoretically shows that learning fair representations (pre-processing) is
nearly impossible for the popular notions of fairness, such as demographic parity in the presence
of the distribution shift. Ding et al. [15], on the other hand, experimentally demonstrates that
applying post-processing fairness techniques [23] to learn fair predictors of income concerning race,
gender, and age fails to transfer from one US state (training domain) to another state. Overlooking
distribution shifts can lead to catastrophic decisions threatening the well-being of human subjects
when deploying a trained model in certain hospitals to other hospitals [49]. The current literature for
handling distribution shifts with in-processing methods relies on certain assumptions on the type of
distribution shift (demographic shift [17, 19, 21, 36], label shift [12], and/or covariate shift [48, 51])
or explicit access to the causal graph [39, 49] of predictors, sensitive attributes, and target variables.
As a result, they face practical limitations and cannot cope with most real-world problems involving
complex shifts that cannot be categorized in the ones assumed in their works.

Alternatively, [54] provides convex objective functions for imposing fairness on logistic regres-
sion using constraint optimization. [53] use MMD for defining uncertainty sets around training
distribution, whereas [24] use Integral Probability Measure (IPM) to mitigate the distribution shift.
The main limitation of these approaches is their reliance on the convexity of the underlying learning
model and lack of scalability due to incompatibility with stochastic optimization algorithms. Wang
et al. [58] uses the Maximum Mean Discrepancy (MMD) distance between the spectral norm of
the Hessian matrix at advantaged and disadvantaged data points. However, they do not provide
convergence guarantees for their proposed algorithm to any notion of optimality. In addition, the
method is not necessarily amenable to stochastic updates. While we naturally define the uncertainty
set directly on the joint distribution of sensitive attributes and predictions, they use the curvature
of the obtained solution quantified by the norm of the Hessian matrix as a heuristic for promoting
the robustness of the fair solution. In Appendix H, we present our approach for fair inference in the
presence of the distribution shifts in detail.

Appendix B. f -FERM for Other Notions of Group Fairness

This section shows how we can use alternative notions of fairness, such as equality of opportunity of
equalized odds [23] instead of demographic parity violation in f -FERM.

Note that a trained model satisfies the equality of opportunity notion for a given binary classifier
with a binary sensitive attribute if and only if:

P(ŷθ(x) = 1, s = i| y = 1) = P(ŷθ(x) = 1, s = j| y = 1) ∀ i, j ∈ S (11)

Therefore, to have a framework for fair inference via f -divergences under the equality of opportunity
notion, we optimize:

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λDf

(
P(ŷθ(x), s|y = 1)||P(ŷθ(x)|y = 1)⊗ P(s|y = 1)

)
. (12)

Practically, it means that for evaluating the probability measures in the regularization term, we need
to focus on the data points whose target labels are 1.

13



f -FERM: A SCALABLE FRAMEWORK FOR ROBUST FAIR EMPIRICAL RISK MINIMIZATION

Further, one can similarly adopt equalized odds as the measure of fairness. Equalized odds as the
measure of fairness is defined as:

P(ŷθ(x) = 1, s = i| y = k) = P(ŷθ(x) = 1, s = j| y = k) ∀ i, j ∈ S, k ∈ Y (13)

Therefore, we must add a regularizer per each class label to satisfy the equalized odds notion. Other
notions of fairness can be used in this framework as long as they can be represented as the conditional
independence between sensitive attributes, predictions, and labels [9].

Appendix C. f -divergences for Continuous Sensitive Attributes and Target Variables

In Section 2, we developed a framework for promoting fairness for classification problems where
both target labels and sensitive attributes are discrete variables. Hence we could efficiently solve the
variational formulation that arose through the designing of unbiased estimators. However, it is not
uncommon to find applications of f-divergence regularizers in practice that require either the sensitive
features or the output variable to be continuous; or both to be continuous parameters. In such cases,
the summation over the respective variable is replaced by an integral over the probability distribution.
The challenging aspect is calculating the variational form’s integral and trailing supremum in the
continuous domain.

Let P andQ be two continuous distributions over the space Ω such that P is absolutely continuous
with respect to Q (P ≪ Q). Then, the f -divergence between these two distributions for a given
convex function f is defined as:

Df (P,Q) =

∫
Ω
f
(dP
dQ

)
dQ (14)

When the target variable is continuous (regression problems), but the sensitive attribute is dis-
crete, (f -FERM) can be written as:

min
θ

max
A∈R∞

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
k

∫
x

[
Ak(x)P(x)− f∗(Ak(x))Qk

]
dx

With slight changes, the above problem can be reformulated as follows:

min
θ

max
A∈Rjk

n∑
i=1

ℓ(ŷθ(xi), yi) + λ max
A1,...,Am

∑
k

E
[
Ak(s)Pj(s)− f∗(Ak(s))Qk

]
When both sensitive features and target variables are continuous, the objective function becomes:

min
θ

max
A∈R∞×∞

n∑
i=1

ℓ(ŷθ(xi), yi) + λ

∫
x

∫
y

[
A(x, y)P(x)− f∗(A(x, y))Q(y)

]
dx dy

Such a formulation is clearly intractable for solving Ak(x) or A(x, y) in the continuous domain. We
need to approximate the above integrals in discretized/quantized regions or find another variational
representation for designing unbiased estimators of continuous domain f -divergences. We leave
developing algorithms for the continuous target variables and sensitive attributes as a future direction.
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Appendix D. f -divergences Cover Well-known Notions of Fairness Violation

In this section, we show that optimizing f -divergences to 0 guarantees the independence of the
sensitive attributes and predictions. In other words, optimizing f -divergences leads to a fair model
under the demographic parity notion (or other group fairness notions discussed in Appendix B).

Proposition 4 [43, Theorem 2.3] Let f be a convex function from R+ to R, such that f is convex,
f(1) = 0, f is strictly convex in a neighborhood of 1. Then Df (P||Q) = 0, if and only if P = Q.

As an immediate result, a trained model in (f -FERM) is fair under the demographic notion if and
only if

P(ŷθ(x), s) = P(ŷθ(x))⊗ P(s), (15)

which means the independence of s and ŷθ(x).
Next, we show f -divergences either include or provide an upper bound for well-known notions

of fairness violation in the literature.

Proposition 5 Exponential Rényi Mutual Information (ERMI) [35, 38] is an f -divergence with
f(t) = (t− 1)2

Proof Exponential Rényi Mutual Information is defined as [35]:

ERMI(ŷ, s) =
∑

j∈Y,k∈S

P̂ŷ,s(j, k)
2

P̂ŷ(j)P̂s(k)
− 1 (16)

For the case of f(t) = (t− 1)2, we have:

Df

(
P̂ŷ ⊗ P̂s||P̂ŷ,s

)
=
∑
j∈Y

∑
k∈S

P̂ŷ(j)P̂s(k)f
( P̂ŷ,s(j, k)

P̂ŷ(j)P̂s(k)

)
=
∑
j∈Y

∑
k∈S

P̂ŷ(j)P̂s(k)
( P̂ŷ,s(j, k)

P̂ŷ(j)P̂s(k)
− 1
)2

=
∑
j∈Y

∑
k∈S

P̂ŷ(j)P̂s(k)
( P̂ŷ,s(j, k)

2

P̂ŷ(j)2P̂s(k)2
− 2

P̂ŷ,s(j, k)

P̂ŷ(j)P̂s(k)
+ 1
)

=
∑
j∈Y

∑
k∈S

( P̂ŷ,s(j, k)
2

P̂ŷ(j)P̂s(k)
− 2P̂ŷ,s(j, k) + P̂ŷ(j)P̂s(k)

)
=
∑
j∈Y

∑
k∈S

P̂ŷ,s(j, k)
2

P̂ŷ(j)P̂s(k)
− 2 + 1 = ERMI(ŷ, s)

Note that, in the last equality, we use:∑
j∈Y

∑
k∈S

P̂ŷ,s(j, k) =
∑
j∈Y

P̂ŷ(j) = 1,

and ∑
j∈Y

∑
k∈S

P̂ŷ(j)P̂s(k) =
∑
j∈Y

P̂ŷ(j)
(∑

k∈S
P̂s(k)

)
=
∑
j∈Y

P̂ŷ(j) = 1,
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Proposition 6 Demographic parity violation is upper-bounded by the f -divergence for f(t) =
(t− 1)2

Proof Based on Proposition 5, ERMI is an f -divergence with f(t) = (t − 1)2. Therefore, the
proposition is an immediate result of Lemma 3 in [35].

Proposition 7 Rényi correlation [5] can be upper bounded by the f -divergences for the choice of
f(t) = (t− 1)2.

Proof Based on Proposition 5, ERMI is an f -divergence with f(t) = (t − 1)2. Therefore, the
proposition is an immediate result of Lemma 2 in [35].

Remark 8 Mutual Information as the measure of fairness violation [11] is a special case of f -
divergences for the choice of KL-divergence f(t) = t log(t) in (f -FERM).

Appendix E. Proof of Proposition 1

Lemma 9 Assume that f(z) is a semi-continuous convex function. Therefore, f can be written as
the following maximization problem:

f(z) = max
α

zTα− g(α)

where g is the convex conjugate of f .

Proof Let g be the convex conjugate of the function f defined as:

g(α) = sup
z

αT z− f(z)

Since f is a lower semi-continuous convex function, by Fenchel-Moreau theorem [25], it is biconju-
gate, which means the taking conjugate of g transforms it back to f . Therefore,

f(z) = sup
α

αT z− g(α)

where g is the convex conjugate of f .

Based on the above lemma, we have:

Df (P,Q) =

m∑
i=1

Qif
( Pi

Qi

)
= Df (P,Q) =

m∑
i=1

Qi sup
αi∈domf

αi
Pi

Qi
− f∗(αi)

= sup
α1,...,αm∈domf

m∑
i=1

αiPi − f∗(αi)Qi

Set P = P(ŷθ(x), s),Q = P(ŷθ(x))⊗ P(s), and αi = Ajk. Therefore, we obtain the formulation
in (3).
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Appendix F. Derivation of Closed-Form Expressions for Unbiased Gradient
Estimators of f -Divergences

Proposition 10 For two functions f(t), g(t) such that g(t) = f(t)+c(t−1), thenDf (·|·) ≡ Dg(·|·).

Proof Proof follows naturally from [43, Proposition 7.2]

Theorem 11 Let f(t) = (t− 1)2 and P(s = k) = πk (χ2 Divergence). Then, Equation (1) can be
written as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j

∑
k

πk

[
AjkP(ŷθ = j|s = k) − (Ajk +

A2
jk

4
)P(ŷθ = j)

]
(17)

Variational Representation of f(x) = (x− 1)2 is given by

f(x) = sup
α

(αx− f∗(α))

Where f∗(α) is the convex conjugate

f∗(α) = sup
x
(xα− f(x))

Taking derivative of f∗(α) w.r.t x gives x∗ = α/2 + 1. This results in f∗(α) = α+ α2/4

Theorem 12 Let f(t) = − ln(t) and P(s = k) = πk (Reverse KL). Then, Equation (1) can be
written as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi)+λ
∑
j

∑
k

πk

[
AjkP(ŷθ = j|s = k)+(1+ln(−Ajk))P(ŷθ = j)

]
(18)

Proceeding as above, optimal x∗ for the supremum of f∗(α) is x∗ = −1/α,
resulting in f∗(α) = −1− ln(−α).

Theorem 13 Let f(t) = 1
2 |t − 1| and P(s = k) = πk (Total Variational Distance). Then, Equa-

tion (1) can be written as (where |Ajk| ≤ 1
2 ):

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j

∑
k

πkAjk

[
P(ŷθ = j|s = k)− P(ŷθ = j)

]
(19)

For f = 1
2 |t− 1|, the variational representation is f(x) = supα

(
αx− f∗(α)

)
Through the convex conjugate f∗(α), we have that

f∗(α) = sup
x

(
xα− f(α)

)
= sup

x

(
xα− 1

2
|x− 1|

)
=

{
∞ for |α| > 1

2

α for |α| ≤ 1
2

So |α| ≤ 1
2 is constrained for the supremum/maximum to exist (otherwise tends to∞).
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Theorem 14 Let f(t) = t ln(t) and P(s = k) = πk (KL Divergence). Then, Equation (1) can be
written as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j

∑
k

πk

[
AjkP(ŷθ = j|s = k)− eAjk−1P(ŷθ = j)

]
(20)

For f(t) = t ln(t) in f-divergence, the convex conjugate can be represented by:

f∗(α) = sup
x
(xα− x ln(x))

On differenting w.r.t x for attaining supremum, we get x = eα−1. Hence, the variational representa-
tion of f(t) = t ln(t) becomes:

f(x) = sup
α

(
xα− eα−1

)
Note: We can also use the affine transformation α← α− 1 which results in the more commonly
studied version in literature:

D(P ||Q) = 1 + sup
g:X→R

EP [g(X)]− EQ[e
g(X)]

Theorem 15 Let f(t) = −(t + 1) ln( t+1
2 ) + t ln(t) and P(s = k) = πk (Jensen-Shannon Diver-

gence). Then, Equation (1) can be written as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j

∑
k

πk

[
AjkP(ŷθ = j|s = k) + ln(2− eAjk)P(ŷθ = j)

]
(21)

For the JS Divergence, we have f(t) = −(t+ 1) ln( t+1
2 ) + t ln(t), whose convex conjugate can be

represented as:

f∗(α) = sup
x

(
αx+ (x+ 1) ln

(x+ 1

2

)
− x ln(x)

)
On differentiating w.r.t x to obtain the supremum, we have

2x

x+ 1
= eα =⇒ x =

eα

2− eα

Substituting x in f∗(α),

f∗(α) = − ln(2− eα)

Thus, in f(x) = supα

(
xα− f∗(α)

)
, we get the variational form as:

f(x) = sup
α

(
xα+ ln(2− eα)

)
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Theorem 16 Let f(t) be

f(t) =


tα−αt−(1−α)

α(α−1) if α ̸= 0, α ̸= 1

t ln(t)− t+ 1 if α = 1

− ln(t) + t− 1 if α = 0

and P(s = k) = πk (General α Divergence). Then, Equation (1) can be written as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j

∑
k

πk

[
AjkP(ŷθ = j|s = k)

− P(ŷθ = j)

α

((
(α− 1)Ajk + 1

) α
α−1 − 1

)]
(22)

Excluding the limiting cases where α = 1 or α = 0, we can find the convex conjugate f∗(y) as:

f∗(y) = sup
x

(
xy − f(x)

)
= sup

x

(
xy − xα − αx− (1− α)

α(α− 1)

)
On differentiating w.r.t. x, we obtain (here variational parameter is y, do not confuse with the
constant α)

x∗ =
(
(α− 1)y + 1

) 1
α−1

Thus,

f∗(y) =

(
(α− 1)y + 1

) α
α−1

α
− 1

α

KL Divergence and Reverse KL Divergence can be obtained by taking the limit when α tends to 1
and 0, respectively.

Note: Standard literature on divergences often parametrize the α-divergence as

f(x) =


t ln(t) if α = 1

− ln(t) if α = −1
4

1−α2

(
1− t(1+α/2)

)
otherwise

This is tantamount to the substitution α ← 1+α
2 in the original definition of generalized f-

divergence.

Theorem 17 Let f(t) = (
√
t− 1)2 (equivalently f(t) = 2(1−

√
t)) and P(s = k) = πk (Squared

Hellinger Distance). Then, Equation (1) can be written as:

min
θ

max
A

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j

∑
k

πk

[
AjkP(ŷθ = j|s = k) + P(ŷθ = j)

( 1

Ajk
+ 2
)]

(23)
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For Squared Hellinger Distance,

f∗(α) = sup
x
(xα− f(x))

= sup
x
(xα− 2(1−

√
x))

On differentiating w.r.t. x, we get

α+
1√
x
= 0 (Note α < 0) =⇒ x =

1

(α)2

=⇒ f∗(α) =
α

α2
− 2 +

(−2)
α

=
−1
α
− 2

Note that the first, second, and third terms are negative, negative, and positive, respectively; hence
the appropriate choice of sign(α) for functions of odd powers of α.

Appendix G. Formal Statement of Theorem 2 and Proof

Theorem 18 Formal Statement of Theorem Let (xi, yi, si) ∀1 ≤ i ≤ n be the collection of n
data points satisfying the following assumptions:

• ℓ(·,x, y) is G-Lipschitz, and βℓ-smooth for all xi, yi.

• Fj(·,θ) is L-Lipschitz and b-smooth for all θ and all label classes j.

• p̂min
ŷ := inf{θt,t∈[T ]}minj∈[m]

1
N

∑N
i=1 ŷθ,j(xi) ≥ µ

2 > 0.

• p̂min
S := 1

N

∑N
i=1 1{si=j} > 0.

choose ηθ = Θ( ϵ4

ℓ3L2D2 ) and ηα = Θ( ϵ2

ℓσ2 ) and the mini-batch size of 1. Therefore, Algorithm 1 finds
an ϵ-stationary of Problem f -FERM in O( 1

ϵ8
).

Remark 19 The first assumption listed in the theorem statement is true for popular losses such as
cross-entropy loss and squared loss (assuming that the input data takes values in a bounded set,
which holds for all real-world datasets).

Remark 20 The second assumption holds for popular classifiers generating probability vectors
(e.g., logits in neural networks, logistic regression outputs). For classifiers with no probability output,
one must transform the output to a number between zero and one first.

Remark 21 The third assumption states that the probability of assigning a label to the data points
must not be zero for all data points for any label at each iteration.

Remark 22 Finally, the fourth assumption ensures each sensitive class’s probability is not zero.
In other words, there should be at least one point in the dataset with that sensitive attribute for any
sensitive group. It holds for all benchmark datasets in practice. Simply put, any protected group
appearing during the test phase must have at least one representative in the training data.
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The following lemma is helpful for the proof of the theorem:

Lemma 23 Let A1, . . . , An be n variables such that ∥Ai∥2 ≤ ci. Then, we have:

E[∥
n∑

i=1

Ai∥22] ≤ n
n∑

i=1

c2i (24)

Proof

∥
n∑

i=1

Ai∥22 =
∑
∥Ai∥22 + 2

∑
i ̸=j

⟨Ai, Aj⟩ ≤
∑
∥Ai∥22 +

∑
i ̸=j

∥Ai∥22 + ∥Aj∥22 = n
n∑

i=1

∥Ai∥22,

which is based on the fact that 2⟨Ai, Aj⟩ ≤ ∥Ai∥22 + ∥Aj∥22. Therefore:

E[∥
n∑

i=1

Ai∥22] ≤ n
n∑

i=1

E[∥Ai∥22] ≤ n
n∑

i=1

c2i

Now, we are ready to prove Theorem 18.
Proof The proof consists of three main steps. First, we need to show that the gradient estimator in
Algorithm 1 is unbiased. Since the samples are IID, for any function ψ(·, ·), and an IID batch of data
points B we have:

E
[ 1
B

∑
(x,y)∈B

∇ψ(x, y)
]
=

1

B
∑
(x,y)

E[ψ(x, y)] = E(x,y)∼P(x,y,s)[∇ψ(x, y)]

As an immediate result, if the objective function is written as the summation over n functions,
the gradient estimator over an IID batch of data will be unbiased. According to Equation (4), the
objective function has the desired form for:

min
θ

max
A

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λ
∑
j∈Y,
k∈S

[
AjkFj(xi;θ)1(si = k)− f∗(Ajk)πkFj(xi;θ)

] (25)

Next, we need to show the boundedness of the gradient estimator variance. Let

GB =
1

|B|
∑

(xi,yi)∈B

∇θℓ(ŷθ(xi), yi) + λ
∑
j∈Y,
k∈S

[
Ajk∇θFj(xi;θ)1(si = k)− f∗(Ajk)πk∇θFj(xi;θ)


We need to show for a given data batch:

E[∥GB −Gn∥22]

where Gn is the gradient with respect to all n data points (when B = {1, . . . , n}. Note that:

∥GB −Gn∥22 ≤ 2∥GB∥22 + ∥Gn∥22
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Thus, it suffices to show that the gradient is bounded for any given B batch. Since the samples are
independent of each other and identically distributed from Ptrain (IID samples), the second-order
moment of the average over |B| data points is 1/|B| times the variance of a single data point.

Thus, we need to show that the boundedness of the gradient for a given data point drawn from
the training distribution:∇θℓ(ŷθ(x), yi) + λ

∑
j∈Y,
k∈S

[
Ajk∇θFj(xi;θ)1(si = k)− f∗(Ajk)πk∇θFj(xi;θ)

 (26)

Based on the first assumption:
∥∇θℓ(ŷθ(x), yi)∥2 ≤ G (27)

Based on the second assumption:

∥Ajk∇θFj(xi;θ)1(si = k)∥2 ≤ LAjk (28)

∥πkf∗(Ajk)∇θFj(xi;θ)∥2 ≤ πkLf∗(Ajk) (29)

These terms are bounded if Ajk is bounded and f∗(Ajk) is bounded for any Ajk. This holds true
for all f -divergences given assumptions 3 and 4. To see why, it suffices to find the optimal solution
of each f -divergence by setting the gradient zero with respect to Ajk. In all cases, the solution is a
combination of Psk and Pŷj terms that are non-zero and bounded (by assumptions 3 and 4). Since
each term is bounded in (26), the expectation of the squared norm is also bounded, according to
Lemma 23.

Finally, given that the estimator is unbiased, and the variance is bounded (Assumption 4.1
holds in Lin et al. [34]), the two-time-scale stochastic gradient descent-ascent algorithm (which is
Algorithm 1) finds an ϵ-stationary solution of the Problem in O( 1

ϵ8
) according to Theorem 4.9 in Lin

et al. [34].

Appendix H. Robust f -FERM in the Presence of Distribution Shifts

A semi-stochastic memory-efficient first-order training algorithm. To apply (stochastic) gradient
descent-ascent algorithm [34] to problem (8), we need to have unbiased estimator of the function
h(θ,U,V) w.r.t. θ, U, and V variables. While it seems challenging to obtain unbiased estimator
w.r.t. all variables, one can notice that if p̂j(θ) and q̂j(θ) can be computed easily with one forward
pass over all data points (i.e., in O(m × n) memory requirement). Consequently, the gradient of
h(θ,U,V) w.r.t. U and V can be computed with one forward pass over all data points (without
the need for doing backpropagation). On the other hand, one can easily obtain unbiased estimator
of ∇θp̂j(θ) and ∇θ q̂j(θ) in (10) using a small mini-batch of data. Such a task requires O(b × d)
memory with d being the number of parameters (i.e., θ ∈ Rd) and b being the batch size. Combining
this unbiased estimation with the computed values of p̂j(θ) and q̂j(θ) leads to an unbiased estimator
of the objective of (8) w.r.t. θ variable. To summarize, we need to do one forward propagation to
obtain gradients w.r.t. U and V, and we only do backpropagation for computing gradients w.r.t. θ
over the mini-batch of data. Such an algorithm requires O(mn+ bd) memory requirement; and thus
can be used for training large models (with d, n≫ b,m). It is known that memory requirements are
the major limiting factors in training large models such as LLMs [37].
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H.1. Robust f -FERM Under ℓ∞ Norms and Potentially Large Distribution Shifts
The developed framework in the previous section assumes the distribution shift is small (the uncer-
tainty set diameter is smaller than a certain threshold). When preserving fairness in the presence of
large distribution shifts is a priority, our previous methodology might not work well. As discussed
before, the formulation (7) leads to a nonconvex-nonconcave min-max optimization problem and
this class of problems is hard to solve computationally in general (even to stationarity notions). Thus,
we need to exploit the structure of the problem. In this section, we show that we can exploit the
structure to develop a first-order algorithm under large distribution shifts. Particularly, we focus on
the case where the uncertainty set is ℓ∞ ball and the divergence satisfies certain assumptions (i.e.,
f∗(α∗) > 0 and α∗ > 0, which is satisfied for KL divergence).

For the general f -divergence in (7), it is easy to show that the function Df is convex in P and
Q. Thus, under ℓ∞ uncertainty set on P and Q, the optimal solution of the maximization problem
in (7) will be at an extreme point. Moreover, under the assumption that f∗(α∗) > 0 and α∗ > 0
(which is satisfied for KL divergence), one can easily see that the optimal pj = min{p̂j + δ, 1}
and qj = max{q̂j − δ, 0}. Notice that to obtain this efficient optimal closed-form solution, we
need to relax the probability simplex constraint. Thus under this assumption, problem (7) can be
reformulated as

min
θ

1

n

n∑
i=1

ℓ(ŷθ(xi), yi) + λDf (min{P+ δ, 1}||max{Q− δ, 0}), (30)

which is a regular minimization problem and (sub)gradient descent can be utilized to solve it.

Algorithm 2 Gradient-Regularization Robust Training algorithm
1: Input: θ0 ∈ Rdθ , step-sizes ηθ, ηα, fairness parameter λ ≥ 0, iteration number T , Batchsize [b]t
2: for t = 1, . . . , T do
3: Sample minibatch of data bt = {(x1,y1), · · · , (xb,yb)}
4: Estimate P(ŷθt) for minibatch bt

5: repeat
6: dAjk = ∇A(AjkPŷθ ,s − f∗(Ajk)Pŷθ

Ps)
7: Ajk = Ajk + ηα dAjk

8: until Convergence to A∗
jk

9: Obtain closed form expressions: ∂
∂θ ||∇PDf (P||Q)||22 and ∂

∂θ ||∇PDf (P||Q)||22 in terms of Pŷθ

10: dθ = ∇θ

[
ℓ(θt−1,x,y) + λ

[
Df (P̂||Q̂) + ϵ

(
||∇PDf (P̂||Q̂)||22 + ||∇QDf (P̂||Q̂)||22

)]]
11: θt = θt−1 − ηθ dθ
12: Return: θT

H.2. Fairness-Accuracy Tradeoffs in the Presence of the Distribution Shift
We consider two experiments to evaluate the robustness of Algorithms developed above. In the
first experiment, we randomly switch the label of genders for n% of the data points (n ranges
from 1 to 20) in the Adult dataset. Then, we train models on the new datasets with a proportion of
corrupted sensitive attributes and evaluate the performance on the test data. Figure 3 is obtained by
training different models to achieve 80% accuracy on the test data and comparing their demographic
parity violation. By increasing the percentage of corrupted sensitive attributes, we see that both
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Figure 3: Performance of different state-of-the-art approaches and our two methods for handling distribution
shift. The dataset is adult, and the sensitive attribute is gender. We randomly flip the label of a
proportion of gender entries (from 0 to 20%). As we observe, our approach demonstrates more
robustness against the drop in DP violation compared to other approaches.

f -DRO and f -infinity achieve less DP violation than SOTA approaches in the literature. In this
specific experiment, f -DRO works better than f -infinity, and there is no significant difference
between choosing KL-divergence or χ2 as the function f . Among the papers designed for handling
distribution shifts, Rezaei et al. [48] and Wang et al. [59] were the only options with the available
implementation. In a more recently collected dataset (new adult) [15], the users are separated based
on their living state. We train different fair models in a single state and evaluate the fairness-accuracy
tradeoff in other states. Figure 4 depicts the performance of different methods. For each method, the
center point is the average of accuracy and fairness among 50 states. The horizontal and vertical lines
show the 25-percentile to 75-percentile range of performance among the states. The training fairness
violation is set to 0.02 for all methods. We observe that f -infinity preserves the fairness level better
than other approaches. In comparison, f -DRO has a better accuracy. Depending on the application,
we suggest using f -infinity if preserving a high level of fairness is a priority and f -DRO for the cases
when a better tradeoff between fairness and accuracy is expected. Note that both of these approaches
offer better fairness-accuracy tradeoffs compared to the SOTA approaches in the literature.

24



f -FERM: A SCALABLE FRAMEWORK FOR ROBUST FAIR EMPIRICAL RISK MINIMIZATION

Figure 4: Performance of the trained fair models on new Adult Dataset. The model is trained on one state
(California or Texas) and evaluated in 50 states. The distribution of each state dataset is different
than others. Thus, the IID assumption does not hold among datasets of different states.

Appendix I. Details of Tuning Hyperparameters

In all experiments, we set ηθ = 10−5 and ηα = 10−6. Further, we train the model with λ = 0 for
300 epochs, and then we set λ to the considered value. We continue the training until 2000 epochs.
The range of λ to get each point in the tradeoff figures is varied for different f -divergences. The
KL-divergence λ range is [0, 150]. For χ2 divergence it is [0, 300] and for the reverse KL it is [0, 50].
Moreover, the λ range for JS and Squared Hellinger is [0, 110] and [0, 250]. Note that larger values
outside the range lead to models with 0 predictions for all values.

In the DRO case, aside from λwe must tune ϵ, the robustness parameter. To achieve the best result,
we have two different strategies depending on the availability of the data from the target domain.
Suppose we have access to a collection of data points from the target domain. In that case, we consider
it as the validation set to choose the optimal combination of λ ∈ {0.1, 0.5, 1, 2, 5, 10, 20, 50} and
δ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}. In the second scenario, when we do not have any
access to target domain data, we perform a k-fold cross-validation on the source data. A more
elegant way is to create the validation dataset by oversampling the minority groups. Having access to
the oversampled validation set, we choose the optimal λ and δ similar to the first scenario. In the
experiment regarding Figure 4, we reserve 5% of data from the target domain for validation (scenario
1). In Figure 2, we apply scenario 2 to tune the hyperparameters λ and δ.

Appendix J. Further Experiments on Other Datasets and Notions of Fairness

In this section, we perform (f -FERM), [23], [38], and [5] to COMPAS 2 and German Credit
datasets 3. In the experiment on COMPAS, we use equality of opportunity as the measure of fairness
violation, while in the German Credit dataset experiment, we use equalized odds. The results show
that (f -FERM) is significantly better than other approaches regarding the accuracy-fairness tradeoff.
The batch size is equal to 64 for all methods.

2. https://www.kaggle.com/datasets/danofer/compass
3. https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
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Figure 5: Performance of the trained fair models on COMPAS and German Credit Datasets.
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