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Abstract
We aim to study the practical statistical inference of the online second-order Newton method for
general unconstrained stochastic optimization problems under the fixed dimension setting. We con-
sider the adaptive inexact stochastic Newton method, which is reduced from the stochastic sequen-
tial programming (StoSQP) method in [18] to the unconstrained setting. Based on the asymptotic
normality of the last iteration, we propose a weighted sample covariance matrix, which is a consis-
tent covariance matrix estimator. With this estimator, we are able to conduct statistical inference on
the solution of the stochastic optimization problem in practice. The update of the estimator is en-
tirely online and efficient in computation and memory. We demonstrate the empirical performance
through numerical experiments on linear regression models.

1. Introduction

In this paper, we focus on the following unconstrained stochastic optimization problems

min
x∈Rd

f(x) = EP [f(x; ξ)], (1)

where f : Rd → R is a strongly convex objective function, and the expectation is taken over the
random variable ξ ∼ P . We consider the fixed dimension setting where d is a constant. Problem (1)
appears in various domains, including deep learning [13] and empirical likelihood [8]. Specifically,
(1) can be seen as a parameter estimation problem. We take the linear regression problem as an
example: Suppose ξ = (ξa, ξb) is generated from the model ξb = ξTax

⋆ + ϵ, where ξa ∼ N (0,Σa)
and ϵ ∼ N (0, 1). ξa and ϵ are independent. Let the loss function be f(x; ξ) = (ξb − ξTax)

2/2,
then we can easily verify that the true parameter x⋆ is the minimum of (1). Therefore, the statistical
inference of the solution x⋆ is of high interest, which characterizes the variability of the estimation.

In today’s era of exponential data growth, online algorithms have gained increasing prominence.
One of the widely adopted algorithms is stochastic gradient descent (SGD). [22] and [20] develop an
acceleration procedure by averaging the SGD iterates, and establishing the asymptotic normality for
averaged SGD (ASGD). Moreover, [6] proposes two consistent estimators of the covariance matrix
in the asymptotic Gaussian distribution: plug-in estimator, which achieves faster convergence but
involves the inverse of the averaged Hessian; batch-means estimator, which converges more slowly
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but relies solely on the iteration sequences. [27] further introduces a fully online version of the
batch-means estimator, eliminating the need for a predefined sample size. Other recent progresses
in SGD inference include: [15, 24, 25], which delve into the statistical inference aspects of implicit
SGD. Also, [16, 17] consider SGD under constant stepsize setting. Finally, [11] and [10] build
confidence intervals for SGD and averaged implicit SGD using bootstrap techniques.

The first-order method might not be efficient enough if the eigenvalues of the Hessian matrix
have significant variations. Thus, the online second-order Newton’s methods are important, the sta-
tistical inference of which has appeared recently. [3] proposes an efficient online stochastic Newton
algorithm for the logistic regression problem. Furthermore, the authors establish the asymptotic
normality and offer a consistent covariance matrix estimator. [5] and [4] consider more general
regression problems and develop the inference for the averaged stochastic Newton method. The
aforementioned three works have two limitations: They consider objective functions with specific
forms that allow rank-one updates on the estimated Hessian. Thus, direct updates on the estimated
Hessian inverse can be applied and the Newton systems are exactly solved. Besides, they build the
asymptotic normality for last iterate only at stepsize O(1/t). [18] considers general objective func-
tion and generalizes to the case with deterministic constraint. The authors develop a fully online
StoSQP method for equality-constrained stochastic optimization problems and establish the asymp-
totic normality on the last iteration for a more general class of adaptive stepsize and inexact solves
of the linear systems using sketching techniques [14] to avoid taking matrix inverse. For the readers
interested in the stochastic SQP topic, we refer to [1, 2, 7, 12, 19] for such recent developments.

We aim to study the stochastic Newton method’s statistical inference, a particular case of the
stoSQP introduced in [18], adapted here for the unconstrained optimization setting. To facilitate
practical inference, it is crucial to have an effective estimator of the limiting covariance matrix. [18]
provides a plug-in estimator, but it has two drawbacks: First, it is not a consistent estimator as it
fails to account for the randomness of sketching. Second, it requires the inverse of the estimated
Hessian, preventing the aim of solving the linear systems inexactly. Motivated by the drawbacks,
we propose a weighted sample covariance matrix and establish its consistency theoretically. The
update of the estimator is fully online and does not involve matrix inversions. Therefore, we can
conduct statistical inference on the minimum x⋆ in practice. To our knowledge, we are the first to
propose a consistent estimator of the limiting covariance matrix of a stochastic Newton’s method
for general strongly convex objective functions. We show the performance of our estimator through
numerical experiments on linear regression models.
Notation. ∥ · ∥ denotes the ℓ2 norm for vectors and spectral norm for matrices. ∥ · ∥F denote the
Frobenius norm for matrices. For scalars a, b, a ∧ b = min(a, b). at = O(bt) or at ≲ bt means
at ≤ cbt for large enough t with a positive constant c. at = o(bt) means limt→∞ at/bt = 0. I
denotes identity matrix and 0 denotes the zero vector. ei represents the vector with i-th entry as
1 and 0 for the rest coordinates. For a sequence of compatible matrices {Ai}i, we let

∏j
k=iAk =

AjAj−1 · · ·Ai if j ≥ i and I if j < i. For a symmetric matrix A, λmin(A) (λmax(A)) represents
the smallest (largest) eigenvalue of A. Denote the solution of (1) as x⋆ and B⋆ = ∇2f(x⋆). Let
ft = f(xt) and f⋆ = f(x⋆) (similar notations apply to ∇ft, etc.). 1{·} is the indicator function.

2. Recap: Adaptive Inexact Newton Method

In this section, we briefly review the adaptive inexact Newton method which is reduced from [18].
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Step 1: Estimate the gradient and Hessian. We generate a sample ξt ∼ P and estimate the gradi-
ent ḡt = ∇f(xt; ξt) and the Hessian H̄t = ∇2f(xt; ξt). We also compute Bt =

1
t

∑t−1
i=0 H̄i +∆i.

The modification ∥∆i∥ = O(ωi) ensures Bt is invertible with a predeterministic sequence {ωi}.

Step 2: Approximately solve Newton system via sketching. Considering the Newton system
Bt∆̃xt = −ḡt, we approximate the solution by a randomized iterative solver using sketching tech-
niques [14]. At iteration j, we generate sketching matrix St,j ∈ Rd×q iid∼ S and solve the problem

zt,j+1 = argmin
z

∥z − zt,j∥2 s.t. ST
t,jBtz = −ST

t,j ḡt. ( with zt,0 = 0) (2)

The explicit solution is zt,j+1 = zt,j − BtSt,j(S
T
t,jB

2
t St,j)

†ST
t,j(Btzt,j + ḡt). We perform the

randomized solver for τ iterations, and let ∆̄xt = zt,τ .

Step 3: Update the iterate with a random stepsize. With the direction ∆̄xt, we generate a
randomized stepsize αt satisfying 0 < βt ≤ ᾱt ≤ βt + χt where {βt, χt} are predetermined
sequences. We update the iterate by xt+1 = xt + ᾱt∆̄xt.

Denote the randomness in the randomized solver and the stepsize as ζt and ψt, respectively. We
define the adapted filtration as Ft−2/3 = σ({ξi, ζi, ψi}t−1

i=0∪ξt), Ft−1/3 = σ({ξi, ζi, ψi}t−1
i=0∪ξt∪ζt),

and Ft = σ({ξt, ζt, ψt}ti=0).

3. Global convergence and asymptotic normality

Assumption 1 We assume f(x) is twice continuously differentiable over Rd. For any ξ, we as-
sume the stochastic estimate f(x; ξ) is twice continuously differentiable with respect to x. Besides,
the gradient ∇f(x) and the Hessian ∇2f(x) are Lipschitz continuous with parameters ΥLg and
ΥLH respectively. Furthermore, the function f(x) is µ-strongly convex. Additionally, there exist
constants γB and ΥB such that γB ≤ λmin(Bt) ≤ λmax(Bt) ≤ ΥB for any t ≥ 0.

Assumption 2 (a) For any xt, we have E [ḡt | Ft−1] = ∇ft. There exist constants Cg,m such that
E[∥ḡt∥m∥ | Ft−1] ≤ ∥∇ft∥m + Cg,m for m = 2, 3, 4. (b) The assumption also holds at x⋆.

Assumption 3 For t ≥ 0, we assume that the sketching matrices St,j
iid∼ S. (a) There exists a

constant γS > 0 such that E[BtS(S
TB2

t S)
†STBt] ⪰ γSI . (b) There exists constants ΥS,m such

that E[∥S∥m(∥S∥†)m] ≤ ΥS,m for m = 1, 2.

Assumption 1 is standard in literature [5, 6]. Assumption 2 is a growth condition on the moments
of estimated gradient. Assumption 3 guarantees the performance of the sketching solver, which is
easy to achieve by several choices of S, like a uniform distribution on the canonical basis [23].

Theorem 4 (global convergence) Under Assumptions 1, 2(a) with m = 2, and 3(a), we suppose
βt = cβ/(t+ 1)β and χt = cχ/(t+ 1)χ with constants cβ, cχ > 0, 1/2 < β < 1 and χ > 1. If τ ,
the number of inner sketching iterations, satisfies τ ≥ log(γB/4ΥB)/ log(1−γS), then the iterates
xt satisfy limt→∞ xt = x

⋆ almost surely.

Theorem 4 establishes the global almost sure convergence of the iterate sequence. Its proof can be
found in Appendix A.2. Compared with [18], we remove the compactness on the iterate sequence,
while we strengthen strong convexity to global, which is commonly seen in stochastic unconstrained
optimization [3, 6]. Assumption 2 is weaker than the bounded moment condition in [18].
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Assumption 5 For any xt, we have E
[
H̄t | Ft−1

]
= ∇2ft. There exist constants CH,m such that

E
[
∥H̄t −∇2ft∥mF | Ft−1

]
≤ CH,m for m = 2, 4.

Assumption 6 There exists a function H(ξ) such that ∥∇2f(x; ξ)∥ ≤ H(ξ) for all x. Moreover,
there exist constant ΥH,m > 0 such that E[H(ξ)m] ≤ ΥH,m for m = 2, 4.

Assumption 5 is the moment condition on the estimated Hessian. Assumption 6 implies the Lips-
chitz continuity of ∇f(x; ξ) [6].

Let C̃⋆ = −
∏τ

j=1(I−B⋆Sj(S
T
j (B

⋆)2Sj)
†ST

j B
⋆),C⋆ = EC̃⋆, and I+C⋆ = UΣUT with Σ =

diag(σ1, . . . , σd) be the eigenvalue decomposition. Denote Ω⋆ = (B⋆)−1E[∇f(x; ξ)∇T f(x; ξ)](B⋆)−1.
The next theorem builds the asymptotic normality of the last iterate, with proof in Section A.2.2.

Theorem 7 Under the conditions of Theorem 4, suppose Assumptions 2 with m = 3, 3(b) with
m = 1, 5 with m = 2, 6 with m = 2 hold, and ωt = cω/(t + 1)ω for a constant cω > 0. If χ > β
and (1− (1− γS)

τ )− β/cβ1{β=1} > 0, we have√
1/βt(xt − x⋆)

d−→ N (0,Ξ⋆), (3)

where

Ξ⋆ = U
(
Θ ◦UTE[(I + C̃)Ω⋆(I + C̃)T ]U

)
UT with [Θ]k,l = 1/(σk + σl − β/cβ1{β=1}). (4)

4. Covariance matrix estimate

We propose a consistent estimate of the covariance matrix Ξ⋆ in Theorem 7. Define

x̄M =
1

M

M∑
t=1

xt and ΞM =
1

M

M∑
t=1

1

φt−1
(xt − x̄M )(xt − x̄M )T with φi =

βi + χi

2
. (5)

It is easy to see that the updating process of ΞM can be entirely online. The following theorem gives
the convergence rate of ΞM . Proof can be found in Appendix A.5.

Theorem 8 (consistency of covariance matrix estimate) Suppose Assumptions 1, 2, 3, 5, and 6 hold.
Let βt = cβ/(t + 1)β , χt = cχ/(t + 1)χ, and ωt = cω/(t + 1)ω with constants cβ, cχ, cω > 0. If
1/2 < β < 1, χ > 2β, ω > β/2, and cχ ≤ c2β , then we have

E
[∥∥ΞM − Ξ⋆

∥∥] ≲M− 1−β
2 . (6)

We note that the plug-in estimator in [18], defined as

ΞPI
M := B−1

M

( 1

M

M∑
t=1

ḡtḡ
T
t

)
B−1

M (7)

. The plug-in estimator hasO((1−γS)τ ) gap from Ξ, and the gap does not vanish as the sample size
goes to infinity. Besides, the plug-in estimator requires the inverse of Bt but ΞM avoids this. Theo-
rem 8 allows us to practically perform statistical inference on x⋆. For example, if the conditions in
Theorems 4, 7 and 8 hold, we can construct the following α%-confidence interval for µ := cTx⋆,
which is asymptotic exact by [6, Corollary 4.4].

Pr
(
cTxt − z1−α/2

√
φt · cTΞtc ≤ µ ≤ cTxt + z1−α/2

√
φt · cTΞtc

)
→ α. (8)
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5. Numerical Experiments

We demonstrate the empirical performance of the estimated covariance matrix in linear regression
problems. Our experimental setup follows the settings in a previous study [6]. Specifically, we
consider dimension d ∈ {5, 20, 40, 60} and perform 105 iterations. The components for the true
solution x⋆ ∈ Rd are set linearly spaced between 0 for the first component of x⋆ and 1 for the
d-th one. At each iteration, we independently generate (ξa, ξb) from the linear regression model
defined in Section 1. With loss function f(x; ξ) = 1

2(ξb− ξ
T
ax)

2, we can compute the explicit form
of ḡt and H̄t. We explore three different structures of covariance matrix Σa: 1) Identity matrix:
Σa = I; 2) Toeplitz: [Σa]i,j = r|i−j| with r = 0.5; 3) Equi-correlation: [Σa]i,j = r for i ̸= j
and [Σa]i,i = 1 for all i. We compare four solvers for the Newton system: the exact solver and
the iterative randomized solver (2) with τ = 20, 40, 60 respectively. For the randomized solver, the
sketching matrices S are generated from the uniform distribution on {e1, . . . , ed}. Additionally, we
choose βt = 1/(t + 1)0.501 and χt = β2t . The stepsize ᾱt is randomly drawn from the uniform
distribution on the interval [βt, βt +χt]. For each run, we construct the 95% confidence interval for∑d

i=1 x
⋆
i /d following (8). Under each setting, we repeat the entire process 200 times and compute

the average coverage rate and the average confidence interval length.
Table 1 shows the average coverage rate of the confidence intervals across 200 runs. The average

length of 95% confidence intervals is left to Table 2 in Appendix B. The coverage rate of the plug-in
estimator decreases as the dimension increases for randomized solvers. Also, the performance of
ΞPI
M gets better for larger τ under the same problem setting. This is because more inner iterations in

the randomized solver leads to more accurate approximate to the update direction, which is shown
in Lemma 12. However, the average coverage rates stay around 95% for all 4 solvers for weighted
sample covariance matrix ΞM . ΞM not only reduces the computation complexity by using sketching
techniques, but also numerically performs better in statistical inference due to its consistency.

exactly solved τ = 10 τ = 20 τ = 40

Structure of Σa Dim PI WSC PI WSC PI WSC PI WSC

Identity

5 94.50 94.50 97.00 96.50 95.50 95.50 95.00 94.00
20 96.50 97.50 96.00 96.50 93.00 93.00 94.50 94.00
40 95.50 93.50 95.50 92.00 95.00 93.50 95.50 95.50
60 97.00 96.50 93.50 92.50 94.50 93.50 95.50 96.00

Toeplitz r = 0.5

5 94.00 94.00 90.00 94.00 94.00 94.50 95.00 95.00
20 91.50 91.00 89.00 95.00 92.50 98.00 92.50 95.00
40 95.00 94.00 91.50 95.50 85.50 93.50 87.00 96.00
60 95.50 94.00 93.00 96.50 88.50 96.50 91.50 94.50

Equi-corr r = 0.2

5 95.50 97.50 93.00 94.00 94.50 93.50 96.00 95.50
20 94.00 94.00 84.50 95.00 80.50 95.00 90.00 94.00
40 95.00 94.00 73.00 95.00 77.50 92.00 80.50 94.50
60 94.50 93.50 68.50 93.50 66.00 95.00 76.00 93.00

Table 1: The average coverage rate of the confidence interval for
∑d

i=1 x
⋆
i /d for linear regression

at the target level 95%. PI represents plug-in estimator ΞPI
M and WSC represents weighted

sample covariance matrix ΞM .
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Figure 1 plots the online construction of the confidence interval of
∑d

i=1 x
⋆
i /d for the last 1000

iterations for one run of the experiment. We use the randomized solver with τ = 20. We can see
that the confidence intervals consistently cover the true value, which demonstrates the performance
of the weighted sample covariance matrix.

(a) d = 5 (b) d = 20 (c) d = 40 (d) d = 60

Identity Σa

(e) d = 5 (f ) d = 20 (g) d = 40 (h) d = 60

Toeplitz Σa with r = 0.5

(i) d = 5 (j) d = 20 (k) d = 40 (l) d = 60

Equi corr Σa with r = 0.2

Figure 1: 95% confidence intervals of
∑d

i=1 x
⋆
i /d for least squares. The inner iteration number of

the randomized solver is chosen as τ = 20. Each figure has three lines: the green and red
lines correspond to the lower and upper interval boundaries, respectively; and the blue
line corresponds to the true value.

6. Conclusion

For the stochastic Newton method derived from [18], we proved the global almost sure convergence
on the iterate sequence of the algorithm and proved asymptotic normality of the last iterate under
weaker assumptions compared to [18]. We proposed a fully online consistent estimator of the
covariance matrix in the asymptotic Gaussian distribution. The estimator construction is efficient in
both storage and computation. Based on that, it became practical to conduct statistical inference on
the minimum x⋆. We showed the validity of the confidence interval by numerical experiments on a
linear regression model.
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Appendix A. Proofs

A.1. Preparation Lemmas

We first introduce the following lemmas on the series of stepsize, which are important tools for our
proofs.

Lemma 9 [18, Lemma A.1]Suppose {φi}i is a positive sequence that satisfies lim
i→∞

i(1−φi−1/φi) =

φ. Then, for any p ≥ 0, we have lim
i→∞

i
(
1− φp

i−1/φ
p
i

)
= p · φ.

Lemma 10 [18, Lemma A.3] Let {ϕi}i, {φi}i, {σi}i be three positive sequences. Suppose we
have,

lim
i→∞

i (1− ϕi−1/ϕi) = ϕ, lim
i→∞

φi = 0, lim
i→∞

iφi = φ̃ (9)

for a constant ϕ and a (possibly infinite) constant φ̃ ∈ (0,∞]. For any l ≥ 1, if we further have

l∑
k=1

σk + ϕ/φ̃ > 0, (10)

then the following results hold as t→ ∞

1

ϕt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi −→
1∑l

k=1 σk + ϕ/φ̃
, (11)

1

ϕt


t∑

i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕiai + b ·
t∏

j=0

l∏
k=1

(1− φjσk)

 −→ 0, (12)

where the second result holds for any constant b and any sequence {at}t such that at → 0.

In the next lemma, we characterize the convergence rate of (11) for a specific choice of {φi}i.

Lemma 11 Assume the conditions of Lemma 10 hold. Furthermore, let the sequence φi = η/(i+
1)α for constants η > 0 and 1/2 < α < 1. Define γi = 1/(i+ 1)1−α, then we have

1

ϕt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi −
1∑l

k=1 σk
= O(γt).

Proof Since φi = η/(i+ 1)α, we have limi→∞ iφi = ∞. Thus,
∑l

k=1 σk + ϕ/φ̃ =
∑l

k=1 σk, i.e.
condition (9) holds whatever the choice of ϕ. [18, Eq A.3] gives us the decomposition

1

ϕt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− φjσk)φiϕi −
1∑l

k=1 σk

=
1

ϕt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)ϕi

{
φi −

1∑l
k=1 σk

(
1− ϕi−1

ϕi

l∏
k=1

(1− φiσk)

)}

+
1

ϕt

t∏
j=1

l∏
k=1

(1− φiσk) · ϕ0

(
φ0 −

1∑l
k=1 σk

)
. (13)
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Note that

l∏
k=1

(1− φiσk) = 1−
l∑

k=1

σkφi +O(φ2
i ) and 1/iφi = (i+ 1)α/i = γi, (14)

Here γi is defined to be 1/(i+ 1)1−α. By (9) and (14), we have

ϕi−1

ϕi
= 1− ϕ · 1

i
+ o

(
1

i

)
= 1 +O (φiγi) .

Multiplying the two terms, we get

ϕi−1

ϕi

l∏
k=1

(1− φiσk) = 1−
l∑

k=1

σkφi +O (φiγi) ,

where we also use the fact that φ2
i = o (φiγi) for α ∈ (1/2, 1). Thus, the first term in (13) can be

simplified as

1

ϕt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)ϕi

{
φi −

1∑l
k=1 σk

(
1− ϕi−1

ϕi

l∏
k=1

(1− φiσk)

)}

=
1

ϕt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φiO (ϕiγi) . (15)

By the definition of γi in (14), we know lim
i→∞

i (1− γi−1/γi) = − (1− α) =: γ. Moreover,

lim
i→∞

i

(
1− ϕi−1γi−1

ϕiγi

)
= lim

i→∞
i

(
1− ϕi−1

ϕi
− ϕi−1

ϕi

(
1− γi−1

γi

))
= ϕ+ γ.

Thus, we are able to apply Lemma 10. (11) and (12) give us

1

ϕtγt

t∑
i=1

t∏
j=i+1

l∏
k=1

(1− φjσk)φi · ϕiγi −→
1∑l

k=1 σk
,

1

ϕtγt

t∏
j=0

l∏
k=1

(1− φiσk) −→ 0.

Combining the above display with (13) and (15), we complete the proof.

We now discuss the sketching randomized solver. We subtract ∆̃xt from both sides of the
explicit solution of (2) and plug in ḡt = −Bt∆̃xt, then

zt,j+1 − ∆̃xt = zt,j − ∆̃xt −
(
BtSt,j(S

T
t,jB

2
t St,j)

†ST
t,jBt

)
(zt,j − ∆̃xt).

We define

C̃t,j = I −
(
BtSt,j(S

T
t,jB

2
t St,j)

†ST
t,jBt

)
and C̃t = −

τ∏
j=1

C̃t,j . (16)

10
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Note that C̃t,j is a projection matrix, thus ∥C̃t,j∥ ≤ 1 and ∥C̃t∥ ≤ 1. Given z0 = 0, we know
∆̄xt = (I + C̃t)∆̃xt = −(I + C̃t)B

−1
t ḡt. We let Ct = E[C̃t | Ft−1]. Moreover, since ḡt is

conditionally unbiased, it easy to verify that

E[∆̄xt | Ft−2/3] = (I + Ct)∆̃xt and E[∆̄xt | Ft−1] = (I + Ct)∆xt, (17)

where ∆xt = B−1
t ∇ft. The following lemma guarantees the performance of the randomized

solver.

Lemma 12 [18, Lemma 3.4] Under Assumption 3 (a), for all t ≥ 0:

1. Let ρ = 1− γS . We have 0 ≤ ρ < 1.

2. E[∆̄xt − ∆̃xt | Ft−2/3] = Ct∆̃xt, and ∥Ct∥ ≤ ρτ .

3. E
[
∥∆̄xt − ∆̃xt∥2 | Ft−2/3

]
≤ ρτ∥∆̃xt∥2.

A.2. Proofs of Section 2

A.2.1. PROOF OF THEOREM 4

The main outline is similar to [18]. With the compactness removed, we do not have the bound on
∇f anymore. Besides, we relax the bounded covariance condition to Assumption 2. We have to
deal with these two points.
Proof Due to the Lipschitz continuity of ∇f , we have

ft+1 − f⋆ ≤ ft − f⋆ + ᾱt∇fTt ∆̄xt +
ᾱ2
t

2
ΥLg∥∆̄xt∥2. (18)

We subtract f⋆ from both sides and take the conditional expectation.

E[ft+1 − f⋆ | Ft−1] ≤ (ft − f⋆) + E
[
ᾱtE[∇fTt ∆̄xt | Ft−1] | Ft−1

]
+ E

[
ᾱt

{
∇fTt ∆̄xt − E[∇fTt ∆̄xt | Ft−1]

}
| Ft−1

]
+

ΥLg

2
E
[
ᾱ2
t ∥∆̄xt∥2 | Ft−1

]
. (19)

We first deal with the second term on the right hand side. By (17), we know

E[∇fTt ∆̄xt | Ft−1] = ∇fTt (I+Ct)∆xt = −∇fTt (I+Ct)B
−1
t ∇ft ≤ − 1

ΥB
∥∇ft∥2+

ρτ

γB
∥∇ft∥2,

where the last inequality is due to ∥Ct∥ ≤ ρτ and γB ≤ λmin(Bt) ≤ λmax(Bt) ≤ ΥB . Further-
more, since βt ≤ ᾱt and ρτ ≤ γB/4ΥB , we have

E
[
ᾱtE[∇fTt ∆̄xt | Ft−1] | Ft−1

]
≤ − 3

4ΥB
βt∥∇ft∥2. (20)

Noting that E
[
∇fTt ∆̄xt − E[∇fTt ∆̄xt | Ft−1] | Ft−1

]
= 0, we have

E
[
ᾱt

{
∇fTt ∆̄xt−E[∇fTt ∆̄xt | Ft−1]

}
| Ft−1

]
= E

[
(ᾱt−βt)

{
∇fTt ∆̄xt−E[∇fTt ∆̄xt | Ft−1]

}
| Ft−1

]
≤ χt

2
∥∇ft∥E

[∥∥∥∆̄xt − E[∆̄xt | Ft−1]
∥∥∥ | Ft−1

]
, (21)

11
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where the inequality uses |ᾱt − βt| ≤ χt/2. (17) leads to∥∥∥∆̄xt − E[∆̄xt | Ft−1]
∥∥∥ =

∥∥(I + C̃t)B
−1
t ḡt − (I + Ct)B

−1
t ∇ft

∥∥
≤ ∥B−1

t ∥∥∇ft∥∥Ct − C̃t∥+ ∥I + C̃t∥∥B−1
t ∥∥ḡt −∇ft∥ ≤ 2

γB
∥∇ft∥+

2

γB
∥ḡt −∇ft∥,

where the last inequality holds due to ∥B−1
t ∥ ≤ 1/γB , ∥Ct∥ ≤ 1, and ∥C̃t∥ ≤ 1. Besides,

Assumption 2(a) gives us

E
[
∥ḡt −∇ft∥ | Ft−1

]
≤
√

E
[
∥ḡt −∇ft∥2 | Ft−1

]
≤
√
2E
[
∥ḡt∥2 | Ft−1

]
+ 2∥∇ft∥2

≤
√
2
√

2∥∇ft∥2 + Cg,2 ≤ 2∥∇ft∥+
√
2
√
Cg,2.

Plugging the above two displays in (21), we have

E
[
ᾱt

{
∇fTt ∆̄xt − E[∇fTt ∆̄xt | Ft−1]

}
| Ft−1

]
≤ χt

( 3

γB
∥∇ft∥2 +

√
2

γB

√
Cg,2∥∇ft∥

)
≤ χt

( 4

γB
∥∇ft∥2 +

1

2γB
Cg,2

)
. Young’s inequality (22)

Finally, using ᾱt ≤ ηt with ηt := βt + χt, we have E
[
ᾱ2
t ∥∆̄xt∥2 | Ft−1

]
≤ η2tE

[
∥∆̄xt∥2 | Ft−1

]
.

Since ∆̄xt = −(I + C̃t)B
−1
t ḡt, we have

E
[
ᾱ2
t ∥∆̄xt∥2 | Ft−1

]
≤ η2tE

[
∥(I + C̃t)∥2∥B−1

t ∥2∥ḡt∥2 | Ft−1

]
≤ 22η2t

γ2B

(
∥∇ft∥2 + Cg,2

)
. (23)

The last inequality follows from λmin(Bt) ≥ γB , ∥C̃t∥ ≤ 1, and Assumption 3 (a) with m = 2. We
plug (20), (22), and (23) back into (19). We rearrange the items and obtain

E[ft+1 − f⋆ | Ft−1] | Ft−1

]
≤ (ft − f⋆)−

( 3

4ΥB
βt −

4

γB
χt −

4

γ2B
η2t

)
∥∇ft∥2 +

4Cg,2

γB
(χt + η2t ).

By βt = cβ/(t+1)β and χt = o(βt), there exists a fixed integer t0 such that 4
γB
χt− 22

γ2
B
η2t ≤ 2

ΥB
βt

for all t ≥ t0. Thus, for t ≥ t0, we have the recursion

E[ft+1 − f⋆ | Ft−1] ≤ (ft − f⋆)− 1

4ΥB
βt∥∇ft∥2 +

22

γ2B
Cg,2 · (χt + η2t ).

We note that
∑∞

t=t0
χt < ∞ and

∑∞
t=t0

η2t ≲
∑∞

t=t0
β2t +

∑∞
t=t0

χ2
t < ∞ due to β > 1/2 and

χ > 1. Therefore, the Robbins-Siegmund theorem [9, Theorem 1.3.12] leads to

ft − f⋆converges to a finite random variable, and
∞∑

t=t0

βt ∥∇ft∥2 <∞ a.s.

Furthermore, since
∑∞

t=t0
βt = ∞, we can conclude that lim inft→∞ ∥∇ft∥ = 0 almost surely.

The strong convexity[26] of f gives us

µ

2
∥xt − x∗∥2 ≤ f (xt)− f∗ ≤ 1

2µ
∥∇ft∥2 . (24)

12
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By the second inequality in (24) and lim inft→∞ ∥∇ft∥ = 0, we get lim inft→∞ ft−f⋆ = 0. Since
ft − f⋆ converges a.s., the conclusion can be strengthened to limt→∞ ft − f⋆ = 0. We use the first
inequality in (24) and obtain

lim
t→∞

xt = x
⋆ almost surely.

This completes the proof.

A.2.2. PROOF OF THEOREM 7

The proof is almost the same as Theorem 4.6 in [18]. The only difference is the removal of compact-
ness and the relaxation of the bounded variance on ḡt. The techniques of dealing with the difference
is similar to what we do in the proof of Theorem 4. Although we cannot bound ∇ft, we know that
∇ft → 0 as t→ ∞. Thus, it does not affect the almost sure convergence in the proof. We will skip
the details and refer readers to [18].

A.3. Convergence rate of iterates and Hessian estimates

In this section, we introduce two lemmas bounding E
[
∥xt − x⋆∥4

]
and E

[
∥Bt −B⋆∥4

]
.

Lemma 13 Under assumptions 1, 2(a) with m = 4, 3(a), we suppose βt = cβ/(t+ 1)β and χt =
cχ/(t + 1)χ with constants 0 < cχ < c2β , 0 < β < 1, and χ > 2β. If τ ≥ log(γB/4ΥB)/ log ρ,
then we have

E
[
∥xt − x⋆∥4

]
≲ Dβ2t ,

where

D =
Υ2

Lg

µ2
max

( ΥB

µγ4B
max(Cg,4, C

2
g,2), ∥x0 − x⋆∥4

)
. (25)

Proof Taking squares on both sides of (18), we have

(ft+1 − f⋆)2 ≤ (ft − f⋆)2 + 2ᾱt(ft − f⋆)∇fTt ∆̄xt + ᾱ2
tΥLg(ft − f⋆)∥∆̄xt∥2

+ ᾱ2
t (∇fTt ∆̄xt)

2 + ᾱ3
tΥLg∇fTt ∆̄xt∥∆̄xt∥2 +

1

4
ᾱ4
tΥ

2
Lg∥∆̄xt∥4. (26)

We take the conditional expectation given Ft−1, then classify these terms by the order of stepsize
and analyze them one by one.
Part 1. E[ 2ᾱt(ft − f⋆)∇fTt ∆̄xt | Ft−1]
Same as the proof of Theorem 4, we have the decomposition

E[ 2ᾱt(ft − f⋆)∇fTt ∆̄xt | Ft−1] = 2(ft − f⋆)E
[
ᾱtE[∇fTt ∆̄xt | Ft−1] | Ft−1

]
+ 2(ft − f⋆)E

[
ᾱt

{
∇fTt ∆̄xt − E[∇fTt ∆̄xt | Ft−1]

}
| Ft−1

]
.

By (20) and (24), the following holds with ρτ ≤ γB/4ΥB .

2(ft − f⋆)E
[
ᾱtE[∇fTt ∆̄xt | Ft−1] | Ft−1

]
≤ − 3

2ΥB
βt(ft − f⋆)∥∇ft∥2 ≤ − 3µ

ΥB
βt(ft − f⋆)2.

13
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By (22), we know

2(ft−f⋆)E
[
ᾱt

{
∇fTt ∆̄xt−E[∇fTt ∆̄xt | Ft−1]

}
| Ft−1

]
≤ χt(ft−f⋆)

( 8

γB
∥∇ft∥2+

1

γB
Cg,2

)
.

The Lipschitz continuity [26] of ∇f leads to

1

2ΥLg
∥∇ft∥2 ≤ ft − f∗ ≤

ΥLg

2
∥xt − x⋆∥2. (27)

By (27) and Young’s inequality, we have

χt(ft−f⋆)
( 8

γB
∥∇ft∥2+

1

γB
Cg,2

)
≤

16ΥLg

γB
χt(ft−f⋆)2+

µ

2ΥB
χ
1/2
t (ft−f⋆)2+

C2
g,2ΥB

2µγ2B
χ
3/2
t

≤
16ΥLg

γB
η2t (ft − f⋆)2 +

µ

2ΥB
βt(ft − f⋆)2 +

C2
g,2ΥB

2µγ2B
η3t .

In the last inequality, we use χt ≤ ηt and χt ≤ β2t ≤ η2t , which is easy to check according to
0 < cχ ≤ c2β and χ > 2α.
Part 2. E[ ᾱ2

tΥLg(ft − f⋆)∥∆̄xt∥2 + ᾱ2
t (∇fTt ¯∆xt)2 | Ft−1]

Thus, the second term can be upper bounded by

(∇fTt ∆̄xt)
2 ≤ ∥∇ft∥2∥∆̄xt∥2 ≤ 2ΥLg(ft − f⋆)∥∆̄xt∥2.

Now we use ᾱt ≤ ηt := βt + χt and merge two terms.

E[ ᾱ2
tΥLg(ft − f⋆)∥∆̄xt∥2 + ᾱ2

t (∇fTt ∆̄xt)
2 | Ft−1] ≤ 3ΥLgη

2
tE
[
(ft − f⋆)∥∆̄xt∥2 | Ft−1

]
≤ µ

2ΥB
ηt(ft − f⋆)2 +

9ΥBΥLg

2µ
η3tE

[
∥∆̄xt∥4 | Ft−1

]
. (Young’s inequality)

Part 3. E[ ᾱ3
tΥLg∇fTt ∆̄xt∥∆̄xt∥2 | Ft−1]

Similarly, we use Young’s inequality and apply (27) to bound this term.

E[ ᾱ3
tΥLg∇fTt ∆̄xt∥∆̄xt∥2 | Ft−1] ≤ η3tΥLgE[∥∇ft∥∥∆̄xt∥3 | Ft−1]

≤ η3t
4
∥∇ft∥4+

3Υ
4/3
Lg η

3
t

4
E
[
∥∆̄xt∥4 | Ft−1

]
≤ η3tΥ

2
Lg(ft−f⋆)2+

3Υ
4/3
Lg

4
η3tE

[
∥∆̄xt∥4 | Ft−1

]
.

Combining the analyses of all parts and (26), we have

E[(ft+1 − f⋆)2 | Ft−1] ≤
(
1− 5µ

2ΥB
βt +

µ

2ΥB
ηt +

16ΥLg

γB
η2t +Υ2

Lgη
3
t

)
(ft − f⋆)2

+
C2
g,2ΥB

2µγ2B
η3t + 3

ΥBΥ
2
Lg

µ
η3t (1 + ηt)E

[
∥∆̄xt∥4 | Ft−1

]
.

Next, we bound E
[
∥∆̄xt∥4 | Ft−1]. Under the Assumption 3 with m=4, by the fact ∥C̃t∥ ≤ 1 and

∥B−1
t ∥ ≤ 1/γB , we have

E
[
∥∆̄xt∥4 | Ft−1

]
= E

[
∥(I + C̃t)∥4∥B−1

t ∥4∥ḡt∥4 | Ft−1

]
≤ 24

γ4B
(∥∇ft∥4 + Cg,4)

(27)
≤

26Υ2
Lg

γ4B
(ft − f⋆)2 +

24

γ4B
Cg,4.

14
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Therefore, we rearrange the terms and get the recursion

E[(ft+1 − f⋆)2] ≤
(
1− 5µ

2ΥB
βt +

µ

2ΥB
ηt +

16ΥLg

γB
η2t +

193ΥBΥ
4
Lg

µγ4B
η3t (1 + ηt)

)
E[(ft − f⋆)2]

+
50ΥBΥ

2
Lg

µγ4B
max(Cg,4, C

2
g,2)η

3
t (1 + ηt).

Applying the inequality above recursively, then we get

E[(ft+1 − f⋆)2] ≤
t∏

i=0

∣∣∣∣∣1− 5µ

2ΥB
βi +

µ

2ΥB
ηi +

16ΥLg

γB
η2i +

193ΥBΥ
4
Lg

µγ4B
η3i (1 + ηi)

∣∣∣∣∣ (f0 − f⋆)2

+
50ΥBΥ

2
Lg

µγ4B
max(Cg,4, C

2
g,2)

t∑
i=0

t∏
j=i+1

∣∣∣∣∣1− 5µ

2ΥB
βj +

µ

2ΥB
ηj +

16ΥLg

γB
η2j +

193ΥBΥ
4
Lg

µγ4B
η3j (1 + ηj)

∣∣∣∣∣ η3i (1 + ηi)

=: Vt +Wt. (28)

Since βt = cβ/(t+ 1)β and χt = o(βt), there exists a deterministic integer t̃ such that for all t ≥ t̃

µ

2ΥB
ηt +

16ΥLg

γB
η2t +

193ΥBΥ
4
Lg

µγ4B
η3t (1 + ηt) ≤

3µ

2ΥB
βt and 1− µ

ΥB
βt > 0.

Then, we have

Wt ≤
50ΥBΥ

2
Lg

µγ4B
max(Cg,4, C

2
g,2)

t∑
t̃−1

t∏
j=i+1

(
1− µ

ΥB
βj

)
η3i (1 + ηi)

+
50ΥBΥ

2
Lg

µγ4B
max(Cg,4, C

2
g,2)

t̃−2∑
i=0

t∏
j=i+1

∣∣∣∣∣1− 5µ

2ΥB
βj +

µ

2ΥB
ηj +

16ΥLg

γB
η2j +

193ΥBΥ
4
Lg

µγ4B
η3j (1 + ηj)

∣∣∣∣∣ η3i (1+ηi).
As explained in the proof of [18, Lemma D.1], the first few terms do not affect the rate of series.
When t ≥ t̃, let η̃t = ηt. When t = t̃− 1, let η̃t satisfy

η̃3t (1+η̃t) =
t̃−2∑
i=0

t̃−1∏
j=i+1

∣∣∣∣∣1− 5µ

2ΥB
βj +

µ

2ΥB
ηj +

16ΥLg

γB
η2j +

193ΥBΥ
4
Lg

µγ4B
η3j (1 + ηj)

∣∣∣∣∣ η3i (1+ηi)+η3t (1+ηt).
Thus, we can rewrite Wt as

Wt ≤
50ΥBΥ

2
Lg

µγ4B
max(Cg,4, C

2
g,2)

t∑
t̃−1

t∏
j=i+1

(
1− µ

ΥB
βj

)
η̃3i (1 + η̃i).

We aim to use Lemma 10 to obtain the rate of Wt, hence we first verify the conditions (9) and
(10). With the choice βt = cβ/(t + 1)β (β < 1), we have limt→∞ tβt = ∞, thus condition (10)
always hold. In the remainder of this paper, we will omit this point and only verify condition (9)
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when applying Lemma 10. Since limt→∞ t(1 − βt−1/βt) = −β We have the limit, limt→∞ t(1 −
χt−1/χt) = −χ, ηt = βt + χt with χt = o(βt), we have

lim
t→∞

t

(
1− ηt−1/βt−1

ηt/βt

)
= lim

t→∞
t

(
1− 1 + χt−1/βt−1

1 + χt/βt

)
= lim

t→∞
t

(
χt

βt
− χt−1

βt−1

)
= lim

t→∞
t

(
1− χt−1/βt−1

χt/βt

)
χt

βt
= lim

t→∞

(
1− χt−1

χt
+
χt−1

χt

{
1− βt−1

βt

})
= (β − χ) lim

t→∞

χt

βt
= 0.

Furthermore,

lim
t→∞

t

(
1− ηt−1

ηt

)
= lim

t→∞
t

(
1− βt−1

βt
+
βt−1

βt

{
1− ηt−1/βt−1

ηt/βt

})
= −β,

lim
t→∞

t

(
1− 1 + ηt−1

1 + ηt

)
= lim

t→∞
t
ηt − ηt−1

1 + ηt
= lim

t→∞
t

(
1− ηt−1

ηt

)
ηt = −β lim

t→∞
ηt = 0.

Combining the three displays above and using Lemma 9, we know

lim
t→∞

t

(
1−

η̃3t−1(1 + η̃t−1)/βt−1

η̃3t (1 + η̃t)/βt

)
= lim

t→∞
t

{(
1−

η2t−1

η2t

)
+
η2t−1

η2t

(
1− ηt−1/βt−1

ηt/βt

)
+
η3t−1/βt−1

η3t /β
3
t

(
1− 1 + ηt−1

1 + ηt

)}
= −2β.

Therefore, we can apply Lemma 10. By (11), we have

Wt ≲
50ΥBΥ

2
Lg

µγ4B
max(Cg,4, C

2
g,2)β

2
t . (29)

Similarly, (12) leads to

Vt ≤
t∏

i=t̃

(
1− µ

ΥB
βi

) t̃−1∏
i=0

∣∣∣∣∣1− 5µ

2ΥB
βi +

µ

2ΥB
ηi +

16ΥLg

γB
η2i +

193ΥBΥ
4
Lg

µγ4B
η3i (1 + ηi)

∣∣∣∣∣ (f0 − f⋆)2

= (f0 − f⋆)2 · o(β2t ). (30)

Plugging (29), (30) into (28), and using (24), we have

E
[
∥xt − x⋆∥4

]
≤ 4

µ2
E
[
(ft − f⋆)2

]
≲ Dβ2t ,

where D is defined in (25). We complete the proof.

Lemma 14 Under the conditions in Lemma 13, we suppose Assumption 5 holds with m = 2. Then
we have

E
[
∥Bt −B⋆∥2

]
≲ max

(
CH,2,

√
DΥ2

LH

)
(βt + ω2

t ), (31)

where D is defined in (25). If Assumption 5 is strengthen to m = 4, then we have

E
[
∥Bt −B⋆∥4

]
≲ max

(
CH,4, DΥ4

LH

)
(β2t + ω4

t ). (32)

16
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Proof We first prove (32). By the construction of Bt in section 2, Bt−B⋆ can be decomposed into

Bt −B∗ =
1

t

t−1∑
i=0

(H̄i −∇2fi) +
1

t

t−1∑
i=0

(∇2fi −∇2f⋆) + ∆t.

Thus, we have

E
[
∥Bt −B⋆∥4

]
≲ E

[∥∥∥1
t

t−1∑
i=0

(H̄i −∇2fi)
∥∥∥4]+ E

[∥∥∥1
t

t−1∑
i=0

(∇2fi −∇2f⋆)
∥∥∥4]+ ω4

t . (33)

By Assumption 5, we know H̄i−∇2fi is a martingale difference sequence and E
[ ∥∥H̄i −∇2fi

∥∥4
F

]
is bounded, which allows us to apply [21, Theorem 2.1] and get

E
[∥∥∥1
t

t−1∑
i=0

(H̄i−∇2fi)
∥∥∥4] ≤ E

[∥∥∥1
t

t−1∑
i=0

(H̄i−∇2fi)
∥∥∥4
F

]
≲

1

t4

[ t−1∑
i=0

(
E
[
∥H̄i−∇2fi∥4F

])1/2]2
≤
CH,4

t2
.

Regarding the second term in (33), we have

E
[∥∥∥1
t

t−1∑
i=0

(∇2fi −∇2f⋆)
∥∥∥4] ≤ E

[(1
t

t−1∑
i=0

∥∇2fi −∇2f⋆∥
)4]

≤
Υ4

Lh

t4
E
[( t−1∑

i=0

∥xi − x⋆∥
)4]

≤ Υ4
Lh

[(1
t

t−1∑
i=0

(
E∥xi − x⋆∥4

)1/4)4]
≲ DΥ4

Lh

(1
t

t−1∑
i=0

β
1/2
i

)4
.

The second inequality holds since ∇2f is ΥLh Lipschitz continuous; the third inequality is due
to Hölder’s inequality; the last inequality comes from Lemma 13. Since β < 1, we thus know
that 1

t

∑t−1
i=0 β

1/2
i = 1

t

∑t
i=1 cβ/t

β ≲ β
1/2
t . We make a quick remark that the above technique

computing the average rate is frequently used in our proofs. We will omit the derivation details in
the remainder of this paper. Combining all the derivations, we get

E∥Bt −B⋆∥4 ≲
CH,4

t2
+DΥ4

Lhβ
2
t + ω4

t ≲ max
(
CH,4, DΥ4

Lh

)
(β2t + ω4

t ).

The proof for (31) is almost the same. We point out one significant difference, which lies in the
martingale difference sequence. Note that [21, Theorem 2.1] requires the order of the moment
higher than 2, thus we cannot apply this theorem. Instead, we have

E
[∥∥∥1
t

t−1∑
i=0

(H̄i −∇2fi)
∥∥∥4] ≤ E

[∥∥∥1
t

t−1∑
i=0

(H̄i −∇2fi)
∥∥∥4
F

]
=

1

t2
Tr
(
E
[( t−1∑

i=0

(H̄i −∇2fi)
)2])

.

Since H̄i −∇2fi is martingale, we cancel the interaction terms and obtain

E
[∥∥∥1
t

t−1∑
i=0

(H̄i−∇2fi)
∥∥∥4] = 1

t2

( t−1∑
i=0

E
[
Tr
(
(H̄i−∇2fi)

2
)])

=
1

t2

( t−1∑
i=0

E
[
∥H̄i−∇2fi∥2F

])
≤
CH,2

t
,

where the last inequality is due to Assumption 5. This completes the proof.
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A.4. The linear case

We adapt [18, Lemma 4.1] to our unconstrained setting.

Lemma 15 [18, Lemma 4.1] Let φt = (βt + ηt)/2. The iterate sequence can be expressed as

xt+1 − x⋆ = I1,t + I2,t + I3,t, (34)

where

I1,t =
t∑

i=0

t∏
j=i+1

{I − φj(I + C⋆)}φiθ
i (35)

I2,t =
t∑

i=0

t∏
j=i+1

{I − φj(I + C⋆)} (ᾱi − φi) ∆̄xi (36)

I3,t =
t∏

i=0

{I − φi(I + C⋆)} (x0 − x⋆) +

t∑
i=0

t∏
j=i+1

{I − φj(I + C⋆)}φiδ
i (37)

and

C⋆ = −(I − E[B⋆S(ST (B⋆)2S)†STB⋆])τ , (38)

θi = ∆̄xi − E[∆̄xi | Fi−1] = −(I + Ci)B
−1
i (ḡi −∇fi) + {x̄i − (I + Ci)∆̃xi}, (39)

δi = −(I + Ci)
{
(B⋆)−1ψi + {B−1

i − (B⋆)−1}∇fi
}
−
(
Ci − C⋆

)
(xi − x⋆), (40)

ψi = ∇fi −B⋆(xi − x⋆). (41)

I1,t is a martingale; I2,t characterizes the influence by the randomized stepsize; I3,t contains all the
remaining errors. We point the readers to [18] for details. With the decomposition above, we have

1

M

M∑
t=1

1

φt−1
(xt − x⋆)(xt − x⋆)T =

3∑
i=1

3∑
j=1

1

M

M−1∑
t=0

1

φt
Ii,tIj,t. (42)

Among these terms, 1
M

∑M−1
t=0

1
φt
I1,tIT

1,t approximates Ξ⋆, which will be shown in Lemma 18. In
the next section, we will see that the remaining are higher-order terms.

Next, we give a finer decomposition on I1,t. Let

C̃⋆
t,j = I −

(
B⋆St,j(S

T
t,j(B

⋆)2St,j)
†ST

t,jB
⋆
)

and C̃⋆
t = −

τ∏
j=1

C̃⋆
t,j , (43)

where St,j is the same matrix in generating C̃t,j in (16). Thus, the randomness of C̃⋆
t comes from

ζt. We point out that EC̃⋆
t = C⋆ by definition. Define

θ̃
i
= −(I + C̃⋆

i )(B
⋆)−1∇f(x⋆; ξi), and θ̂

i
= θi − θ̃i. (44)

It is easy to check that both θ̃
i

and θ̂
i

are martingale difference sequences. If we compare the
definition of θ̃

i
and θi, we will find that θ̃

i
share the same randomness as θi but constructed at

18
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x⋆ instead of xi. We note that {θi}i are correlated since xt is dependent on the previous iterates.
However, {θ̃i}i are independent due to the independence among {ξi}i, which is easier to deal with.
Now we decompose I1,t as

I1,t =
t∑

i=0

t∏
j=i+1

{I − φj(I + C⋆)}φiθ̃
i
+

t∑
i=0

t∏
j=i+1

{I − φj(I + C⋆)}φiθ̂
i
=: Ĩ1,t + Î1,t. (45)

Intuitively, if xi converges to x⋆ as i goes to ∞, C̃⋆
i should get closer to C̃i as well. Thus, Ĩ1,t

should be a good approximation to I1,t and Î1,t is negligible. The following two lemmas quantify
the performance of Ĩ1,t and Î1,t, with proof lying in Section A.4.1 and A.4.2.

Lemma 16 Under Assumptions 1, 2(b) with m = 4, and 3(a), we suppose βt = cβ/(t + 1)β ,
χt = cβ/(t+ 1)χ with 1/2 < β < 1 and χ < β. Define γt = 1/(t+ 1)1−β , then we have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ĩ1,tĨT

1,t − Ξ⋆
∥∥∥] ≲ max

(
∥Γ∥F ,

√
Cg,4

µ2

)√
γM .

Lemma 17 Suppose the conditions in Lemma 13, 14, and 19 hold. Let ωt = cω/(t + 1)ω and
ω > α/2, then we have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Î1,tÎT

1,t

∥∥∥2] ≤ 1

M

M−1∑
t=0

1

φt
E
[
∥Î1,t∥2

]
≲ Cθ̂βM ,

where

Cθ̂ = max

{
Cg,2

µ2

( 1

γ2B
+
τ2ΥS,2

µ2

)
max

(
CH,2,

√
DΥ2

LH

)
,

√
D

γ2B
(Υm,2 +Υ2

Lg)

}
. (46)

With the help of two lemmas above, we are able to show the convergence rate of linear case.

Lemma 18 Assume the conditions in Lemma 16 and 17 hold. We have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
I1,tIT

1,t − Ξ⋆
∥∥∥] ≲ max

(
∥Γ∥F ,

√
Cg,4

µ2
, Cθ̂

)√
γM ,

where Cθ̂ is defined in (46).

Proof By (45), we have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
I1,tIT

1,t − Ξ⋆
∥∥∥] ≤ E

[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ĩ1,tĨT

1,t − Ξ⋆
∥∥∥]

+ E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Î1,tÎT

1,t

∥∥∥]+ 2E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ĩ1,tÎT

1,t

∥∥∥].
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The rates of the first two terms are given by Lemma 16 and 17. Regarding the last term, we use
Hölder inequality twice and obtain

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ĩ1,tÎT

1,t

∥∥∥] ≤ E
[
1

M

M−1∑
t=0

1

φt
∥Ĩ1,t∥∥Î1,t∥

]

≤

√√√√ 1

M

M−1∑
t=0

1

φt
E∥Ĩ1,t∥2

√√√√ 1

M

M−1∑
t=0

1

φt
E∥Î1,t∥2. (47)

Thus, in order to complete the proof, we only need to bound 1
M

∑M−1
t=0

1
φt
E∥Ĩ1,t∥2.

E
[
∥Ĩ1,t∥2

]
=

t∑
i1,i2=0

φi1φi2E
[
θ̃
iT1
( t∏

j1=i1+1

{
I−φj1(I+C

⋆)
})T t∏

j2=i2+1

{
I−φj2(I+C

⋆)
}
φi2 θ̃

i2
]

=
t∑

i=0

φ2
iE
[∥∥∥ t∏

j=i+1

{
I − φj(I + C⋆)

}
θ̃
i
∥∥∥2],

where the second equality is because {θ̃i}i are mean zero and independent. Let I + C⋆ = UΣUT

with Σ = diag(σ1, . . . , σd) be the eigenvalue decomposition. [18] pointed out that under Assump-
tion 3 (a) the eigenvalues are uniformly bounded, i.e. 1 − ρτ ≤ σk ≤ 1 for 1 ≤ k ≤ d. Thus, we
can further bound E

[
∥I1,t∥2

]
by

E
[
∥Ĩ1,t∥2

]
≤

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))2φ2
iE
[
∥θ̃i∥2

]
. (48)

Recall the definition of θ̃
i

in (44). For m = 2, 4, We have

E
[
∥θ̃i∥m

]
≤ E

[
∥I + C̃⋆∥m∥(B⋆)−1∥m∥∇f(x⋆; ξi)∥m

]
≤ 2mCg,m

µm
, (49)

The inequality holds due to ∥C̃⋆∥ ≤ 1, strong convexity, and Assumption 3(a). Combining the two
displays above, we have

1

M

M−1∑
t=0

1

φt
E
[
∥Ĩ1,t∥2

]
≤ 4Cg,2

µ2
1

M

M−1∑
t=0

1

φt

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))2φ2
i︸ ︷︷ ︸

−→1/2(1−ρτ ) by Lemma 10

≲
Cg,2

µ2
.

In last inequality, we use the fact that limt→∞
∑∞

t=0 at = a if limt→∞ at = a. This completes the
proof.
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A.4.1. PROOF OF LEMMA 16

Proof With the eigenvalue decomposition I+C⋆ = UΣUT where Σ = diag(σ1, . . . , σd), we have

Ĩ1,t =
t∑

i=0

t∏
j=i+1

{I − φj(I + C⋆)}φiθ̃
i
= U

t∑
i=0

t∏
j=i+1

{I − φjΣ}φtU
T θ̃

i
,

Let Q̃t = UT Ĩ1,t. By the definition of Ξ⋆, we have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ĩ1,tĨT

1,t − Ξ⋆
∥∥∥] = E

[∥∥∥ 1

M

M−1∑
t=0

1

φt
Q̃1,tQ̃T

1,t −Θ ◦ Γ
∥∥∥]

≤

√√√√E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Q̃1,tQ̃T

1,t −Θ ◦ Γ
∥∥∥2
F

]
.

where we apply Hölder’s inequality to the last inequality. We decompose the expectation term as
follows.

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Q̃1,tQ̃T

1,t −Θ ◦ Γ
∥∥∥2
F

]
=

d∑
p,q=1

E
[( 1

M

M−1∑
t=0

1

φt
Q̃t,pQ̃t,q −Θp,qΓp,q

)2]
=: I + II,

where

I =
∑
p,q

E
[( 1

M

M−1∑
t=0

1

φt
Q̃t,pQ̃t,q

)2]
−Θ2

p,qΓ
2
p,q,

II = −2
∑
p,q

(
E
[ 1

M

M−1∑
t=0

1

φt
Q̃t,pQ̃t,q

]
−Θp,qΓp,q

)
Θp,qΓp,q.

We first look at II . Expanding Q̃t, we have

E
1

M

M−1∑
t=0

1

φt
Q̃t,pQ̃t,q =

1

M

M−1∑
t=0

1

φt

t∑
i1=0

t∑
i2=0

t∏
j1=i1+1

(1− φj1σp)·

t∏
j2=i2+1

(1− φj2σq)φi1φi2E

[(
UT θ̃

i1
θ̃
iT2 U

)
p,q

]
.

It is easy to verify that

E[UT θ̃
i1
θ̃
iT2 U ] = 0 for i1 ̸= i2, and E[UT θ̃

i
θ̃
iT
U ] = Γ,

where the first equality is because {θi}i is mean-zero and independent; the second inequality is
from the definition of θ̃

i
in (44). Hence, we can bound |II| by

|II| ≤ 2
∑
p,q

{
1

M

M−1∑
t=0

∣∣∣ 1
φt

t∑
i=0

t∏
j=i+1

(1− φjσp) (1− φjσq)φ
2
i −Θp,q

∣∣∣}Θp,qΓ
2
p,q. (50)
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We aim to use Lemma 11 to give a uniform bound on the absolute value for any p, q. Going through
the proof of Lemma 11, it is easy to verify that we are able to uniformly bound the absolute value
term by O(γt) with γt = 1/(t+ 1)1−α due to the fact that 1− ρτ ≤ σk ≤ 1. Therefore, we have

|II| ≲ 1

M

M−1∑
t=0

γt
∑
p,q

(Γp,q)
2 ≲ ∥Γ∥2FγM .

Now we deal with I . Plugging in the definition of Q̃, we have

E
[( 1

M

M−1∑
t=0

1

φt
Q̃t,pQ̃t,q

)2]
=

1

M2

M−1∑
t1,t2=0

1

φt1

1

φt2

t1∑
i1,i′1=0

t2∑
i2,i′2=0

t1∏
j1=i1+1

(1− φj1σp)

t1∏
j′1=i′1+1

(1− φj′1
σq)

t2∏
j′2=i′2+1

(1− φj2σp)

t2∏
j2=i2+1

(1− φj′2
σq)φi1φi′1

φi2φi′2
E
[(
UT θ̃

i1
θ̃
i′T1 U

)
p,q

(
UT θ̃

i2
θ̃
i′T2 U

)
p,q

]
.

We note that the expectation is nonzero only when the indices i1, i′1, i2, i
′
2 are pairwise identical.

We divide the summation I into the four parts I1, I2, I3, I4 corresponding to the pairwise identical
configurations.
Case 1. i1 = i′1 = i2 = i′2
Summing over all the indices under this case, we have

I1 =
∑
p,q

1

M2

M−1∑
t1=0

M−1∑
t2=0

1

φt1

1

φt2

t1∧t2∑
i=0

t1∏
j1=i+1

(1− φj1σp)(1− φj1σq)·

t2∏
j2=i+1

(1− φj2σp)(1− φj2σq)φ
4
iE
[(
UT θ̃

i
θ̃
iT
U
)2
p,q

]
.

Since limt→∞ φt = 0, we know 1 − φtσk > 0 for large enough t. Similar to the analysis of
bounding Wt in the proof of Lemma 13, the sign of the first few terms does not affect the rate of the
series. Thus, without loss of generality, we assume 1 − φtσk > 0 for all t ≥ 1 and 1 ≤ k ≤ d for
all the remainder of this paper. Furthermore, by the uniform bound on σk, we have

|I1| ≤
1

M2

M−1∑
t1=0

M−1∑
t2=0

1

φt1

1

φt2

t1∧t2∑
i=0

t1∏
j1=i+1

(1− φj1(1− ρτ ))2·

t2∏
j2=i+1

(1− φj2(1− ρτ ))2φ4
iE
[∑

p,q

(
UT θ̃

i
θ̃
iT
U
)2
p,q

]
.

By (49) , we know

E
[∑

p,q

(
UT θ̃

i
θ̃
iT
U
)2
p,q

]
= E

[
∥θ̃i∥4

]
≤ 16Cg,4

µ4
.
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Due to the symmetry of indices t1 and t2, we have

|I1| ≤
2

M2

M−1∑
t1=0

1

φt1

t1∑
t2=0

1

φt2

t1∏
j2=t2+1

(1− φj2(1− ρτ ))2
t2∑
i=0

t2∏
j1=i+1

(1− φj1(1− ρτ ))4φ4
i︸ ︷︷ ︸

=O(φ3
t2
) by Lemma 10

16Cg,4

µ4

≲
2

M2

M−1∑
t1=0

1

φt1

t1∑
t2=0

t1∏
j2=t2+1

(1− φj2(1− ρτ ))2φ2
t2︸ ︷︷ ︸

−→1/2(1−ρτ ) by Lemma 10

Cg,4

µ4
≲
Cg,4

µ4
1

M
. (51)

Case 2. i1 = i′1, i2 = i′2, i1 ̸= i2
By (44) and the independence among {ξi}i, we know

E

[(
U⊤θ̃

i1
θ̃
i′T1 U

)
p,q

(
U⊤θ̃

i2
θ̃
i′T2 U

)
p,q

]
= Γ2

p,q.

Noting that the indices set {i1 = i′1, i2 = i′2, i1 ̸= i2} = {i1 = i′1, i2 = i′2}\{i1 = i′1 = i2 = i′2},
we have

I2 = −
∑
p,q

1

M2

M−1∑
t1=0

M−1∑
t2=0

1

φt1

1

φt2

t1∧t2∑
i=0

t1∏
j1=i+1

(1− φj1σp)(1− φj1σq)

t2∏
j2=i+1

(1− φj2σp)(1− φj2σq)φ
4
iΓ

2
p,q

+
∑
p,q

{ 1

M2

M−1∑
t1=0

M−1∑
t2=0

1

φt1

1

φt2

t1∑
i1=0

t2∑
i2=0

t1∏
j1=i1+1

(1− σpφj1)(1− σqφj1)

t2∏
j2=i2+1

(1− σpφj2)(1− σqφj2)φ
2
i1φ

−
i2
Θ2

p,q

}
Γ2
p,q =: I2,a + I2,b.

Actually, I2,a shares the same series as (51), thus I2,a by |I2,a| ≲ 1
M

∑
p,q Γ

2
p,q = 1

M ∥Γ∥2F . On the
other hand, I2,b can be rewrite as

I2,b =
∑
p,q

(
1

M

M−1∑
t=0

∣∣∣ 1
φt

t∑
i=0

t∏
j=i+1

(1− σpφj) (1− σqφj)φ
2
i −Θp,q

∣∣∣)2

Γ2
p,q

+ 2
∑
p,q

(
1

M

M−1∑
t=0

∣∣∣ 1
φt

t∑
i=0

t∏
j=i+1

(1− φjσp) (1− φjσq)φ
2
i −Θpq

∣∣∣)Θp,qΓ
2
p,q

From the analysis of (50), we get |I2,b| ≲ γM∥Γ∥2F . To sum up, we have

|I2| ≲ ∥Γ∥2FγM .

Case 3. i1 = i2, i
′
1 = i′2, i1 ̸= i′1
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With the bound on the eigenvalues, we have

|I3| ≤
1

M2

M−1∑
t1=0

M−1∑
t2=0

1

φt1

1

φt2

t1∧t2∑
i1=0

t1∏
j1=i1+1

(1− φj1(1− ρτ ))

t2∏
j2=i1+1

(1− φj2(1− ρτ ))φ2
i1 ·

t1∧t2∑
i′1=0,i1 ̸=i′1

t1∏
j′1=i′1+1

(1− φj′1
(1− ρτ ))

t2∏
j′2=i′1+1

(1− φj′2
(1− ρτ ))φ2

i′1
E
[∑

p,q

(
UT θ̃

i1)2
p

(
UT θ̃

i′1
)2
q

]
.

When i1 ̸= i′1, by (44) and (49), we have

E
[∑

p,q

(
UT θ̃

i1)2
p

(
UT θ̃

i′1
)2
q

]
= E

[
∥θ̃i1∥2

]
E
[
∥θ̃i

′
1∥2
] Hölder′s

≤ E∥θ̃i1∥4 ≤ 16Cg,4

µ4
.

Due to the symmetry of indices t1 and t2, we have

|I3| ≲
Cg,4

µ4
· 1

M2

M−1∑
t1=0

1

φt1

t1∑
t2=0

1

φt2

t1∏
j=t2+1

(1− φj(1− ρτ ))2
{ t2∑

i1=0

t2∏
j1=i1+1

(1− φj1(1− ρτ ))2φ2
i1︸ ︷︷ ︸

=O(φt2 ) by Lemma 10

}2

≲
Cg,4

µ4
· 1

M2

M−1∑
t1=0

1

φt1

t1∑
t2=0

t1∏
j=t2+1

(1− (1− ρτ )φj)
2φt2︸ ︷︷ ︸

−→1/2(1−ρτ ) by Lemma 10

≲
G4

µ4
· 1

M2

M−1∑
t1=0

1

φt1

≲
Cg,4

µ4
· 1

M1−α
=
Cg,4

µ4
γM .

Case 4. i1 = i′1, i2 = i′2, i1 ̸= i2
I4 is the same as (A.4.1) except that the expectation term is replaced by∑

p,q

E
[(
UT θ̃

i1
θ̃
iT1 U

)
p,q

(
UT θ̃

i2
θ̃
iT2 U

)
p,q

]
=
∑
p,q

Γ2
p,q = ∥Γ∥2F .

Therefore, we have |I4| ≲ ∥Γ∥2FγM .
Therefore, we combine the four cases above and get |I| ≲ max(∥Γ∥2F , Cg,4/µ

4)γM . Combining
with the analysis on II , we complete the proof.

A.4.2. PROOF OF LEMMA 17

We first introduce the following auxiliary lemma with the proof in Section A.4.3.

Lemma 19 Under Assumptions 1, 2 (b) withm = 2, 3 (b) withm = 2, and 6 withm = 2, we have

E
[
∥θ̂i∥2

]
≲

1

γ2B
(Υ2

Lg +Υm,2)E
[
∥xi − x⋆∥2

]
+
Cg,2

µ2
( 1

γ2B
+
τ2ΥS,2

µ2
)
E
[
∥Bi −B⋆∥2

]
.

Proof Recall the definition of Î1,t

Î1,t =
t∑

i=0

t∏
j=i+1

{I − φj(I + C⋆)}φiθ̂
i
= U

t∑
i=0

t∏
j=i+1

{I − φjΣ}φtU
T θ̂

i
,
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where I + C⋆ = UΣUT is the eigenvalue decomposition and λ(Σ) ≥ 1 − ρτ . Since θ̂
i

is a
martingale difference sequence, we follow the same analysis as (48) and get

E
[
∥Î1,t∥2

]
≤

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))2φ2
iE
[
∥θ̂i∥2

]
.

Combining Lemma 19, Lemma 13, and Lemma 14, we know

E
[
∥θ̂i∥2

]
≲ Cθ̂(βi + ω2

i ),

where Cθ̂ is defined in (46). Therefore, we have

1

M

M−1∑
t=0

1

φt
E∥Î1,t∥2 ≲ Cθ̂

1

M

M−1∑
t=0

1

φt

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))2φi · φi(βi + ω2
i ).

Since limt→∞ t(1−φt−1βt−1/φtβt) = −2β) and limt→∞ t(1−φt−1ωt−1/φtωt) = −β− 2ω, we
apply Lemma 10 and get

1

M

M−1∑
t=0

1

φt
E∥Î1,t∥2 ≲ Cθ̂

1

M

M−1∑
t=0

(
βt + ω2

t

)
≲ Cθ̂(βM + ω2

M ) ≲ Cθ̂βM .

The last two inequalities are due to β < 1 and β < 2ω. This completes the proof.

A.4.3. PROOF OF LEMMA 19

Proof Recall the definition of θ̂
i

in (44), we have

θ̂
i
= θi − θ̃i = −(I + C̃i)B

−1
i ∇f(xi; ξi) + (I + C̃⋆

i )(B
⋆)−1∇f(x⋆; ξi) + (I + Ci)B

−1
i ∇fi.

Thus, we have

∥θ̂i∥2 ≲ ∥(I + Ci)B
−1
i ∥2∥∇fi∥2 + ∥(I + C̃i)B

−1
i ∥2∥∇f(xi; ξi)−∇f(x⋆; ξi)∥2

+ ∥(I + C̃i)B
−1
i − (1 + C̃⋆

i )(B
⋆)−1∥2∥∇f(x⋆; ξi)∥2 =: I + II + III.

By the Lipschitz continuity of ∇f , λ(Bi) ≥ γB , and ∥Ci∥ ≤ 1, we get

EI ≤ 22
Υ2

Lg

γ2B
E
[
∥xi − x⋆∥2

]
. (52)

By Assumption 6 with m = 2 and the bound on ∥B−1
i ∥, we use the law of total expectation and

have

EII ≤ 22

γ2B
E
[
∥xi − x⋆∥2E

[
H(ξi)

2 | Fi−1

] ]
≲

Υm,2

γ2B
E
[
∥xi − x⋆∥2

]
. (53)
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Now we deal with EIII . According to the strong convexity and lower bound on λ(Bi), we have

∥(I + C̃i)B
−1
i − (1 + C̃⋆

i )(B
⋆)−1∥2 ≤ ∥I + C̃i∥2∥B−1

i ∥2∥B⋆−1∥2∥Bi −B⋆∥2

+ ∥B⋆−1∥2∥C̃i − C̃⋆
i ∥2 ≤

4

γ2Bµ
2
∥Bi −B⋆∥2 + 1

µ2
∥C̃i − C̃⋆

i ∥2.

We compute EIII by first conditioning on Fi−1.

EIII ≤ 4

γ2Bµ
2
E
[
∥Bi−B⋆∥2E

[
∥∇f(x⋆; ξi)∥2 | Fi−1

]]
+

1

µ2
E
[
E
[
∥C̃i−C̃⋆

i ∥2 | Fi−1

]
E
[
∥∇f(x⋆; ξi)∥2 | Fi−1

]]
≤ 4Cg,2

γ2Bµ
2
E
[
∥Bi −B⋆∥2

]
+
Cg,2

µ2
E
[
∥C̃i − C̃⋆

i ∥2
]
, (54)

where the first inequality also uses the independence between ξi and ζi; the second inequality comes
from the Assumption 6. By the definition of C̃⋆

i in (43), we have

∥C̃i − C̃⋆
i ∥ =

∥∥∥ τ−1∏
j=0

C̃i,j −
τ−1∏
j=0

C̃⋆
i,j

∥∥∥ ≤
∥∥∥ τ−2∏

j=0

C̃i,j −
τ−2∏
j=0

C̃⋆
i,j

∥∥∥∥C⋆
i,τ−1∥

+
∥∥∥ τ−2∏

j=0

C̃i,j

∥∥∥∥C̃i,τ−1 − C̃⋆
i,τ−1∥ ≤ · · · ≤

τ−1∑
j=0

∥∥∥C̃i,j − C̃⋆
i,j

∥∥∥ .
By [18, Lemma 4.2] and Assumption 3(b), we get

E
[
∥C̃i − C̃⋆

i ∥2 | Fi−1

]
≤ 4∥Bi −B⋆∥2

µ2
E

τ−1∑
j=0

∥Si,j∥
σ+min(Si,j)

2 ≲
τ2ΥS,2

µ2
∥Bi −B⋆∥2.

Going back to (54), we get

EIII ≲
Cg,2

µ2

( 1

γ2B
+
τ2ΥS,2

µ2

)
E
[
∥Bt −B⋆∥2

]
. (55)

Combining (52), (53), and (55) completes the proof.

A.5. Proof of Theorem 8

In order to apply the decomposition in Lemma 15, we rewrite the sample covariance matrix ΞM as

ΞM =
1

M

M∑
t=1

1

φt
(xt − x⋆)(xt − x⋆)T +

1

M

M∑
t=1

1

φt
(x̄M − x⋆)(x̄M − x⋆)T

+
1

M

M∑
t=1

1

φt
(xt − x⋆)(x̄M − x⋆)T +

1

M

M∑
t=1

1

φt
(x̄M − x⋆)(xt − x⋆)T . (56)

Intuitively, x̄ is a good estimation of Ξ⋆. Thus, 1
M

∑M
t=1

1
φt
(x̄M − x⋆)(x̄M − x⋆)T should be

negligible while 1
M

∑M
t=1

1
φt
(xt − x⋆)(xt − x⋆)T approximates the true covariance matrix Ξ⋆.
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Lemma 20 Under the conditions of Lemma 13 and 14, we suppose Assumption 3(b) with m = 1
holds. Let ωt = cω/(t+ 1)ω for constants cω > 0 and ω > β/2. Then we have

E
[∥∥∥ 1

M

M∑
t=1

1

φt
(xt − x⋆)(xt − x⋆)T − Ξ⋆

∥∥∥] ≲ max
(
∥Γ∥F ,

√
Cg,4

µ2
, Cθ̂, Cδ

)√
γM ,

where

Cδ := max

{(Υ2
S,1τ

2

µ2
+

Υ2
Lg

µ2γ2B

)√
D ·max

(√
CH,4,

√
DΥ2

LH

)
, ∥x0 − x⋆∥2

}
. (57)

Lemma 21 Under the conditions of Lemma 13, Lemma 14, we further suppose β > 1/2. Let
ωt = cω/(t+ 1)ω with ω > β/2. We have

E
[∥∥∥ 1

M

M∑
t=1

1

φt
(x̄M−x⋆)(x̄M−x⋆)T

∥∥∥] ≤ 1

M

M∑
t=1

1

φt
E
[
∥x̄M−x⋆∥2

]
≲ max

(max(Cg,2,
√
DΥ2

Lg)

γ2B
, Cδ

)
γM .

The proofs of these two lemmas are left to Section A.5.1 and A.5.2. Now we are prepared to prove
Theorem 8.
Proof By the decomposition (56), we have

E
[∥∥∥ΞM − Ξ⋆

∥∥∥] ≤ E
[∥∥∥ 1

M

M∑
t=1

1

φt
(xt − x⋆)(xt − x⋆)T − Ξ⋆

∥∥∥]

+ E
[∥∥∥ 1

M

M∑
t=1

1

φt
(x̄M − x⋆)(x̄M − x⋆)T

∥∥∥]+ 2E
[∥∥∥ 1

M

M∑
t=1

1

φt
(xt − x⋆)(x̄M − x⋆)T

∥∥∥]. (58)

The first two terms are analyzed in Lemma 20 and 21. Similar to (47), we apply Cauchy’s inequality
and have

1

M

M∑
t=1

1

φt
E
[
∥xt−x⋆∥∥x̄M−x⋆∥

]
≤

√√√√ 1

M

M∑
t=1

1

φt
E
[
∥xt − x⋆∥2

]√√√√ 1

M

M∑
t=1

1

φt
E
[
∥x̄M − x⋆∥2

]
.

(59)
In order to complete the proof, it is sufficient to bound 1

M

∑M
t=1

1
φt
E
[
∥xt − x⋆∥2

]
. By Lemma 13,

we have

1

M

M∑
t=1

1

φt
E
[
∥xt − x⋆∥2

]
≲

√
D

1

M

M∑
t=1

βt
φt

≲
√
D.

(
since lim

t→∞
βt/φt = 1 by χt = o(βt)

)
.

(60)
Combining Lemma 20, Lemma 21 and the derivations above, we conclude that

E
[
∥ΞM − Ξ⋆∥

]
≲ max

(
∥Γ∥F ,

√
Cg,4

µ2
, Cθ̂, Cδ

)√
γM . (61)

This completes the proof.
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A.5.1. PROOF OF LEMMA 20

Recall the decomposition (42), we know the performance of 1
M

∑M
t=1

1
φt
(xt−x⋆)(xt−x⋆)T relies

on I1,t, I2, t, and I3,t, The linear case is analyzed in Section A.4. Here we introduce two lemmas
regarding I2,t and I3,t, the proofs of which are given in sections A.5.3 and A.5.4.

Lemma 22 Under the conditions of Lemma 13, we have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
I2,tIT

2,t

∥∥∥] ≤ 1

M

M−1∑
t=0

1

φt
E
[
∥I2,t∥2

]
≲

max(Cg,2,
√
DΥ2

Lg)

γ2B
βM .

Lemma 23 Under the conditions of Lemma 13 and 14, we suppose Assumption 3(b) with m = 1
holds. Let ωt = cω/(t+ 1)ω for constants cω > 0 and ω > β/2. Then we have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
I3,tIT

3,t

∥∥∥] ≤ 1

M

M−1∑
t=0

1

φt
E
[
∥I3,t∥2

]
≲ CδβM ,

with Cδ given in (57).

Proof According to the decomposition Lemma 15, we have

E
[∥∥∥ 1

M

M∑
i=1

1

φi
(xi − x⋆)(xi − x⋆)T − Ξ⋆

∥∥∥] ≤ E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
I1,tIT

1,t − Ξ⋆
∥∥∥]+ E

[∥∥∥ 1

M

M−1∑
t=0

1

φt
I2,tIT

2,t

∥∥∥]

+ E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
I3,tIT

3,t

∥∥∥]+ 2
∑

1≤i<j≤3

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ii,tIT

j,t

∥∥∥].
The rate of the first three terms are shown in Lemma 18, 22, and 23, respectively. For 1 ≤ i < j ≤ 3,
we use Cauchy’s inequality twice and have

E
[∥∥∥ 1

M

M−1∑
t=0

1

φt
Ii,tIT

j,t

∥∥∥] ≤ E
[ 1

M

M−1∑
t=0

1

φt
∥Ii,t∥∥Ij,t∥

]

≤ E

[√√√√ 1

M

M−1∑
t=0

1

φt
∥Ii,t∥2

√√√√ 1

M

M−1∑
t=0

1

φt
∥Ij,t∥2

]
≤

√√√√ 1

M

M−1∑
t=0

1

φt
E
[
∥Ii,t∥2

]√√√√ 1

M

M−1∑
t=0

1

φt
E
[
∥Ij,t∥2

]
.

Thus, it suffices to bound 1
M

∑M−1
t=0

1
φt
E
[
∥I1,t∥2

]
. Recall the expression of I1,t (35). Since θi is a

martingale difference sequence, we can use techniques similar to (48) and get

E
[
∥I1,t∥2

]
≤

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))2φ2
iE
[
∥θi∥2

]
.

By the definition of θi in (39), we have

E
[
∥θi∥2

]
≲

1

γ2B

(
E
[
∥ḡi∥2

]
+E
[
∥∇fi∥2

])
≲

1

γ2B

(
Cg,2+Υ2

Lg

[
∥xi−x⋆∥2

])
≲

max(Cg,2,
√
DΥ2

Lg)

γ2B
(1+βi).

(62)
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The inequality holds due to ∥C̃⋆∥ ≤ 1, strong convexity, Assumption 2(b), and Lemma 13. There-
fore, we have

1

M

M−1∑
t=0

1

φt
E
[
∥I1,t∥2

]
≲

1

γ2B
max

(
Cg,2,

√
DΥ2

Lg

) 1

M

M−1∑
t=0

1

φt

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))2φ2
i (1 + βi)︸ ︷︷ ︸

−→1/2(1−ρτ ) by Lemma 13

≲
1

γ2B
max

(
Cg,2,

√
DΥ2

Lg

)
. (63)

Combining Lemma 18, 22, 23, and (63) completes the proof.

A.5.2. PROOF OF LEMMA 21

Proof By the decomposition of xt − x⋆, we have

x̄M − x⋆ =
1

M

M−1∑
t=0

1

φt
I1,t +

1

M

M−1∑
t=0

1

φt
I2,t +

1

M

M−1∑
t=0

1

φt
I3,t =: Ī1,M + Ī2,M + Ī3,M .

Expanding Ī1,M with the I1,t expression (35) and exchanging the indices, we have

Ī1,M =
1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

U{I − φjΣ}φi(U
Tθi) =

1

M

M−1∑
i=0

M−1∑
t=i

t∏
j=i+1

U{I − φjΣ}φi(U
Tθi).

(64)
θi is a martingale difference sequence, which helps us cancel the interaction terms in E

[
∥Ī1,M∥2

]
and returns

E
[
∥Ī1,M∥2

]
=

1

M2

M−1∑
i=0

φ2
iE
[∥∥∥M−1∑

t=i

t∏
j=i+1

{I − φjΣ}(UTθi)
∥∥∥2]

≤ 1

M2

M−1∑
i=0

(M−1∑
t=i

t∏
j=i+1

(
1− φj(1− ρτ )

))2
φ2
iE
[
∥θi∥2

]
=: (#).

Again, we exchange the indices and obtain

(#) =
1

M2

M−1∑
i=0

M−1∑
t1=i

M−1∑
t2=i

t∏
j1=i1+1

(1− φj1(1− ρτ ))

t∏
j2=i2+1

(1− φj2(1− ρτ ))φ2
iE
[
∥θi∥2

]
=

1

M2

M−1∑
t1=0

M−1∑
t2=0

t1∧t2∑
i=0

t1∏
j1=i+1

(1− φj1(1− ρτ ))

t2∏
j2=i+1

(1− φj2(1− ρτ ))φ2
iE
[
∥θi∥2

]
≤ 2

M2

M−1∑
t1=0

t1∑
t2=0

t1∏
j1=t2+1

(1− φj1(1− ρτ ))

t2∑
i=0

t2∏
j2=i+1

(1− φj2(1− ρτ ))2φ2
iE
[
∥θi∥2

]
,
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where the inequality comes from the symmetry of indices i1 and i2. By (62), we know

(#) ≲
max(Cg,2,

√
DΥ2

Lg)

γ2B

1

M2

M−1∑
t1=0

t1∑
t2=0

t1∏
j1=t2+1

(1−φj1(1−ρτ ))
t2∑
i=0

t2∏
j2=i+1

(1− φj2(1− ρτ ))2φ2
i (1 + βi)︸ ︷︷ ︸

=O(φt2 ) by Lemma 13

≲
max(Cg,2,

√
DΥ2

Lg)

γ2B

1

M2

M−1∑
t1=0

t1∑
t2=0

t1∏
j=t2+1

(1− (1− ρτ )φj)φt2︸ ︷︷ ︸
−→ 1

1−ρτ
by Lemma 13

≲
max(Cg,2,

√
DΥ2

Lg)

γ2B

1

M
.

(65)

Secondly, we consider Ī2,M . Similar to (64), we have

Ī2,M =
1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

U{I − φjΣ}(ᾱi − φi)U
T ∆̄xi

Furthermore, we use Cauchy’s inequality and get

E∥Ī2,M∥2 ≤ 1

4
E
[( 1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))χi∥∆̄xi∥
)2]

≤ 1

4

( 1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))χi

√
∥∆̄xi∥2

)2
. (66)

By (23), ΥLg-Lipschitz continuity of ∇f , and Lemma 13, we bound E∥∆̄xi∥2 as follows.

E
[
∥∆̄xi∥2

]
≤ 22

γ2B

(
Cg,2 +Υ2

LgE
[
∥xi − x⋆∥2

])
≲

max(Cg,2,
√
DΥ2

Lg)

γ2B
(1 + βi). (67)

Therefore, we have

E∥Ī2,M∥2 ≲
max(Cg,2,

√
DΥ2

Lg)

γ2B

( 1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

(1− (1− ρτ )φj)χi

√
1 + βi︸ ︷︷ ︸

=O(χt/βt)

)2

≲
max(Cg,2,

√
DΥ2

Lg)

γ2B

χM

βM
(sinceχ > 2β). (68)

Finally, we have

Ī3,M =
1

M

M−1∑
t=0

t∏
i=0

U{I − φiΣ}UT (x0 − x⋆) +
1

M

M−1∑
t=0

t∑
i=0

t∑
j=1+1

U{I − φjΣ}φiU
Tδi,
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thus

E
[
∥I3,M∥2

]
≲
( 1

M

M−1∑
t=0

t∏
i=0

(
1−φi(1−ρτ )

))2
∥x0−x⋆∥2+

( 1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

(
1−φj(1−ρτ )

)
φi

√
E
[
∥δi∥2

])2
.

(69)
Now we compute the rate of E

[
∥δi∥2

]
. By the definition of δi in (40), we know

∥δi∥2 ≤ ∥Ci − C⋆∥2∥xi − x⋆∥2 + 2∥(B⋆)−1∥2∥ψi∥2 + 2∥B−1
i ∥2∥B⋆−1∥2∥Bt −B⋆∥2∥∇fi∥2

≲
τ2Υ2

S,1

µ2
∥Bi −B⋆∥2∥xi − x⋆∥2 +

Υ2
Lh

µ2
∥xi − x⋆∥4 +

Υ2
Lg

µ2γ2B
∥Bi −B⋆∥2∥xi − x⋆∥2,

where the second inequality holds due to the following reasons: 1) [18, Lemma 4.2] introduces
a bound on ∥Ct − C⋆∥; 2)λmin(Bt) ≥ γB; 3) f is µ strongly convex; 4) ∇f is ΥLg Lipschitz
continuous; 5) ∥ψi∥ ≤ 1

2ΥLh∥xi − x⋆∥2 due to the ΥLh Lipschitz continuity of ∇2f . Using
Cauchy’s inequality and plugging in the rate obtained in Lemma 13 and 14, we have

E
[
∥δi∥2

]
≲
(τ2Υ2

S,1

µ2
+

Υ2
Lg

µ2γ2B

)√
E∥Bi −B⋆∥4

√
E∥xi − x⋆∥4+

Υ2
Lh

µ2
E∥xi−x⋆∥4 ≲ Cδβi(βi+ω

2
i ),

(70)
where Cδ is defines in (57). We apply Lemma 10 and have

E∥Ī3,M∥2 ≲ Cδ

( 1

M

M−1∑
t=0

t∏
i=0

(
1− φi(1− ρτ )

)
︸ ︷︷ ︸

=o(
√

βt(βt+ω2
t )

)2
+Cδ

( 1

M

M−1∑
t=0

t∑
i=0

t∏
j=i+1

(
1− φj(1− ρτ )

)
φi

√
βi(βi + ω2

i )︸ ︷︷ ︸
=O(

√
βt(βt+ω2

t )

)2

≲ CδβM (βM + ω2
M ) ≲ Cδβ

2
M . (71)

The last two inequalities are due to β < 1 and 2ω > β. Now we combine. (65),(68), and (71). With
the fact 1

M

∑M−1
t=0 1/φt ≲ 1

M

∑M
t=1 t

β ≲Mβ , we know

1

M

M−1∑
t=0

1

φt
E
[
∥x̄− x⋆∥2

]
≲ max

(max(Cg,2,
√
DΥ2

Lg)

γ2B
, Cδ

) 1

βM

( 1

M
+
χ2
M

β2M
+ β2M

)
≲ max

(max(Cg,2,
√
DΥ2

Lg)

γ2B
, Cδ

)
γM ,

where the last inequality follows from 1/2 < β < 1 and χ > 2β. We complete the proof.

A.5.3. PROOF OF LEMMA 22

Proof Recall the definition of I2,t in (36), we have

∥I2,t∥ ≤
∥∥∥ t∑

i=0

t∏
j=i+1

{I − φjΣ} (αi − φi)U
T ∆̄xi

∥∥∥ ≤
t∑

i=0

t∏
j=i+1

(1− φj(1− ρτ ))
χi

2
∥∆̄xi∥

31



ONLINE COVARIANCE MATRIX ESTIMATION IN STOCHASTIC INEXACT NEWTON METHODS

where the last inequality is due to the uniform bound on σk and |αi −φi| ≤ χi/2. Furthermore, we
apply Cauchy’s inequality and obtain

E∥I2,t∥2 ≤ E
[( t∑

i=0

t∏
j=i+1

(1−φj(1−ρτ ))
χi

2
∥∆̄xi∥

)2]
≤
( t∑

i=0

t∏
j=i+1

(1−φj(1−ρτ ))
χi

2

√
E∥∆̄xi∥2

)2
.

We plug in the rate E
[
∥∆̄xi∥2

]
in (67). Moreover, since limt→∞ t

(
1− χt−1(1+β

1/2
t−1)/φt−1

χt(1+β
1/2
t )/φt

)
= β−χ,

we can apply Lemma 10 and obtain

1

M

M−1∑
t=0

1

φt
E
[
∥Î2,t∥2

]
≲

max(Cg,2,
√
DΥ2

Lg)

γ2B

1

M

M−1∑
t=0

1

φt

( t∑
i=0

t∏
j=i+1

(1− φj(1− ρτ ))χi(1 + β
1/2
i )︸ ︷︷ ︸

=O(χt/φt) by Lemma 10

)2

≲
max(Cg,2,

√
DΥ2

Lg)

γ2B

1

M

M−1∑
t=0

χ2
t

φ3
t

≲
max(Cg,2,

√
DΥ2

Lg)

γ2B
βM .

The last inequality holds because χ2
t /φ

3
t ≲ βt due to the condition χ > 2β in the assumption of

Lemma 13. This completes the proof.

A.5.4. PROOF OF LEMMA 23

Proof By the expression of I3,t in (37), we have

∥I3,t∥2 ≲
∥∥ t∏

i=0

{I − φiΣ}UT (x0 − x⋆)∥2 +
∥∥ t∑

i=0

t∏
j=i+1

{I − φjΣ}φiU
Tδi
∥∥2

≤
t∏

i=0

(1− φi(1− ρτ ))2∥x0 − x⋆∥2 +
( t∑
i=0

(1− φj(1− ρτ ))φi∥δi∥
)2
.

By Cauchy’s inequality, we have

E
[( t∑

i=0

(1− φj(1− ρτ ))φi∥δi∥
)2] ≤ ( t∑

i=0

(1− φj(1− ρτ ))φi

√
E
[
∥δi∥2

])2
.

Plugging in the rate of E
[
∥δi∥2

]
in (70), we come to

1

M

M−1∑
t=0

1

φt
E
[
∥I3,t∥2

]
≲
Cδ

M

M−1∑
t=0

1

φt

t∏
i=0

(1− φi(1− ρτ ))2

+
Cδ

M

M−1∑
t=0

1

φt

( t∑
i=0

t∏
j=i+1

(1− (1− ρτ )φj)φi

√
βi(
√
βi + ωi)︸ ︷︷ ︸

=O(
√
βt(

√
βt+ωt)) by Lemma 10

)2
≲ CδβM .

The last two inequalities are due to β < 1 and 2ω > β. This completes the proof.
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Appendix B. More Numerical Experiments

Table 2 lists the average length of the 95% confidence intervals for
∑d

i=1 x
⋆
i /d along with the

average rate shown in Table 1.

Dim τ Estimator Id Σa
Toeplitz Σa(r) Equi-corr Σa(r)

0.5 0.2

5

∞ plug-in 7.00(0.05) 4.76(0.04) 5.20(0.04)
sample cov 6.89(0.45) 4.74(0.30) 5.16(0.32)

10
plug-in 6.98(0.05) 4.76(0.04) 5.20(0.04)

sample cov 6.86(0.47) 5.16(0.34) 5.56(0.37)

20
plug-in 6.98(0.05) 4.76(0.03) 5.20(0.04)

sample cov 6.91(0.48) 4.95(0.33) 5.25(0.36)

40
plug-in 6.97(0.06) 4.76(0.04) 5.20(0.04)

sample cov 6.95(0.47) 4.83(0.34) 5.25(0.36)

20

∞ plug-in 3.54(0.03) 2.14(0.02) 1.61(0.01)
sample cov 3.50(0.22) 2.11(0.14) 1.60(0.10)

10
plug-in 3.53(0.03) 2.13(0.02) 1.61(0.01)

sample cov 3.42(0.38) 2.61(0.18) 2.36(0.15)

20
plug-in 3.53(0.03) 2.13(0.02) 1.61(0.01)

sample cov 3.49(0.29) 2.52(0.18) 2.19(0.16)

40
plug-in 3.53(0.03) 2.13(0.02) 1.61(0.01)

sample cov 3.47(0.26) 2.38(0.15) 1.99(0.15)

40

∞ plug-in 2.54(0.02) 1.51(0.01) 0.86(0.01)
sample cov 2.52(0.15) 1.49(0.10) 0.85(0.06)

10
plug-in 2.54(0.02) 1.49(0.01) 0.84(0.01)

sample cov 2.37(0.31) 1.88(0.14) 1.44(0.10)

20
plug-in 2.54(0.02) 1.49(0.01) 0.84(0.01)

sample cov 2.45(0.25) 1.83(0.13) 1.39(0.10)

40
plug-in 2.54(0.05) 1.49(0.01) 0.85(0.01)

sample cov 2.51(0.21) 1.78(0.13) 1.31(0.08)

60

∞ plug-in 2.12(0.02) 1.24(0.01) 0.59(0.00)
sample cov 2.10(0.15) 1.23(0.07) 0.58(0.04)

10
plug-in 2.12(0.02) 1.86(1.54) 0.57(0.00)

sample cov 2.00(0.28) 2.40(1.93) 1.05(0.07)

20
plug-in 2.12(0.02) 1.22(0.05) 0.58(0.00)

sample cov 2.03(0.24) 1.55(0.13) 1.03(0.06)

40
plug-in 2.12(0.02) 1.22(0.01) 0.58(0.00)

sample cov 2.09(0.19) 1.48(0.10) 0.98(0.06)

Table 2: The average length (×10−2) of the confidence interval for
∑d

i=1 x
⋆
i /d for linear regression

at the target level 95%.

33



ONLINE COVARIANCE MATRIX ESTIMATION IN STOCHASTIC INEXACT NEWTON METHODS

Government License (will be removed at publication):
The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Labo-
ratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide li-
cense in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Gov-
ernment. The Department of Energy will provide pub-
lic access to these results of federally sponsored re-
search in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan.

34


	Introduction
	Recap: Adaptive Inexact Newton Method 
	Global convergence and asymptotic normality
	Covariance matrix estimate
	Numerical Experiments
	Conclusion
	Proofs
	Preparation Lemmas
	Proofs of Section 2
	Proof of Theorem 4
	Proof of Theorem 7

	Convergence rate of iterates and Hessian estimates
	The linear case
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 19

	Proof of Theorem 8
	Proof of Lemma 20
	Proof of Lemma 21
	Proof of Lemma 22
	Proof of Lemma 23


	More Numerical Experiments

